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Abstract

In this paper we present an efficient data structure
and algorithms for GPU ray tracing of secondary ef-
fects like reflections, refractions and shadows. Our
method extends previous work on layered depth
cubes in that it uses layered depth cubes as an adap-
tive space partitioning scheme for ray tracing. We
propose a new method to efficiently build LDCs on
the GPU using geometry shaders available in Di-
rect3D 10. The overhead of peeling the scene mul-
tiple times can thus be avoided. We further show
that the traversal of secondary rays is greatly accel-
erated by exploiting a two level hierarchy and the
adaptive nature of the LDC. Due to the computa-
tional and bandwidth capacities available on recent
GPUs our method enables high-quality rendering of
staticanddynamic scenes at interactive rates.

1 Introduction and Related Work

Since the early years of computer graphics there has
been interest in ray tracing due to its potential for
the accurate rendering of complex light phenomena.
Over the last few years, there was an ever grow-
ing interest due to the observation that interactive
ray tracing can now be achieved on custom hard-
ware [8, 23, 22], or by using a cluster of custom
computers [19, 26]. Recent advances in hardware
and software technology, including specialized ray
tracing chips [25] as well as advanced space parti-
tioning and traversal schemes [27, 30], have even
shown that ray tracing is potentially suited for real
time applications like computer games and virtual
environments.

Simultaneously, considerable effort has been put
into the implementation of ray tracing on pro-
grammable graphics hardware. Inspired by the
early work of Purcell et al. [21] and Carr et al. [2],
in a number of succeeding implementations it was
shown that the capabilities of recent GPU stream ar-

chitectures including parallelism across stream ele-
ments and low-latency memory interfaces can ef-
fectively be used for ray tracing [17]. While these
approaches were solely based on uniform space par-
titioning schemes, recent work has also demon-
strated the possibility to build and traverse adaptive
spatial hierarchies on the GPU [15]. Hereafter, Fo-
ley and Sugerman [5] as well as Popov et al. [20] in-
dependently examined stack operations—a feature
not well-supported by the GPU—and they reported
a significant performance gain by using a stackless
traversal algorithm for kd-trees. Alternatively, Carr
et al. [3] represented surfaces as geometry images
and introduced linked bounding volume hierarchies
to avoid conditionals and stack operations. By tak-
ing advantage of the GPU to construct these hier-
archies, for the first time the authors could demon-
strate real-time GPU ray tracing of dynamic scenes.

Despite all the advancements in GPU ray tracing,
including efficient approximations for ray-object
intersection using pre-computed environment im-
posters [14] and ray-object penetration depths [31],
it can still not be denied that high quality ray tracing
using optimized CPU codes performs favorable or
even faster than many GPU implementations. The
main reason why rasterization hardware is not per-
fectly suited for ray tracing is the inability of cur-
rent GPUs to efficiently determine ray-object inter-
sections for rays others than view rays. This makes
it difficult to accurately simulate secondary effects
like reflections, refractions, and shadows, as such
effects require parts of the scene to be rendered mul-
tiple times under different projections, i.e. onto dif-
ferent receivers. Although possible in principle, it
was shown by Wand and Straßer [28] for the ren-
dering of underwater caustics that this approach is
not practicable in general.

On the other hand it can be observed that a sig-
nificant part of the render time in typical 3D appli-
cations is shading, and it is well accepted that the
GPU outperforms the CPU in this respect. Appar-
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Figure 1: Method demonstration: Cubemap reflections (left), our method (middle) and software ray tracing
(right). On a single Geforce 8800 GTX our method renders the scene into a 1280x1024 image at 3 fps.

ently, due to the GPUs inability to effectively ex-
ploit adaptive space partitioning schemes this ad-
vantage is entirely amortized in ray tracing. Our
motivation is thus to overcome GPU limitations in
finding ray-object intersections, at the same time
exploiting the intrinsic strength of these architec-
tures to shade billions of fragments in real-time.

1.1 Contribution

The main contribution of this paper is a new GPU
approach for ray tracing of secondary effects like re-
flections, refractions and shadows. This is achieved
by using an adaptive spatial data structure at ex-
treme resolution, and by providing novel meth-
ods to construct and traverse this data structure on
the GPU. Just as proposed by Lischinski and Rap-
poport [13], our data structure represents the scene
as a set of layered depth images (LDI) [24, 16, 6]
along three orthogonal projections. According to
Lischinski and Rappoport [13] we will refer to this
structure as the layered depth cube (LDC). We ex-
tend LDCs in the following ways:

• LDIs are constructed via depth peeling [4], but
we employ Direct3D 10 functionality so that
the scene only has to be peeled once to gener-
ate LDIs along multiple viewing directions. To
accelerate the LDC construction every poly-
gon is rendered only into the LDI capturing the
scene from the direction most perpendicular to
this polygon (see Figure 5). To accommodate
deferred shading the LDC stores not only frag-
ment depth, but also interpolated colors and
texture values as well as normals. The process
leads to a view independent scene representa-
tion using a minimal number of samples.

• For each LDI a two level hierarchy is built.
This method is similar to the empty space
skipping structure used by Krüger and Wester-
mann [11]. Entries in this low resolution repre-
sentation of one LDC direction store for each
bundle the minimum and maximum distances
from a reference plane perpendicular to the di-
rection of projection.

• We present an efficient ray-object intersection
test using LDCs. As in each LDI the samples
lie on a 2D raster we perform ray traversal in
these rasters alternatively. This method is sim-
ilar to screen-space ray tracing described by
Krüger et al. [10], but it has a major advan-
tage: The hierarchical representation is used
to skip regions in these rasters not containing
any structures a ray could intersect with.

As both the LDC construction and the traversal
are performed on the GPU the rasterization capac-
ities of recent architectures can effectively be ex-
ploited. In particular, since our approach does not
require any pre-process to modify the initial scene
representation it can be used in the same way to ren-
der dynamic scenes or scenes created or modified
on the GPU. Some results of our approach together
with a comparison to cubemap reflections and soft-
ware ray tracing are shown in Figures 1 and 2.

The remainder of this paper is organized as fol-
lows: In the next chapter we will discuss the LDC
construction in particular the use of Direct3D 10
features to speed up this process. We will then de-
scribe how this structure can be efficiently traversed
on the GPU. Next, we explain the integration of the
LDC construction and the ray traversal into the ren-
dering algorithm. Finally, we analyze the perfor-



Figure 2: Method demonstration: Cubemap reflections (left), our method (middle) and software ray tracing
(right). On a single Geforce 8800 GTX our method renders the scene into a 1280x1024 image at 5 and 3
fps, respectively.

mance of the major components of our system, and
we conclude the paper with some remarks about fu-
ture research in this field.

1.2 LDC Construction

To efficiently construct LDCs on the GPU we first
employ depth peeling [4] to generate LDIs along
three orthogonal viewing directions. Depth-peeling
requires multiple rendering passes. For each pixel,
in then-th pass the(n−1)-th nearest fragments are
rejected in a fragment program and the closest of
all remaining fragments is retained by the standard
depth test. A floating point texture map—the depth
map—is used to communicate the depth of the sur-
viving fragments to the next pass. The number of
rendering passes is equal to the objects depth com-
plexity, i.e. the maximum number of object points
falling into a single pixel. This number is deter-
mined by rendering the objects once and by count-
ing at each pixel the number of fragments falling
into it during rasterization. The maximum over all
pixels is then collected in a log-step reduce-max op-
eration [12].

Although more efficient depth peeling vari-
ants exist, for instance the method proposed by
Wexler et al. [29] showing linear complexity in the
number of polygons compared to quadratic com-
plexity of standard depth peeling, in the current
work we favor the more complex approach. This
is because it does not require any pre-processing
and thus can be used for the processing of dynamic
scenes and scenes modified or generated on the
GPU.

1.2.1 Construction using Geometry Shader

In this chapter we describe how to efficiently gen-
erate an LDC that captures the entire scene. From
the text it should become clear that the same ap-
proach can of course be used to generate LDCs for
separate objects in the scene. In particular for rigid
objects this allows us to pre-compute the LDC once
and to exclude it from depth peeling in successive
frames. LDC construction greatly benefits from lat-
est graphics APIs and hardware as explained in the
following paragraphs.
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Figure 3: The Direct3D 10 rendering pipeline. Pro-
grammable stages are drawn in yellow. Note in
particular the new programmable Geometry Shader
stage after the Vertex Shader.

One of the key novelties of Direct3D 10 capa-
ble hardware [1] is a new programmable stage in
the rendering pipeline. This stage—the Geometry



Shader—is placed directly after the Vertex Shader
stage (see Figure 3). In contrast to the Vertex Shader
the Geometry Shader takes as input an entire graph-
ics primitive (e.g. a triangle or a triangle and its
neighbors) and outputs zero to multiple new prim-
itives. This is achieved by letting the Geometry
Shader append the new primitives to one or mul-
tiple output streams. The LDC construction algo-
rithm makes use of this feature and binds multiple
output streams called render targets (MRTs) to the
Geometry Shader. Note that these MRTs are differ-
ent from the ones known in the Pixel Shader stage.

While MRTs in the Pixel Shader are used to
output multiple color values at the very end of
the pipeline, to each Geometry Shader MRT its
own rasterizer, Pixel Shader stack, depth and color
buffers are associated. One can even assign another
stack of Pixel Shader MRTs to each of these sepa-
rate pipelines (see Figure 4).
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Figure 4: This figure depicts the difference between
MRTs used in the Geometry Shader and in the Pixel
Shader stage.

Without the functionality provided by the Ge-
ometry Shader LDC construction requires the en-
tire scene to be rendered three times. By using
the Geometry Shader MRTs we only need to pro-
cess and rasterize the scene once. This is achieved

by letting the Vertex Shader perform the geometry
transformation excluding the viewing transforma-
tion. Transformed vertices are then combined to
triangles and sent to the Geometry Shader stage.
Here, face normals are computed for every trian-
gle and compared against the three directions along
which peeling is performed. Triangles are then ras-
terized into the MRT which captures those parts of
the scene most perpendicular to its projection direc-
tion (see Figure 5). In this way every triangle has to
be processed and rasterized only once. This method
not only reduces GPU load to one third, but it also
reduces the depth complexity along all three direc-
tions since lesser primitives appear in either target.

Furthermore, as no primitive is rasterized into
more than one MRT the process avoids storage of
redundant samples in different projection directions
thus leading to an optimal view independent scene
representation. As mentioned earlier, each Geom-
etry Shader MRT pipeline can have multiple Pixel
Shader MRTs at its very end (see Figure 4), we use
this additional possibility to capture multiple val-
ues at once. In particular we use two Pixel Shader
MRTs, one target to store the normal and depth in-
formation of the fragments and a second target for
texture and color information. In the final render-
ing step we use the later values to perform deferred
shading of the reflected and refracted surfaces.

Z

Y

X

Figure 5: This figure shows how triangles are pro-
jected into only one LDI stack depending on their
face normal orientation.

By using the Geometry Shader MRTs the com-
plexity of our algorithm to construct the LDC is
reduced tomax(depthComplexity) passes. How-



ever, with the advent of layered depth/color buffers
at the end of the rendering pipeline we expect our
construction procedure to become even more effi-
cient. For a long time such a functionality is present
on GPUs (e.g. ATI/AMDs FBuffer technology [9])
though it has not yet been exposed. On the other
hand we perceive an ever growing demand for depth
peeling in a number of applications ranging from
order independent transparency [4] and CSG ren-
dering [7] to volume rendering applications [18]
and real-time rendering [10]. As a consequence
we expect graphics APIs to support these features
in the foreseeable future. Then, the generation of
LDCs could even be performed in one single ren-
dering pass.

1.3 Two Level LDC

An LDC exhibits an extremely adaptive and com-
pact representation of the scene, yet it lacks the hier-
archical nature of other space partitioning schemes
such as octrees or kd-trees. It is on the other hand
well known that such schemes can greatly acceler-
ate ray tracing in that they allow for an efficient de-
termination of ray-object intersections.

To generate a two-level LDC we first compute
the LDC as described above. Then a single low res-
olution data structure is generated for every LDI.
This structure is built only on the depth values
whereas the the normal and texture stacks remain
unchanged. For the generation of ann×m reduced
empty space skipping texture we employ a custom
pixel shader, that performs a max/min computation
on a grid ofn×m fragments from all LDI layers in
one direction (see Figure 6). Such a texture can be
seen as an axis aligned bounding box, which will be
used later on to efficiently skip empty space in the
scene.

Equipped with the acceleration texture as de-
scribed we will now show how to exploit this data
structure for GPU ray tracing.

1.4 Ray Traversal

To traverse rays through a two level LDI we employ
an approach similar to the one proposed by Krüger
and Westermann [11]. We perform a modified DDA
algorithm to find the coarse level grid cells inter-
sected by the ray. Therefore the ray is tested against
the depth range stored in the cells of the accelera-
tion texture being hit. If an intersection is found we

Acceleration
Texture

LDI Layer 0 LDI Layer 1

Figure 6: The image shows how two LDI layers
(top) are combined into a single acceleration texture
(bottom). This texture effectively stores bounding
boxes around all LDI layers for a givenn × m grid
in this case2 × 2.

step down to the LDIs and use the same DDA al-
gorithm within then × m block. If an intersection
with one of the values stored in the LDIs is found
we terminate the ray traversal, otherwise we con-
tinue at the next block in the coarser empty space
skipping texture.

In the way described we subsequently process
one peel direction after another. Note that if an in-
tersection in one direction is found this intersection
does not necessarily has to be the first intersection
along the ray. However, in this case we can change
the end point of the ray to the position of that in-
tersection, continually reducing the remaining dis-
tance to be considered along the ray. After all layers
have been traversed the intersection point between
the ray and an object in the scene is found, or just
the intersection with the LDCs bounding box. This
information is used later on for shading the reflected
sample point.

2 Rendering

After having described both the two level data struc-
ture used to represent a scene on the GPU and an
efficient ray traversal scheme for this data structure
we will now present the rendering algorithm that
finally generates an image of the scene. This al-
gorithm renders the scene in three passes. In the
first pass—which itself consists of multiple sub-
passes—the LDC capturing the scene is generated.
In the second pass “primary ray-object intersec-
tions” are determined by rasterizing the scene un-
der the current viewing transformation. In the third



pass the secondary rays are traced in the LDC to
simulate reflections, refractions and shadows.

While passes one and two are clear, pass three
needs some further explanations.

2.1 Ray Tracing and Shading

After the second pass the scene as seen from the cur-
rent view point, appropriately shaded but without
any secondary effects, has been generated. In this
image we need to find for every specular receiver
the points in the scene from where to receive an ad-
ditional radiance contribution. Therefore we pro-
ceed in two steps. In the first step we render reflec-
tive/refractive objects by employing a pixel shader
program that computes for every fragment the fol-
lowing values:

• the reflection vector
• the intersection of this vector with the LDC
• the parallel projection of the reflection vector

into the three orthogonal LDIs
The later two quantities are stored in three render

targets, of which we use the first to store the inter-
section point and the remaining two to store pro-
jected directions (see Figure 7). In the second step
we use these values to perform the LDC traversal
as described in the previous section. This results
in either an intersection point with an object in the
scene or with the scene’s bounding box. In the lat-
ter case we simply perform a lookup into an envi-
ronment map to compute the color of the reflection.
In the former case we lookup the normal and the
color generated for the intersected point in the LDC
construction, and we use this information to shade
the reflected point. Finally, the color seen along the
primary rays is combined with the color of the sec-
ondary ray and rendered into the color buffer.

3 Results

We have tested the proposed GPU ray tracing tech-
nique in a number of different scenarios consist-
ing of several thousands up to hundreds of thou-
sands triangles. Images of such scenes together
with ground truth images generated by a software
ray tracer are given in Figures 1 and 2. At the end
of this chapter some additional examples including
shadowing and refractions are shown. In contrast to
the first four examples, in the fifth example a dy-
namic object is rendered using vertex shader skin-

Y

X

Z

Figure 7: This image illustrates the four values gen-
erated prior to the ray traversal. Firstly, the intersec-
tion point between the reflected ray and the bound-
ing box yellow) is computed. Next, the ray is pro-
jected into the three orthogonal LDIs (red, green,
blue).

ning. In this case the LDC is constructed on-the-fly
in every frame of the animation (see Figure 10).

All of our tests were run on a single core Pentium
4 equipped with a NVIDIA Geforce 8800 GTX
graphics card with 768 MB local video memory. In
all of our tests1K × 1K LDIs were used to sam-
ple the objects along three orthogonal viewing di-
rections. Note that this corresponds to a resolution
of the spatial data structures of1K

3. However, as
we store 16 Bit floating point depth values in every
LDI this resolution is in fact significantly higher. As
we only capture those areas in space where some
objects are present, our approach requires consid-
erably less memory than other techniques using a
uniform grid structure to represent the scene.

All objects are encoded as indexed vertex arrays
stored in GPU memory. In all our experiments an
intersection was determined if the distance between
a point on the secondary ray and a fragment coded
in the LDC was less than0.001 in world space.
This tolerance was also used in all other examples
throughout this paper. It can be seen in all our ex-
amples that the scene is adequately sampled by the
LDC and GPU ray tracing produces almost exactly
the same results as the software ray tracer running
in double floating point precision on the CPU.

Representative timings in milliseconds (ms) for
GPU ray casting of secondary effects in the four ex-
ample scenes are listed in Table 1. The number of



LDIs required to capture the scenes adequately are
8, 12, 7, 6 and 6 respectively. The values in columns
labeled (A) show the amount of time spent by the
GPU for LDC construction. Columns labeled (B)
show the time spent for ray tracing including ren-
dering of the final result. Performance was mea-
sured using LDIs at512 × 512 and1K × 1K reso-
lution. All tests were rendered into a1280 × 1024
viewport (see Figures 8 to 10) .

Figure 8: Two reflective teapots above a mirroring
plane and the EG07 Phlegmatic Dragon with a re-
flective surface. Note the reflection of the dragons
face on its nose.

As the timings show, by means of the proposed
technique secondary effects in very complex scenes
can be simulated at interactive rates and convinc-
ing quality. In particular it can be observed that the

LDI resolution
512 x 512 1024 x 1024
A B A B

Bunny 7 61 19 115
(8192 tris)
Car 9 82 25 250
(20264 tris)
Dragon 12 205 31 441
(120K tris)
Max Planck 19 160 53 346
(300K tris)
Tiny (animation) 5 44 16 95
(1628 tris)

Table 1: Timing statistics (in ms) for different
scenes.

LDC construction is fast enough to allow for on-
the-fly capturing of reasonable scenes. This prop-
erty makes it possible to render dynamic objects at
high frame rates and quality.

4 Conclusions and Future Work

In this work we have described a technique for GPU
ray tracing of secondary effects. By using a view-
independent, two level LDI representation in com-
bination with an adaptive ray traversal scheme on
the GPU interactive rendering of such effects is pos-
sible. We have shown how to construct LDCs effi-
ciently on the GPU by exploiting recent function-
ality on Direct3D 10 capable graphics hardware to-
gether with the intrinsic strength of these architec-
tures to shade millions of points in real-time. As our
timings indicate, the proposed techniques enable in-
teractive ray tracing of complex scenes at high ac-
curacy. In comparison to software ray tracing visual
artifacts are marginal.

Due to the efficiency of the LDC construction it
is in particular possible to integrate this process into
the rendering pass. This enables the rendering of
dynamic objects without any additional modifica-
tions of the proposed algorithm. As the construction
process only requires objects to be available in any
renderable format our method can also deal with ob-
jects being modified or constructed on the GPU.

In the future, we will investigate how to further
improve the performance of the proposed rendering
technique. In particular we will focus on the prob-
lem how to effectively exploit the internal RGBA
pipeline on current GPUs. In principle this can be
done in two ways: Firstly, by storing four LDIs into
one RGBA texture target and thus by providing the



possibility to trace every ray in four depth layers
simultaneously. Secondly, by tracing four rays si-
multaneously in one fragment program. As both
optimizations are greatly influenced by the ability
of recent GPUs to effectively exit shader programs,
a detailed analysis of the performance gains for dif-
ferent scenes and architectures is required. Further-
more, we plan to compare our two-level accelera-
tion structure to fully octree or kd-tree hierarchies.
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mann. Interactive screen-space accurate pho-
ton tracing on GPUs. InRendering Tech-
niques (Eurographics Symposium on Render-
ing - EGSR), pages 319–329, June 2006.

[11] Jens Krüger and Rüdiger Westermann. Ac-
celeration Techniques for GPU-based Volume
Rendering. InProceedings IEEE Visualiza-
tion 2003, 2003.
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Figure 9: These Images depict from top to bottom.
Shadows of a complex tree computed by our ap-
proach, and a reflective bust of Niccolo da Uzzano.



Figure 10: Various renderings using the proposed GPU ray casting are shown. Note that the rightmost
figure in the middle row is one snapshot out of a GPU animation using vertex-skinning. In the last row we
show cubemap reflections (left) and reflections rendered with our method (middle) and with a software ray
tracer (right).


