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Abstract

We present an interactive technique for the reg-
istration of captured images of elastic and rigid
body parts in which the user is given flexible con-
trol over material specific deformation properties.
Our method can effectively handle arbitrary stiff-
ness distributions and it achieves an accurate match-
ing without sacrificing the physical correctness of
the simulated deformations. The algorithm consists
of three steps, which are performed iteratively un-
til an optimal spatial mapping is determined: First,
the optical flow is used to predict an initial image
transformation. Second, a priori knowledge of the
deformation model is used to refine the predicted
field. A physics-based filter operation generates a
transformation that is consistent with the model of
linear elasticity. Third, the process is repeated using
the displaced template image. To achieve accurate
image deformations we employ implicit multigrid
solvers using finite differences (optical flow) and fi-
nite elements (linear elasticity). The robustness and
accuracy of our method is validated using synthetic
and real clinical data composed of heterogeneous
materials exhibiting different stiffness characteris-
tics.

1 Introduction

Especially in medical applications there is an ever
growing interest in techniques that can accurately
relate information in multiple data sets resulting
from different measurements. Image registration
techniques are designed for that purpose as they
try to find the correspondence between images
of the same anatomical structure taken under dif-
ferent conditions (e.g. different relative camera-
patient position, different methods of acquisition,
etc.). Such techniques compute a spatial mapping
of structures into a common coordinate system or
aim at compensating individual structural character-

istics and differences due to movements over time.
One of the main challenges in image registration

is to accurately model and simulate the deforma-
tion behavior of the structures contained in the data.
Scanned body parts are usually composed of highly
heterogeneous tissue types and in particular an elas-
tic modulus with a dynamic range of several orders
of magnitude is not unusual to be found in a sin-
gle scan. Registration techniques capable of deal-
ing with such data require to adjust the stiffness of
the transformation to permit realistic displacements
over all parts in the data. Physics-based deforma-
tion models then have to be considered to realisti-
cally simulate the structural changes.

In this work, we present an algorithm for image
registration that addresses the aforementioned re-
quirements by using a predictor-corrector approach
to iteratively compute an optimal spatial mapping.
The predicted deformation field can be computed
from image pairs using any standard evaluation
method. The corrector step implements a finite-
element solver for the Lagrangian equation of mo-
tion simulating linear elasticity. It takes as input the
predicted vector field and modifies it according to
the underlying physical model. As all parts of the
algorithm run interactively, intuitive control mech-
anisms to flexibly adjust the deformation properties
of specific regions in the data are integrated.

In particular, we utilize a GPU-based random
walker [14] for assigning specific stiffness values
to parts of an image. While it is generally possible
to assign these properties using a painting tool on a
per-pixel basis this is a tedious and time-consuming
task not feasible in clinical practice. Instead, we
use the segmentation algorithm to assign stiffness
on a per-object basis. The segmentation algorithm
extracts parts from the image automatically by sin-
gle mouse clicks or strokes on top of the object, and
it then fills the object’s interior with a user-defined
stiffness.
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1.1 Related Work

With respect to the assumed image transformation,
image registration techniques can be classified into
parametric and non-parametric approaches. Com-
prehensive surveys of these approaches along with
a number of application areas can be found in
[20, 28, 21]. Parametric approaches impose spe-
cific restrictions on the transformation, e.g. requir-
ing the transformation to be rigid, polynomial or
affine. Non-parametric, i.e. non-linear, approaches,
on the other hand, are far more flexible in the type
of transformation they compute. Such transforma-
tions rely on additional constraints like the regu-
larization of the displacement field, which can be
enforced by explicit smoothing of the deformation
field [1, 22, 25]. Over the last years special empha-
sis has been put on the development of variational
PDE approaches to obtain approximate solutions to
the non-linear registration problem [7]. In this case
an additional smoothing term is considered in the
global energy function to be minimized. In particu-
lar, physics-based regularizers based on linear elas-
tic and viscous fluid models have been shown to be
effective in penalizing unrealistic local and global
displacements [6, 27, 26, 4]. While finite difference
methods are frequently applied to discretize the lin-
ear elasticity equations [21], finite element methods
are so far rarely applied to the best of our knowl-
edge. This is due to the fact that they are computa-
tionally more complex, and thus result in poor per-
formance rates [15]. However, as has be shown by
Georgii and Westermann [12], multigrid algorithms
can efficiently be applied to speed up the solution
process of finite element techniques.

Curvature-based constraints for non-linear reg-
istration problem have been discussed in [11, 16].
While effective in computing deformations that
comply with the incorporated regularization mod-
els, only a few approaches have attempt to also take
heterogeneous materials exhibiting varying stiff-
ness into account [9, 19, 18].

2 Method

We propose a model-based approach for the com-
putation of a non-linear transformation of a tem-
plate imageT onto a reference imageR. A priori
knowledge about the physical deformation model
is exploited to make the transformation consistent
with this model. Our algorithm proceeds in multi-

ple steps, each of which is performed interactively
to accommodate steering of model-based parame-
ters by the user. The major parts of our algorithm
are illustrated in Figure 1.T e m p l a t e I m a g e R e f e r e n c e I m a g eS t i f f n e s s A s s i g n m e n t( S e g m e n t a t i o n )
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Figure 1: Overview of major parts of the registra-
tion system. A template and a reference image are
registered using our algorithm: After stiffness as-
signment the images are rigidly registered by PCA.
Then, our iterative loop estimates a vector field us-
ing the optical flow method. This field is corrected
by physically based image deformation. The loop
stops if the convergence criterium is met.

We utilize the Random Walker segmentation al-
gorithm [14] to automatically extract objects from
the image, for which we then specify the respec-
tive stiffness value. For our purposes, non-binary
segmentation algorithms like the Random Walker
provide attractive properties since the segmenta-
tion results yield a smooth transition between the
segmented object and the background. A smooth
stiffness distribution is required by the finite ele-
ment method, since material stiffness is only ap-
proximated C0-continuous, and thus large jumps
can introduce instabilities. The smooth transition
is highly desirable for stiffness assignment because



the segmentation result can be mapped directly to
stiffness using a transfer function. In this way,
abrupt stiffness changes in the simulation grid can
be avoided at no extra cost, enabling realistic defor-
mations at boundary transitions.

In a pre-process a rigid PCA (principle compo-
nent analysis) registration is performed to obtain an
initial mapping betweenT andR. Therefore, the
covariance matrix of both images is computed by
weighting pixel-positions with the intensity values.
An eigenvalue decomposition of that matrix reveals
the relative rotation and scaling of the two images.
The relative translation is the distance between the
mean positions of both images.

2.1 Gridding

From the segmented and pre-registered template a
regular simulation grid consisting of quadrangular
elements is constructed by placing exactly one grid
vertex at each pixel center. Pixel colors and as-
sociated stiffness values are respectively assigned
as vertex and element attributes. Given such a
grid in the reference configurationx ∈ Ω, a de-
formed grid is modelled using a displacement func-
tion u(x), u : R

2 → R
2 yielding the deformed

configurationx + u(x). The transformed template
image is then generated by rendering the deformed
grid onto a regular pixel grid. This image is used in
the next iteration to calculate the optical flow.

2.2 Deformation Estimate

An initial deformation estimate is computed using
classical optical flow as introduced by [17]. The
main idea behind this algorithm is to minimize a
global cost function representing the rate of change
of image brightness from one image to the other.
As the optical flow estimates the apparent motion
of brightness patterns in two images it is clear that
this particular kind of deformation estimate can-
not be applied in general for multi-modal registra-
tion. However, the optical flow works fine for sin-
gle modalities, where all images are generated with
the same scanning conditions. In the multi-modal
case, deformation estimates based on common sim-
ilarity measures like mutual information have to be
favored [21].

Since techniques based on the optical flow are
considered to be rather slow due to the numerical
complexity of the employed solvers, in a number of

research projects considerable effort has been put in
the development of advanced numerical techniques
like multigrid schemes. In this work, we make use
of the implementation by Bruhn et al. [4] to signifi-
cantly speedup the prediction of an initial deforma-
tion field.

2.3 Model-based Correction

Rather than penalizing the optical flow with a
model-based regularizer as proposed in [23], the
optical flow field is used as an external force field
driving the deformation of structures contained in
the template image. The deformation is based on a
linear elasticity model, where the dynamic behavior
is governed by the Lagrangian equation of motion.
An implicit multigrid solver presented in [13] is ex-
tended to efficiently compute the resulting displace-
ments.

In contrast to previous registration approaches
using finite differences, it is worth noting that our
method employs a finite-element discretization. In
this way, improved physical accuracy is achieved,
but we have to pay for that by an increasing numer-
ical complexity. As our timings show, however, the
multigrid solver we have developed performs favor-
able to respective finite difference techniques.

By using a model-based approach as described it
is clear, that the simulated displacement field en-
forced by the elasticity equation differs from the
optical flow field. Physically speaking, the optical
flow field is corrected towards a displacement field
that complies with the underlying model.

2.3.1 Linear Elasticity Model

If the object to be simulated obeys to the model of
linear elasticity the dynamic behavior is governed
by the Lagrangian equation of motion

Mü + Cu̇ + Ku = f (1)

whereM , C, andK are respectively known as the
mass, damping and stiffness matrices.u consists of
the linearized displacement vectors of all vertices
and f are the linearized force vectors applied to
each vertex. It is worth noting that in linear elas-
ticity we only consider material that has a linear re-
lationship between how hard it is squeezed or torn
(stress) and how much it deforms (strain). This re-
lationship is expressed by the material law, which is
accounted for by the stiffness matrixK.



(a) Reference (b) Template (c) PCA/Seg.

(d) Prediction (e) Correction

Figure 2: The template image (b) is registered to the reference image (a) by first applying a PCA rigid
registration (c). Then, stiffness values are assigned to segmented parts (c). The iterative loop predicts a
vector field (d) using the optical flow method and corrects it by our physical deformation model (e) until
convergence is reached.

Equipped with any suitable discretization finite
element methods typically built these matrices by
assembling all element matrices to yield a sparse
system of linear equations. For the details on
the discretization process as well as the numerical
schemes used to solve the resulting system let us
refer the reader to [2, 3].

2.3.2 Finite Element Method

To improve simulation accuracy we have integrated
quadrangular elements with bilinear nodal basis
functions into our approach. Quadrangular ele-
ments consist of4 supporting nodesvk, thus inter-
polating the deformation in the interior as

u(x) =

4
X

k=1

Nk(x)uk

where

Nk(x) = c
k
0 + c

k
1x1 + c

k
2x2 + c

k
3x1x2

anduk is the displacement of thek-th node. The co-
efficientsck

i can be easily derived fromNk(vk) =
1 andNk(vi) = 0 if k 6= i. The shape functions
Nk(x) and its derivatives are needed to build the fi-
nal element matrices, which are then assembled into
the global stiffness matrix,

By using quadrangular elements the overall num-
ber of elements is reduced. This allows for a slightly
faster assembly process of the global system ma-
trix. Furthermore, the semi-quadratic interpolation
scheme increases the simulation accuracy and thus
improves physical correctness.



Figure 3: The first image show the reference configuration. The second image was generated by a physically
deformation using the finite element method. The third imageshows the result of our registration algorithm.

3 System Assembly

In the following, we will show how we interconnect
the different parts of our algorithm into one system.
An illustration of our algorithm is depicted in Fig-
ure 2.

Once the user has selected two images to register,
stiffness values are assigned to all pixels of the tem-
plate image using a painting tool, a segmentation
algorithm (Random Walker), or other automatic as-
signment methods. Once the stiffness assignment is
done, the images are pre-registered using PCA.

All the upcoming steps are then performed auto-
matically, including mesh generation, deformation
estimate, model-based correction and image warp-
ing. These steps are performed iteratively until the
template image matches the reference image with
respect to any suitable metric, i.e. the mean square
deviation of the current per-vertex deformations to
the previous ones.

The iterative registration loop starts by com-
puting the optical flow field between the current
warped template image and the reference image.
Next, optical flow vectors are applied as external
forces to the finite element vertices. Bilinear inter-
polation of the four closest optical flow vectors is
used to obtain the force for one finite element vertex
in the deformed grid. Note that the external forces
are accumulate in each step while the previous ac-
cumulated force is damped by a small percentage.
The average force vector of all finite element ver-
tices is subtracted from all vertices in order to keep
the mesh in place. Since we cannot compute the ex-
act force field required for convergence in one sin-

gle step, we choose an iterative approach using a
dynamic simulation. Thus, in every time step we
only do a small step into the direction predicted by
the optical flow force field; this loop is iterated until
convergence is finally achieved.

To correct the predicted optical flow field via the
linear elasticity module we simulate the deforma-
tion over one time step until the multigrid solver
converges.

Resulting displacements are send to the graphics
card where the simulation mesh is updated accord-
ingly. This mesh is then rendered onto a regular
pixel grid using hardware supported interpolation
to generate the warped template image used in the
next iteration. As the update step is entirely per-
formed on graphics hardware, and because sending
displacement values from the CPU to the graph-
ics card does not introduce any time constraints,
its contribution to the overall runtime is negligible.
Note, that both the optical flow and the physical cor-
rection are computed on the CPU.

4 Results

4.1 Performance Measurement

For our experiments we used a computer with an In-
tel Core 2 6600 2,4 GHz CPU, equipped with 2 GB
RAM and an NVIDIA GeForce 8800 GTX graphics
card. The following table shows the performance
(one iteration) of the most important steps of our
algorithm on various grid sizes.

As can be seen in Table 1, one single iteration
loop runs at interactive speed. Therefore, param-



Grid size 1282 2562 5122

OF 18.3 ms 79 ms 342 ms
Defo 28.8 ms 116 ms 478 ms
Update 5.4 ms 17 ms 52 ms
Total 52.5 ms 212 ms 872 ms

Table 1: Timing statistics for one iteration of the
proposed algorithm. In the first row, the time re-
quired by the optical flow computations (OF) are
listed. Then, timings for the elastic deformation en-
gine (Defo) and for the update of the vertices, forces
and template image (Update) are shown. Due to the
multigrid approach timings scale linearly with grid
size.

eters like force field scaling, stiffness values and
stiffness distribution can be changed interactively
within the iteration loop. Our examples shown in
the next section demonstrate that five to thirty it-
erative steps are required to achieve the final re-
sult. Note, that it is in general possible to use
smaller grids for deformation and optical flow cal-
culations. In all examples, the mesh resolution was
set to1282.

4.2 Examples

On the last page we show three results that have
been generated using our approach. Figure 5 shows
a synthetic data set demonstrating varying stiffness
distribution. Next, we created a semi-synthetic data
set from a MR scan of a brain by manually shrink-
ing the grey matter in the reference image (see Fig-
ure 6). Finally, we evaluate our method on a real
data set shown in Figure 7.

Our results demonstrated the accuracy of realistic
material deformation at interactive rates and the ef-
fective application to image registration problems.
The registration process converges if the accumu-
lated force field does not change anymore. This is
the case if all vectors produced by the optical flow
estimate are below a certain threshold, e.g.0.25
pixel width. Then, the internal forces of the de-
formed material are in balance with the external
forces of the predictor.

4.3 Validation

Schnabel et. al. have developed a general frame-
work for validation of non-rigid registration algo-

rithms [24]. Based on this framework, we have
validated our approach. We generated various im-
age pairs with a physically accurate finite element
method and registered them by means of our algo-
rithm. Figure 3 shows, that our algorithm achieves
highly accurate results even for large deformations.
The mean intensity difference between theses im-
ages is below10−2.

4.4 Discussion

In comparison to Modersitzki [21], our method dis-
tinguishes in several parts. First, we use a finite el-
ement discretization rather than a finite difference
method. This allows a much better approximation
of the partial derivatives and thus improves both sta-
bility and accuracy. Second, the external forces ap-
plied to the deformation engine are computed us-
ing an optical flow model rather than a gradient
based approach. Therefore, the elastic deformation
is driven more precisely to its final state, and thus
a significant smaller number of iteration steps is re-
quired until convergence. This effect is illustrated
in Figure 4. As a sidenote let us mention that both
the optical flow method [8] and the finite element
method [24] are used for validation of non-rigid reg-
istration techniques. By incorporating these tech-
niques into our registration algorithm, high accu-
racy can be achieved.

Figure 4: Comparison of image gradient (left) and
optical flow (right) as deformation estimator. As
can be seen, the optical flow yields generally much
more accurate vector fields.

Another benefit of our system is that both the pre-
diction and the correction stage are based on stan-
dard methods that can be used as black boxes. As a
consequence, the predictor as well as the corrector
can be easily adjusted to different methods that are
either faster or specificly adapted to the underlying



image modalities. Especially, the deformation en-
gine used has several advantages: It can efficiently
handle different kinds of material parameters (het-
erogeneous, soft and stiff material) and strain for-
mulations (linear Cauchy strain, corotated Cauchy
strain). Due to its implicit nature, stability can be
guaranteed during the whole convergence process.

Especially for large deformations one might wish
to address the problem that the linear approximation
of the strain tensor lacks rotational invariance, thus
resulting in unrealistic deformations once elements
get rotated out of their reference configuration. For-
tunately, as has been shown in [13], co-rotated ele-
ments [10] could be easily integrated into the regis-
tration process by adapting the deformation engine
to the co-rotated strain measurement.

Note, that the method is especially applicable to
detect regions of the image where the optical flow
model and the elastic model contradict each other.
For example, this might be the case when registrat-
ing images before and after a bone fracture if the
bone parts are not healed at exactly the same cut sur-
face. In those cases, the registration process can be
either manually controlled, or a-priori knowledge
can be incorporated into the whole process. In this
example, one would allow the bone to deform such
that both images can match exactly.

Furthermore, due to this system design, our
method can be easily adapted to 3D registration
problems. Prediction of a 3D vector field can be
achieved via 3D optical flow or similar methods and
physical deformation engines based on volumetric
elements are already fast [13].

5 Conclusion

In this work we have described a physics-based
technique for image registration that enables flex-
ible control over the kind of deformations to per-
form. In extending previous methods we have pro-
posed a sophisticated predictor of an initial defor-
mation field, and we have shown that highly accu-
rate and stable finite-element methods can be inte-
grated into interactive scenarios. In this way, image
registrations can be achieved at high performance
while material specific deformation properties as
they arise in reality are simulated.

In the future, we will investigate more advanced
optical flow algorithms, e.g. the one proposed by
Bruhn et al. [5]. Furthermore, we will try to achieve

faster convergence of our registration algorithm;
one possibility is to optimize the way the optical
flow field is applied as external forces to the finite
element vertices. Additionally, we plan to improve
the algorithm by integrating mixed boundary con-
ditions (forces and displacements) into the dynamic
elasticity problem efficiently. This allows us to en-
force displacements at specific points, e.g. bones.

The extension of our registration algorithm to 3D
is straightforward enabling accurate registrations of
volumetric bodies. To deal with multi-modal reg-
istration problems, we can replace our deformation
estimator by an appropriate method like mutual in-
formation. Note, that due to the design of our sys-
tem the deformation engine is in no way affected by
this change.
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(a) Template (b) Reference (c) All hard (d) Mixed (e) All soft

Figure 5: This synthetic image simulates an object with two different tissue types. The template image
(a) is registered to the reference image (b) using differenttissue stiffness. Image (c) shows a uniformly
hard stiffness distribution over the object so that no deformation is possible. Image (d) shows the result of
assigning soft stiffness to the outer ring of the object. Now, the bump in the outer ring is matched while the
hard white core remains undeformed. Image (e) shows resultsfrom a uniformly soft tissue throughout the
object. Note, how the white core deforms.

(a) Template (b) Reference (c) Registered

Figure 6: This Figure shows a semi-synthetic data set of a manually shrunken brain. The template image (a)
is registered to the reference image (b). Image (c) shows theregistered result using a256 × 256 grid. The
stiffness was set to108 for the skull,106 for the grey matter and104 for dark area in between. Note, how
the brain compacts, the soft tissue expands and the bones remain stiff. The images register in5 iterations
(approximately1 second) with an average per pixel error of10−2.

(a) Template (b) Reference (c) Registered

Figure 7: Note the different image contrasts of the templateimage (a) and the reference image (b). Our
algorithm registers the two images accurately (c) in 0.5 seconds using a grid resolution of128 × 128.


