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ABSTRACT

If two closed polygonal objects with outfacing normals intersect each other there exist one or more lines that intersect these 
objects at at least two consecutive front or back facing object points. In this work we present a method to efficiently detect 
these lines using depth-peeling and simple fragment operations. Of all polygons only those having an intersection with any 
of these lines are potentially colliding. Polygons not intersected by the same line do not intersect each other. We describe 
how to find all potentially colliding polygons and the potentially colliding pairs using a mipmap hierarchy that represents 
line bundles at ever increasing width. To download only potentially colliding polygons to the CPU for polygon-polygon 
intersection testing we have developed a general method to convert a sparse texture into a packed texture of reduced size. 
Our method exploits the intrinsic strength of GPUs to scan convert large sets of polygons and to shade billions of fragments 
at interactive rates. It neither requires a bounding volume hierarchy nor a pre-processing stage, so it can efficiently deal with 
very large and deforming polygonal models. The particular design makes the method suitable  for applications where 
geometry is modified or even created on the GPU. 
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1. INTRODUCTION

While it is clear how to detect collisions between polygonal models under weak time constraints, there is 
an ongoing effort to develop techniques for interactive or even real-time applications. The difficulty arises 
from the  fact  that  the  size  of  dynamic  3D objects  that  can  be  rendered  interactively  has  dramatically 
increased. Today, real-time raster systems can render moving objects composed of many millions of triangles 
at interactive rates. Such systems are used in many different areas of entertainment, industry, and research, 
and with graphics capabilities becoming more advanced the list of applications is growing rapidly. These 
applications impose significant requirements on the collision detection system, and they require algorithms 
and data structures to deal with hard time constraints.

Over the last years there is also a growing demand for interactive collision detection between objects that 
can deform, and can thus self-interfere. Typical applications include surgery simulators, cloth simulation, 
virtual sculpting, and free-form deformations. Interactive collision detection between deforming objects is 
complicated because it  requires frequent updates of the data structures commonly used to accelerate the 
detection process. 

Even more important, geometric changes are increasingly performed on programmable graphics hardware 
using vertex programs, access to displacement textures and geometry shaders (Balaz and Glassenberg 2005). 
In this case, the changes in geometry might not even be known to the application program, which makes it 
difficult to maintain a data structure that appropriately represents the modified geometry. 

The implications thereof with respect to collision detection are dramatic: As large parts of the geometry 
will permanently be modified and created on the GPU, CPU algorithms relying on the explicit knowledge of 
the object geometry can no longer be used. As a consequence, collision detection must either be performed 
entirely on the GPU, or the information required to perform the collision test on the CPU has to be created on 
the GPU and downloaded to the CPU. 



1.1 Contribution

In this paper, we present a collision detection algorithm for closed manifold meshes that addresses the 
aforementioned issues. The method is especially designed for the interactive handling of deformable objects 
and GPU objects,  i.e.  polygonal objects that  are modified or  constructed on the GPU. Our algorithm is 
developed in regard of the observation, that the Achilles heel of almost all collision detection algorithms for 
deformable objects is the dynamic data structure used to represent the changing object geometry. We avoid 
the construction and repetitive update of such a data structure by shifting parts of the collision detection 
algorithm onto the GPU. Our algorithm takes as input a renderable object representation, and it only requires 
a GPU array containing the polygons to be rendered. In particular, this makes the method amenable to the 
handling of geometry that is arbitrarily modified or created on the GPU. The proposed method proceeds in 
five passes: 

1. Object sampling: Colliding objects are sampled along a set of rays via depth-peeling, and all rays 
along which a collision occurs are detected. This is done by exploiting the intrinsic strength of recent 
GPUs to  interactively  render  high resolution polygonal  meshes  and  to  efficiently  perform simple 
fragment operations.

2. Ray merging: On the GPU a texture mipmap containing screen-space bounding boxes of ray-bundles 
at an ever increasing width is built.

3. Primitive separation: Primitives access the mipmap to test whether they are potentially colliding or 
not. For every primitive the information required to determine the set of primitives it might interfere 
with  is  computed  and  stored  in  a  texture  map.  In  particular  due  to  this  pass  the  precision  of 
interference computations is not constrained by the resolution frame buffer we render into.

4. Texture packing:  The results  generated in the previous pass are transferred to the CPU. To keep 
bandwidth  requirements  and  CPU  processing  as  low  as  possible  the  sparse  texture  map  is  first 
converted into a packed representation.

5. Intersection testing: Exact intersection testing is performed on the CPU. Per-primitive screen-space 
bounding boxes computed in pass three are used to prune most of the remaining primitive tests.

Figure 1: A diagrammatic overview of the proposed collision detection algorithm.

Figure 1 gives an overview of our collision detection process and illustrates how the proposed method fits 
the GPU stream architecture. It is designed as a pipeline of stages being successively applied to the stream of 
model geometry and generated fragments. In contrast to previous collision detection algorithms it is a very 
unique feature of the proposed method that it can handle geometry that is arbitrarily modified or even created 
on the GPU. The input for the algorithm is a geometry stream as it is output by a geometry transformation 
unit,  i.e.  the vertex shader  or the geometry shader on current  graphics hardware.  As a result  it  writes a 
fragment stream consisting of only the potentially colliding primitives into a geometry texture.

This geometry texture is transferred to the CPU for exact intersection testing. Although it is in general 
possible to compute polygon-polygon intersections on the GPU, its data parallel nature is not very well suited 
to  the  kind  of  operations  required  to  determine  the  colliding  partners  out  of  the  entire  set  of  possible 
candidates. Therefore, a CPU-GPU hybrid method is employed, in which the CPU is responsible for exact 
intersection testing.

As the data transfer from the GPU to the CPU is most likely to become the bottleneck in the entire 
collision detection system, we present a novel GPU technique to convert a sparse texture into a packed 



texture  of  reduced  size.  The  proposed  technique  converts  an  input  stream containing  a  few  randomly 
scattered valid data items into a stream consisting only of these items. As this stream is downloaded to the 
CPU, bandwidth requirements are considerably reduced. 

2. RELATED WORK

Although a vast amount of literature has been published over the last decades, the efficient detection of 
collisions  between large  and dynamic  polygonal  models  is  still  a  fundamental  problem in a  number  of 
different areas ranging from computer animation and geometric modeling to virtual engineering and robotics. 
For thorough surveys of the various species of collision detection algorithms let us refer here to the work by 
Lin and Manocha (2004) and Teschner et al. (2005). 
According to the classification of collision detection algorithms into the three basic categories static, pseudo-
dynamic, and  dynamic  (Held et al. 1995), our method belongs to the second class, as it detects collisions 
between  moving  objects  at  regular  time  intervals.  Especially  if  a  large  number  of  objects  have  to  be 
considered, collision detection algorithms usually proceed in a broad phase and a narrow phase (Cohen et al. 
1995). Hierarchical methods are often based on bounding volumes and spatial decomposition techniques. 
Such methods enable the efficient localization of those areas where the actual collisions occur, thus reducing 
the number of primitive intersection tests (Möller 1997).

In the context of deformable objects, the emphasis has been placed on the efficient update of hierarchical 
object  representations  (James  and  Pai  2004;  Larsson  2005).  A GPU  collision  detection  algorithm  for 
deforming NURBS objects has been developed (Greß et al. 2006). The algorithm we propose finds its origin 
in  the  early  idea  of  using  rasterization  hardware  for  interference  detection  between  polygonal  objects 
(Rossignac et al. 1992; Myszkowski et al. 1995). Building off this theory, voxel (Baciu and Wong 2002; 
Heidelberger et al. 2004) and view-frustum (Lombardo et al. 1999) based methods have been proposed. 

In comparison to previous approaches our method is closest in spirit to suggestions made by Knott and 
Pai (2003). As the method distinguishes between penetrating and penetrated objects, it can not handle self-
intersections  of  one single deformable object.  Along a different  avenue of  research, hardware supported 
occlusion queries have been employed to accelerate collision detection, too (Govindaraju et al. 2003). 

3. TEXTURE PACKING

Before we are going through the different stages of the proposed collision detection pipeline we will first 
describe the texture reduction stage – the Reducer in Figure 1. This stage implements a general method to 
convert a sparse texture into a packed texture that consists only of the non-empty texels in the sparse texture. 
The proposed method significantly distinguishes from the one presented by Greß et al. (2006) in that it does 
not rely on a global scattering pass and the sequence of operations is  not data-dependent. In contrast to 
Ziegler (2006), our method has a better worst case complexity and thus performs better on denser textures. 

The reduction stage, although it is not a mandatory stage in the proposed collision detection algorithm, is 
essential for our technique to perform most efficiently due to the following reasons: First, the packed texture 
can be downloaded to the CPU at much faster rates. Second, on the CPU the processing of a large number of 
empty cells can be avoided. The texture reduce operation on the GPU is accomplished in three passes:
 Counting:  Non-empty texels per row are counted in a  logstep reduce-add operation along texture 

rows. A singlecolumn texture storing these counts is read to the CPU (see Figure 2 left).
 Shifting: In each row non-empty texels are shifted to the right of the texture (see Figure 2 right).

 
Figure 2: Counting and Shifting.



 Moving: Packed rows are moved into the reduced texture. The texture is finally downloaded to the 
CPU.

From the single-column texture being read in the first Step, the application program computes the total 
number of nonempty texels. This information is used to set the size of the reduced target texture. In addition 
the maximum number M of non-empty texels per row is computed.

Then the sparse texture is reduced horizontally. This is done in two passes, the first of which proceeds 
from left to right and the second from right to left (see Figure 2 right). To do such a reduction on the CPU we 
would simply traverse each row from left to right, keeping a pointer to the current element in the reduced row 
and  copying  the  next  non-empty  element  to  this  position.  Unfortunately  such  a  copying  (or  scattering) 
operation is not available on recent GPUs so that we have to convert this operation into a gather operation. 
Therefore we first sweep over the texture from left to right and store into each texel the position of the 
preceding non-empty texel in the same row. Before the first non-empty entry is encountered, a special key is 
stored. In the second pass we sweep from right to left for M steps. If the rightmost texel in a row is not empty 
we write zero into the texture, otherwise the address found in that texel is written (Figure 2 right, blue texels). 
In all subsequent sweeps the address at the preceding position in the same row is dereferenced first, and the 
retrieved  address  is  written  to  the  render  target.  Sweeping is  accomplished  by  rendering a vertical  line 
primitive covering as many pixels as there are rows in the sparse texture. As we only need to access a single 
address per line, which can be stored in one component of a RGBA color value, with every line four columns 
can be processed at once.

After the horizontal reduction the contiguous sets of texels in each row of the sparse texture have to be 
copied into a render target of reduced size. This is done by rendering for each row in the sparse texture a 
horizontal line covering as many pixels as there are non-empty texels in this row. Via appropriately chosen 
vertex texture coordinates the fragments being generated for each line can fetch the corresponding values 
from  the  sparse  texture  and  output  these  values  to  the  render  target.  Due  to  performance  issues,  the 
application program creates a vertex array containing all the required information and renders this array using 
one single call.

4. OBJECT SAMPLING

In the first pass of the proposed collision detection algorithm the polygonal scene is sampled to detect 
rays along which at least one potentially colliding polygon is hit. These rays will subsequently be called 
collision rays. Here we are testing for rays that have at least two consecutive hits with either a front or a back 
facing polygon. 

Figure 3: Illustration of interference, self-interference and partial inversion (left). By using depth-peeling and fragment 
operations to detect consecutive front or back faces, collision rays in each layer are determined (colored red, right image).

The underlying theoretical basis of this method is given by the generalization of Jordan’s theorem to 
higher  dimensions.  If  a  closed polyhedron P separates  space into an “inside”  and an “outside”  and has 
outfacing normals, it follows that any ray starting outside of P and intersecting P has alternating front and 
back facing intersection points. At the front facing intersection points the ray enters P and at the back facing 
intersection points it is leaving P. If along a ray two consecutive front or back facing intersection points are 



found, then the ray enters a second object at the second front facing point before the first object was left, or it 
leaves an object but was still in another object. This also holds for an arbitrary number of objects. Example 
cases of (self-) interference are illustrated in Figure 3 on the left. 

To detect intersecting closed polyhedra it is thus sufficient to detect consecutive front or back facing 
polygons along any ray starting outside the potentially colliding set. To detect all collisions, the space in 
which the polygons exist has to be sampled as densely as possible.

4.1 Implementation

Although the rays being used to sample the objects’ faces can be chosen arbitrarily, an uniform sampling 
along  parallel  rays  leads  to  the  most  isotropic  sampling  in  object  space.  Scanline  rendering  algorithms 
simulate this by projecting the objects along an arbitrary, but constant direction. To detect consecutive pairs 
of front or back faces, all faces have to be rendered in correct visibility order with respect to an infinite 
viewer in the direction of projection. Depth-peeling (Everitt 2001) is employed to achieve this ordering. 

To detect two front or two back faces in consecutive rendering passes it is sufficient to store for each 
entry in the depth map an additional tag that indicates the expected facing of the respective fragment. The 
expected facing is determined as alternating front and back facing states. In addition to only comparing the 
current depth of the fragment with the value stored in the depth map, a fragment shader now also compares 
the expected facing to the actual  one.  If  they differ,  the fragment is marked as a collision ray and it  is 
discarded in upcoming rendering passes. 

The modified depth-peeling technique generates  a  texture  map – the sampler-ray – in which for  all 
collision rays the status is set to “on”, and “off” otherwise (see Figure 3 right). As the sampling rate is 
constrained by  the resolution  of  the  frame buffer  we render  into,  some interfering  primitives,  and thus 
collision rays,  might not be detected.  This problem can be weakened by increasing the resolution to its 
maximum size (2K × 2K), but it probably still exists. On the other hand, a collision ray is only missed if all  
interfering primitives along that ray are missed. If at least one of the intersections is detected, the upcoming 
stage of the collision detection process will find all intersecting primitives. This stage is described next.

5. RAY MERGING

To determine potentially colliding primitives, i.e. polygons that are hit by a collision ray, the information 
being generated on a per-ray basis in screen-space now has to be carried over to the set of polygons. One 
possibility  is  to  let  the  rasterizer  generate  one  fragment  for  every  polygon  and  to  compute  the  rays 
intersecting the polygon in a fragment shader. The status of each ray can be retrieved from the sampler-ray, 
and  the  primitive  gets  assigned  a  flag  indicating  whether  it  is  hit  by  at  least  one  collision  ray  or  not. 
Unfortunately, from this information alone it is quite cumbersome to determine the set of potentially colliding 
primitive pairs being needed for exact intersection testing. Therefore we propose a more efficient strategy. At 
the core of this strategy is the idea to generate for each polygon the information it requires to efficiently 
determine the set of primitives it collides with. This inter-object relation is established via the collision rays. 
As every polygon is hit by many collision rays in general, it requires several of them to detect all potentially 
colliding partners of a particular polygon. In the following we describe a simple GPU data structure in which 
the relations between a primitive and all of its potential partners are encoded in one single ray bundle. An 
example of this mipmap texture is given in Figure 4 on the left. 

The data structure consists of ray bundles at ever increasing width. For every collision ray that is “on”, 
the screen-space bounding box bb = (x<, y<, x>, y>) of the pixel this ray is passing through is computed. The 
first  and  last  two  components  of  the  quadruple  specify  the  left-bottom and  the  top-right  corner  of  the 
bounding box. Bounding boxes of rays that are “off” are set to (1, 1, 0, 0), such that they do not affect the 
union with any other box. Bounding boxes are rendered into a RGBA 16 Bit floating point texture of the 
same size as the sampler-ray. From this texture a mipmap hierarchy is generated by computing at each level l 
the union of bounding boxes of the 2 × 2 corresponding texels at level l−1. The union of two bounding boxes 
is calculated as

This process is performed recursively until only one bounding box is left (see Figure 4 left). For the sake 
of simplicity we assume the initial texture size to be a power of two, and we limit ourselves to quadratic 



textures. The mipmap finally stores screen-space aligned bounding boxes of ray bundles, where a bundle 
only contains those rays that have been marked as “on”. Now the idea is to find for every primitive the 
bundle that relates that primitive to all potentially colliding partners via the associated screenspace bounding 
boxes. 

       

Figure 4: Mipmap construction (left) and primitive separation (right).

6. PRIMITIVE SEPARATION

To find the ray bundle that contains all colliding rays intersecting a certain primitive, we first compute the 
minimum mipmap level where the screen-space extent of one texel is larger than the screen-space bounding 
box of the primitive itself (see Figure 4 right).

To efficiently  find this  level,  we let  the rasterizer  generate  one  fragment for  every polygon and we 
implement a pixel shader that computes the primitives screen-space bounding box. From the extent of this 
box the appropriate mipmap level is derived. As a primitive can overlap multiple ray bundles at this level, at 
every corner of the primitive screen-space bounding box one bundle along with its screen-space bounding 
box is fetched from the mipmap hierarchy. The union of these boxes is then determined, and the resulting 
bounding box is intersected with the screen-space bounding box of the triangle. The coordinates of this box 
are stored in a target texture. If only empty ray bundles are fetched from the mipmap, the respective entry in 
the render target is set to zero, resulting in a texture that is sparsely filled.

7. DATA TRANSFER AND INTERSECTION TESTING

The texture that is generated in the previous pass has to be transferred to the CPU for exact intersection 
testing. By applying the technique described in Section 3 a packed texture containing the set of potentially 
colliding triangles is generated on the GPU. Every texel stores an unique triangle ID as well as the screen-
space bounding box of the set of rays intersecting this triangle. The packed texture is finally read to the CPU 
for intersection testing.

After  having  received  the  texture  containing  all  potentially  colliding  primitives,  a  sweep-and-prune 
strategy is utilized to determine the colliding primitive pairs. These are the primitives whose bounding boxes 
overlap along each of the three screen-space axes.  The extent of  the bounding boxes in screen-space  z-
direction is only computed if an overlap along the x- and y-direction has been detected. For those primitives 
being  detected  a  triangle-triangle  intersection  test  is  performed  (Möller  1997),  and  for  each  triangle  a 
response vector taking into account its own normal and the normal of the colliding partner is computed.

8. RESULTS

We have  tested  the  proposed  collision  detection  algorithm in  three  different  scenarios  consisting  of 
several thousands up to a million triangles. All of our tests were run on a single core Pentium 4 equipped with 
a NVIDIA GeForce 7800 GTX using a 1K×1K frame buffer to sample the objects along parallel view rays. 
All objects are encoded as indexed vertex arrays stored in GPU memory. 

On the basis of three test scenes we will demonstrate the overall performance of our algorithm before we 
present a more detailed analysis. We verified that in the examples shown all intersecting primitive pairs at 



one  time  step  were  detected.  However,  because  our  algorithm belongs  to  the  class  of  pseudo-dynamic 
collision detection algorithms some collisions might be missed due to the movement of objects.

Deformable object collisions: In the first example the collision detection algorithm was integrated into an 
interactive deformable bodies simulation. Collision detection was performed on the boundary surfaces of 
tetrahedral objects. In Figure 5 two snapshots of an animation sequence with bunny and horse models are 
shown. The depth complexity of the scenes along the collision rays is 8. All collisions between the deforming 
objects were detected in less than 51 ms.

GPU object collisions: To demonstrate the ability of the proposed algorithm to deal with geometry that is 
modified  or  even  created  on  the  GPU we  have  used  a  scene  that  is  made  of  dynamic  meshes  being 
procedurally  deformed  on  the  GPU.  Figure  5  (middle  image)  shows  this  scene  consisting  of  artificial 
creatures made of a spherical body and a number of moving tentacles attached to it. Tentacles are animated 
and deformed by a vertex shader program on the GPU. Rigid starships try to pass these creatures. Upon 
collision with any other creature or any of the shuttles, tentacles retract and start growing again. The overall 
scene consists of 320k triangles. All collisions were detected in about 25 ms.

    

Figure 5: (Self-) Collisions between deformable (first two images), dynamic GPU and rigid objects (last two images).

Rigid body collisions: Our last example demonstrates the capability of our method to handle collisions 
between rigid bodies (see right of Figure 5). Although we are aware of the fact that optimized CPU collision 
detection algorithms are probably more suited to this particular application, the given examples allow for a 
clear analysis of the different parts of our method. 
The scene consists of 60 rigid bunnies moving through space due to gravity and collisions. The entire scene 
consists of half  a million triangles.  The depth complexity of the scene as seen in the image is  16. The 
detection of all collisions in the scene took 120 ms. The efficiency of our approach is further demonstrated by 
the last example in Figure 5. Even for a triangle count of 800K and a number of 50K potentially colliding 
primitives processed on the CPU the method is still able to achieve about 3 frames per second.

Analysis: A detailed statistic of all test scenes is presented in Table 1. The overall triangle count is given 
in the first column. The following columns present the number of collision rays, the number of triangles 
which are downloaded to the CPU, the number of triangles that survive the CPU pruning of overlapping pairs 
of primitive bounding boxes, the number of primitive intersection tests and the number of detected collisions. 
Representative timings for collision detection in the example scenes are listed in Table 1 on the right. All 
timings are given in milliseconds (ms). The first column shows the amount of time spent by the GPU for 
object sampling, ray merging and primitive separation. The time required for reducing the sparse texture and 
downloading the packed texture to the CPU is given next, followed by the time required for CPU processing. 
Finally, the overall performance is specified in frames per second (fps).

An advantageous feature of our method is, that only a very simple data structure is required to determine 
potentially colliding primitive pairs. Besides GPU-friendly geometry representations like vertex arrays or 
display lists that are used for depth-peeling, an indexed face set and a shared vertex array is needed. Updates 
of the geometry only require the vertex array to be updated accordingly.

In  contrast  to  previous  collision  detection  algorithms,  our  method  can  handle  geometry  arbitrarily 
modified or created on the GPU. This is demonstrated by our second example above. In this case the GPU 
sends the modified geometry of all potentially colliding polygons to the CPU, thus taking advantage of the 
texture reduction we have presented.



Table 1. Triangle counts and timing statistics of the test scenes
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defo bunnies 12K 0.2K 0.4K 0.2K 0.4K 0.1K 3ms 1ms 1ms 5ms/200fps
defo horses 32K 21K 13K 4.3K 9.0K 3.7K 5ms 4ms 42ms 51ms/20fps

art. creatures 320K 0.3K 1.0K 0.4K 1.5K 0.2K 17ms 6ms 2ms 25ms/40fps
rigid bunnies 500K 2.8K 12K 4.4K 7.7K 1.5K 56ms 18ms 44ms 118ms/8.5fps

dragon 800K 7.7K 54K 7.5K 6.6K 1.5K 53ms 32ms 248ms 333ms/3fps

9. CONCLUSION AND FUTURE WORK
In this paper we have presented a collision detection algorithm that is particular designed for recent and 

future graphics hardware. It exploits the intrinsic strength of GPU to scan-convert large sets of polygons and 
to shade billion of fragments at interactive rates.  The design we suggest makes the method suitable for 
applications where geometry is deformed or even created on the GPU. The possibility to deal with dynamic 
scenery and scenery that is not known to the application program distinguishes the technique from previous 
approaches. In a number of different examples these statements have been verified. 

We believe that the suggested algorithm is influential for future research in the field of collision detection. 
For the first time it has been shown that collision detection between objects modified or created on the GPU 
can  successfully  be  accomplished.  With  Direct3D  10  compliant  hardware  and  geometry  shaders  being 
available this feature will  be required in many different applications. In contrast to previous GPU-based 
algorithms for collision detection, all objects can remain in their renderable representation and do not have to 
be converted into another format. The burden of frequently updating hierarchical data structures is taken off 
the application program.
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