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Abstract

In this paper we present a technique for image defor-
mation in which the user is given flexible control over
what kind of deformation to perform. Freeform image ex-
tends available image deformation techniques in that it pro-
vides a palette of intuitive tools including interactive ob-
ject segmentation, stiffness editing and force-based con-
trols to achieve both a natural look and realistic animations
of deforming parts. The model underlying our approach
is physics-based and it is amenable to a variety of differ-
ent kinds of image manipulations ranging from as-rigid-
as-possible to fully elastic deformations. We have devel-
oped a multigrid solver for quadrangular finite elements,
which achieves real-time performance for high resolution
pixel grids. On recent CPUs this solver can handle about
16K co-rotated finite elements at roughly 60 ms.

1. Introduction and Related Work

Today it seems to be well accepted that as-rigid-as-
possible image deformations produce the most intuitive re-
sults when the user wants to manually control the shape
deformation. As-rigid-as-possible transformations as they
were introduced by Alexa et al. [2] for the purpose of shape
interpolation are characterized by a minimum amount of
scaling and shearing. Such transformations mimic the adap-
tion of the mechanical properties (i.e., the stiffness) of the
transformation to enforce rigidity.

In the context of image deformation as-rigid-as-possible
transformations have been introduced just recently to avoid
undesirable effects like folding and non-uniform scaling
typically perceived in previous methods [4, 6, 19]. Igarashi
et al. [16] enforce the particular properties of as-rigid-as-
possible transformations by minimizing the distortion of tri-
angular elements in a 2D mesh. By separating the rotational
part from the scaling the problem is decomposed into the

solution of two least squares problems. In principle, this
technique can be seen as a variant of constraint mesh de-
formation techniques, which pose the problem of shape de-
formation as an energy minimization problem. Such tech-
niques have been used successfully for shape-preserving 3D
mesh deformation, for instance in [1, 7, 15, 25], and in the
context of image deformation by Kunzhou et al. [26].

Sheffer and Kraevoy [23] also build upon the idea of
shape-preserving deformations, and they proposed a rota-
tion invariant shape representation constraint by a set of an-
gles and lengths relating a vertex to its immediate neigh-
bors. Ran Gal et al. [11] presented a method for inhomoge-
neous texture mapping based on a classification of cells into
rigid and elastic. Determining the global displacement field
can then be posed as an optimization problem that takes into
account the specific cell properties as additional constraints.

An alternative approach to as-rigid-as-possible image
deformation was presented by Schaefer et al. [22]. Based
on a globally smooth displacement function satisfying the
interpolation constraints for a number of control points, for
each pixel in the image the best transformation with respect

Figure 1. Some results of the image defor-
mation method presented in this work are
shown. The left column shows the original
images.



Figure 2. A sketch of a person (left image) is deformed using a uniform stiffness distribution (middle
image). By assigning soft stiffness to the joints, a much mor e realistic deformation can be achieved
(right image). Force-based control handles allow blowing t he balloon (left) by simply inserting a
source vector field (middle). Contrarily, the balloon can be shrunk by a sink vector field (right).

to a local energy constraint is computed. The authors com-
pare different types of transformations and spot as-rigid-as-
possible transformations the visually most pleasant ones.In
contrast to the method of Igarashi et al. [16] much smoother
implicit displacement fields are achieved, and the method
performs at significant faster rates due to the small systems
of equations to be solved locally for every pixel.

Although as-rigid-as-possible transformations are well
suited for the purpose of shape preservation they are not ef-
fective at following physics-based constraints like volume
preservation or elastic deformations. As images are typi-
cally composed of parts, it is often desired to continuously
adjust the stiffness of the transformation to permit larger
displacements over parts that are known to be very compli-
ant and smaller displacements over parts that are known to
be less compliant.

To provide more flexibility in the kind of deformations
the user can apply and at the same time achieving numeri-
cal stability even for large deformations, Botsch et al. [7]
introduced rigid cells as a new structure for shape manip-
ulation. The global displacement field is defined by rigid
transformations of a set of hexahedral cells, which are com-
puted in such a way as to minimize a global energy func-
tional. Radial basis functions are used to transfer per-cell
transformations onto the vertices of a 2D or 3D render grid.

1.1 Contribution

The main contribution of this paper is an image de-
formation technique that combines physics-based and as-
rigid-as-possible transformations. Interactive deformation
of high-resolution pixel grids is achieved by using a numer-
ical multigrid solver for the governing equations of motion
of deformable 2D meshes. Several novel extensions have
been developed to enable the user to flexibly control the im-
age deformation:

• To avoid undesirable transversal contractions natu-
rally arising in the simulation of elasticity we mimic

anisotropic materials based on a modified Hooke’s law.

• We have extended the finite element solver to quadran-
gular elements including bi-linear interpolation func-
tions. This leads to improved simulation accuracy and
accelerates the overall simulation time.

• An interactive GPU-based segmentation tool has been
integrated to enable fast and intuitive stiffness editing,
vertex fixation, and the assignment of depth values to
parts of the image.

• We introduce force-based controls that can be shaped
and scaled arbitrarily. These controls provide an effec-
tive means for smooth and realistic keyframe anima-
tions of deformed images.

The proposed method achieves the same advantages as
rigid cells, yet it simulates a full physical model at sig-
nificantly higher simulation rates. Due to the linear time
complexity of an implicit multigrid solver we achieve fast
and numerically stable image deformations. Physical sim-
ulation makes the method amenable to a variety of differ-
ent kinds of shape manipulations ranging from as-rigid-as-
possible to fully elastic deformations. In contrast to pre-
vious methods, deformations are initiated by applying ex-
ternal force fields to the vertices of a simulation grid. As a
consequence, the method provides simple and intuitive tools
to specify areal displacement distributions. Some resultsof
our approach are shown in Figure 1 and 2.

The remainder of this paper is organized as follows: In
the next section we will briefly discuss the basics of phys-
ical simulation as it is used in our approach. We will then
describe a number of novel extensions we have developed
to make the simulation applicable for image deformation.
Next, we describe the areas where we use a segmentation
algorithm, and we review the Random Walker algorithm
for image segmentation. Finally, we analyze the proposed
method with respect to performance and deformation op-



tions, and we conclude the paper with some remarks about
future research in this field.

2. Physics-based Deformation

In this section, we give a brief overview of the physi-
cal model underlying our approach as well as the numerical
scheme used to simulate the behavior of objects obeying
to this model. In particular, we consider a linear elasticity
model, but as an elastic material wants to resist a change
in shape we enforce additional constraints to mimic plas-
ticity. For the purpose of a more transparent discussion
of the linear elasticity model we first assume the image
to be represented as a 2D triangular grid, where exactly
one grid point is placed at each pixel center. Grid points
are then connected to their one-ring neighbors via edges.
Given such a grid in the reference configurationx ∈ Ω, the
deformed grid is modelled using a displacement function
u(x), u : R

2 → R
2 yielding the deformed configuration

x + u(x). Later, we will show how to replace triangular fi-
nite elements by quadrangular elements to further optimize
our technique.

2.1. Linear Elasticity Model

If the object to be simulated obeys to the model of lin-
ear elasticity the dynamic behavior is governed by the La-
grangian equation of motion

Mü + Cu̇ + Ku = f (1)

whereM , C, andK are respectively known as the mass,
damping and stiffness matrices.u consists of the linearized
displacement vectors of all vertices andf are the linearized
force vectors applied to each vertex. These vectors are ei-
ther computed from mouse drags issued by the user or they
are taken from pre-computed force templates as described
below. The linear elasticity model only considers mate-
rial that has a linear relationship between how hard it is
squeezed or torn (stress) and how much it deforms (strain).
This relationship is expressed by the material law, based on
which the per-element contributions to the global stiffness
matrixK are computed.

Equipped with any suitable discretization, finite element
methods typically build the aforementioned matrices by as-
sembling all element matrices to yield a sparse system of
linear equations. For the details about the discretization
process as well as the numerical schemes used to solve the
resulting system let us refer to [3, 9, 21].

2.2. Numerical Simulation

One particular class of acceleration schemes that have re-
cently gained much attention in the graphics community are

numerical multigrid schemes [5, 12, 24]. Multigrid meth-
ods provide a general means for constructing customized
solvers for partial differential equations, and they give rise
to scalable solvers exhibiting linear complexity in the num-
ber of supporting vertices [8]. At the core of any geometric
multigrid scheme a hierarchy of meshes at different resolu-
tions is employed. In a multigrid V-cycle specific quantities
are transferred across this hierarchy from fine to coarse and
coarse to fine. Using the regular grid structures employed in
this work, such a hierarchy can easily be built by regularly
sub-sampling the grid vertices and connecting these vertices
as described above. While vertex quantities are simply in-
terpolated when going from the coarser to the finer resolu-
tion, the inverse step from fine to coarse essentially averages
over the quantities at respective vertices in the fine mesh.

Building upon the work by Georgii et al. [12] we have
implemented an implicit multigrid solver for image defor-
mations amenable to the simulation of heterogeneous mate-
rials exhibiting a wide range of stiffness values. One prob-
lem that has to be addressed is the well-known lack of ro-
tational invariants of the linear approximation of the strain
tensor, which results in artificial forces once elements get
rotated out of their reference configuration. Co-rotated fi-
nite elements as proposed in [10, 20] effectively cure this
problem, and it was shown that they can efficiently be inte-
grated into the multigrid scheme [12].

3. Image Deformation

In the following, we describe novel extensions to the
physics-based finite element simulation to account for the
particular needs in image deformation. One of the most
significant of these extensions is a modified material law
that enables as-rigid-as-possible transformations. In addi-
tion, we propose algorithms to efficiently handle material
updates and to fixate simulation vertices without sacrificing
speed.

3.1. Material Laws

The stiffness matrixK accounts for the strain and stress
energy, and it depends on the material laws and parameters
used to couple stress and strain. In an isotropic and fully
elastic body stress (Σ) and strain (E) tensors are coupled
through Hooke’s law (linear material law)

Σ =
Eν

(1 + ν)(1 − 2ν)

(

2
∑

i=1

Eii

)

· I22 +
E

1 + ν
E , (2)

whereE is the elastic modulus,ν is the Poisson ratio and
I22 is the identity matrix.

As it has been observed by many others before, shape
deformations obeying to Hooke’s law are often not desired



(a) reference image (b) Hooke’s law (c) Rigid law (α = 1) (d) Rigid law (α = 100) (e) Rigid law (α = 0.1)

Figure 3. Modified material laws: Images (b) and (c) show the d ifference between Hooke’s law
and the rigid law if the castle is stretched vertically. Imag es (d) and (e) demonstrate the effects of
reducing the amount of shearing (d) and rotation (e) while th e castle is dragged to the right.

when manipulating images. Especially volume preservation
as it is enforced by Hookes law is a physical phenomenon
that contradicts shape preserving as-rigid-as-possible defor-
mations. Volume preservation, on the other hand, can be
avoided by prohibiting transversal contractions of the ma-
terial being deformed. This is achieved by appropriately
varying the Poisson ratioν in equation 2, which defines the
ratio of transverse contraction to longitudinal stretching in
the direction of the force. In particular, we setν = 0, thus
also avoiding any curvature in a direction perpendicular to
the direction of stretching or bending. In Figure 3 we com-
pare the deformation of a material under stretching with (b)
and without (c) transversal contractions.

To enable as-rigid-as-possible transformations we fur-
ther enforce the physical simulation to respect to an
anisotropic material law. By doing so, we enable the user to
flexibly control the resulting deformations by continuously
varying between rigid and highly elastic materials within
one image. The anisotropic material law is simulated by
adding a scaling factorα for the off-diagonal elements in
the stress tensor, yielding the rigid material law

Σ = E

(

E11 α E12

α E21 E22

)

. (3)

The modified material law allows for transformations
minimizing the amount of shearing or rotation, respectively,
and it can thus effectively be used to produce as-rigid-as-
possible transformations. For a value ofα = 1 the material
law is isotropic. By decreasing the value ofα the internal
stress is reduced into the direction ofx2 if strain is induced
into the direction ofx1, and vice versa. Consequently, such
a setting favors shearing instead of rotation. Contrarily,by
settingα to a value larger than 1 rotations instead of shear-
ing will be favored. The effects of different values ofα are
demonstrated in Figure 3 (d) and (e). Note, that generally
the rigid material law does not preserve volume. However,
a larger value ofα leads to volume growth if shearing forces
are applied, while small values ofα tend to preserve volume
in this case.

3.2. Quadrangular Elements

To improve simulation accuracy we have integrated
quadrangular finite elements with bi-linear nodal basis
functions into the multigrid approach (see Figure 4 for an
illustration of how these elements deform under external
forces). Quadrangular elements consist of4 supporting ver-
ticesvk, thus interpolating the deformation in the interior
as

u(x) =
3
∑

k=0

Nk(x)uk (4)

where
Nk(x) = ck

0
+ ck

1
x1 + ck

2
x2 + ck

3
x1x2.

uk is the displacement of thek-th vertex, and the coeffi-
cientsck

i are derived fromNk(vk) = 1 andNk(vi) = 0 if
k 6= i. From the definition of the nodal basis functions as
given the element matrices with respect to their reference
configuration can now be pre-computed.

By using quadrangular elements the following beneficial
properties are achieved: Firstly, the overall number of ele-
ments is significantly reduced, resulting in a faster assembly
of the global system matrix. This is important because co-
rotated elements as used in our approach require the system
matrix to be reassembled in every simulation frame. Sec-
ondly, semi-quadratic interpolation as supported by quad-
rangular elements improves the deformation behavior by in-
creasing simulation accuracy.

Figure 4. Quadrangular elements in their ref-
erence configuration and in a deformed con-
figuration are shown.



3.3. Plasticity Simulation

So far, our discussion was restricted to the deformation
of purely elastic materials. In image deformation, however,
the user does not expect the image to move back into its ref-
erence configuration once the control handles are released.
To avoid this behavior forces induced by the user are ac-
cumulated into a global force field, and the resulting dis-
placements of grid points are computed just at the very end
of the user interaction. This is advantageous because in or-
der to account for the plasticity the system matrix does not
have to be updated. Instead, we consider the linear system
of equations in the form

K(uplastic + u) = fplastic + f

whereKuplastic = fplastic are the plastic deformations
computed so far, andf are the forces applied by the cur-
rent user input.

3.4. Stiffness Update

In our opinion one of the most important features an im-
age deformation tool should provide is the possibility to
flexibly control the deformation of different parts of the im-
age (see Figure 5). As our method is physics-based this
can be achieved in a natural way by assigning specific stiff-
ness values to parts of the image. As we aim at assigning
these values interactively while the simulation is running,
the simulation method must be able to instantaneously react
on such changes.

Fortunately, it can be observed that element matrices do
not have to be rebuilt if only the stiffnessE of a single finite
element is to be changed. This is because in equation (2)
and (3)Σ is a multiple ofE, and thusE can be factored out

Figure 5. Different stiffness distributions en-
able flexible control over deformation effects.
In contrast to deforming the hand with homo-
geneous stiffness (middle column), a joint is
inserted by making the respective part soft
(right column).

of the element matrix. This means that the element matrix
only has to be scaled by the factorEnew/Eold, which can be
performed in the reassembly of the global stiffness matrix
at no additional cost.

4. Image Segmentation

We utilize a segmentation algorithm for assigning spe-
cific properties to parts of an image. While it is gener-
ally possible to assign these properties using a painting tool
on a per-pixel basis this can be a rather tedious and time-
consuming task. Instead, we use an image segmentation
algorithm to assign the properties on a per-object basis.
The segmentation algorithm extracts objects from the im-
age automatically by single mouse clicks or strokes on top
of the object (see Figure 6). Once the object’s boundaries
are found the interior is filled with a user-defined property.

Figure 6. Left: A mouse-stroke painted in
white on top of an object is shown. Right:
The interactive segmentation algorithm auto-
matically segments the castle shown in white
within 30ms.

As stiffness is an important quantity to adjust the defor-
mation behavior, and thus the kind of transformation per-
formed, the primary use of the segmentation algorithms is
to assign stiffness to parts of an image. By using an inter-
active segmentation algorithm stiffness can be assigned to
objects in a single mouse click. The real-time segmentation
algorithm we describe below even enables on-the-fly stiff-
ness assignment during the deformation process (see Sec-
tion 5.2), and it can thus be used flexibly to interactively
control the resulting deformations. In addition, segmenta-
tion is used to select mesh vertices within particular image
regions that should be fixed and to establish a rendering or-
der of mesh elements by assigning object-specific depth val-
ues.

In general, any segmentation algorithm can be used
for each of the aforementioned tasks. For our purposes,
however, non-binary segmentation algorithms provide at-
tractive properties since the segmentation results yield a



Figure 7. First: the original image. Second: the mouse curso r is moved over the image part to drag.
The blue circle indicates the area of force injection. Third : the user drags the mouse to the desired
target location. Fourth: the force field generated by the mou se drag is visualized.

smooth transition between the segmented object and the
background. This is highly desirable for stiffness assign-
ment because the segmentation result can be mapped di-
rectly to stiffness using a transfer function. In this way, we
can avoid abrupt stiffness changes in the simulation grid at
no extra cost. This feature is especially suited to generate
visually pleasant deformations at boundary transitions.

The Random Walker algorithm falls into the category
of non-binary segmentation algorithms. It is fast, easy to
implement on the GPU and numerically stable. In the fol-
lowing we will give a brief overview of this algorithm and
explain how to extend it to work on color images. For a
more in-depth discussion of the Random Walker we refer
the reader to the initial publication by Grady et al. [13].

The Random Walker Algorithm The algorithm is
started on an image that contains a number of seed pixels
indicating the object to segment. Given a random walker
starting at every other pixel, the probability that this walker
reaches one of the seeded pixels is computed. The probabil-
ity that a random walker travels into a particular directionis
determined by the image structure. The change in pixel in-
tensity is a measure for the probability by which a random
walker crosses over to a neighboring pixel. Therefore, there
is a high likelihood for a random walker to move inside the
segmented object, but low likelihood to cross the object’s
boundary. By multiplying probabilities computed along the
paths from pixels to seed points yields a probability distri-
bution representing a non-binary segmentation.

To use the Random Walker algorithm on color images
we first convert RGB pixel values in the image to intensity
values using the procedure proposed in [14]. Pixel values
are first transformed to the Lab color space and the Eu-
clidian length of the Lab vector length is used as intensity.
Next, a function to express the probability is defined to map
changes in image intensities to crossing weights.

The principle idea is to express random walks by a sys-
tem of linear equations instead of simulating the random

walks itself [17]. With the seed points as boundary condi-
tions the problem can be posed as the solution of a sparse,
symmetric, positive-definite system of linear equations.

To make this solution fast, and thus to enable the use
of the Random Walker in real-time applications, numerical
GPU-solvers can be used as demonstrated in [18]. In the
current work we employ a GPU conjugate gradient method
that enables segmentation of high-resolution images within
milliseconds.

5. User Control

We use a simple paint-and-fill interface to assign stiff-
ness, fixation, and depth to an image. The interface allows
painting these properties on top of the image using different
brush sizes. As users typically prefer to assign properties
on a per-object basis, the segmentation algorithm is built
into the interface and can then be used to segment objects
from a single mouse click. Upon segmentation, default or
selected parameter values are assigned to respective image
structures.

5.1. Image Deformation Using Mouse Drags

Once all image properties are set the image is deformed
using mouse drags (see Figure 7 for an illustration of this
process). Therefore, we first determine the vertex in the
simulation grid closest to the mouse position. From the di-
rection and strength of the mouse drag we derive a force
vector to be applied to the vertex. By using the mouse wheel
the user can generate a radially expanded force field of arbi-
trary extend. It can be selected whether forces should decay
smoothly with increasing distance to the center vertex or
should be constant within the selected region. The direction
of the force field is everywhere identical to the force applied
to the center vertex.



reference image 16 × 16 grid 32 × 32 grid 64 × 64 grid 128 × 128 grid

Figure 8. Interactive deformations of differently sized qu adrangular grids are shown. Deformation
times (including rendering of the deformed grids) are 1ms, 4 ms, 17ms and 56ms from left to right,
respectively.

5.2. On-the-fly Segmentation for Stiffness
Assignment

Besides the assignment of properties to parts of an image
in a pre-process we employ the Random Walker as a tool for
on-the-fly parameter assignment. In this way, the user can
flexibly select objects and move them around while the sur-
roundings deform accordingly. On-the-fly assignment starts
once the user clicks the initial drag point. Instantaneously,
the segmentation algorithm considers the cell of the simu-
lation grid that contains this point as a seed point for the
Random Walker. The segmentation is then performed on
the undeformed simulation grid, thereby assigning stiffness
values to the segmented object. After the stiffness values
are downloaded to the simulation engine, which updates the
system matrices as described in Section 3.4, the user starts
dragging the picked object while the background deforms.
Note that by applying soft stiffness to the picked object, lo-
cal object deformations are possible.

6. Results and Analysis

We have used Freeform image to manipulate a number
of different images at varying resolutions. Our examples
show snapshots from interactive sessions in which the user
applied complex image deformations across a wide range
of scales. All of our tests were run on an Intel Core 2 Duo
CPU equipped with 2 GB RAM and a NVIDIA Geforce
8800 GTX graphics card. While the CPU cores are used
to perform the physics-based simulation including matrix
reassembling and multigrid calculations, the GPU is only
used for the Random Walker algorithm. In all of our exam-
ples the communication of segmentation results and vertex
displacements between the CPU and the GPU was below 5
ms.

In Figure 8 deformation results using differently sized
simulation grids are compared to demonstrate the efficiency
of our approach as well as the quality of the deformations

depending on the grid resolution. Note, that some vertices
of the simulation grid are fixed, which is accomplished by
zeroing all entries in the row and column of the system ma-
trix a fixed vertex belongs to. To keep the matrix at full rank,
and thus to keep the solver stable, the diagonal elements in
the intersection of the respective rows and columns are set
to a default stiffness value that is used for all image parts
unless changed by the user.

In particular at lower resolutions, it becomes appar-
ent that the resulting displacement fields are only C0-
continuous at element boundaries, a property that directly
results from the finite element approach used. In princi-
ple this disadvantage can be resolved by using higher order
interpolation schemes as proposed in [7] to transfer com-
puted displacements to the pixel grid. On the other hand,
we observe that the resulting visual artifacts are greatly al-
leviated at higher resolution grids, and—as indicated by the
timings—these resolutions can still be handled interactively
by our approach.

Table 1 gives timings for all parts of the proposed de-
formation method. The first column contains the numbers
of quadrangular elements of the simulation grids used. The
values in the second column indicate the amount of time re-
quired in every iteration to update the global system matrix.
Next, we specify the time spent for updating the multigrid
hierarchy from the current system matrix. The fourth col-
umn shows the overall time taken by one simulation step
using a single thread. The following column demonstrates
the performance gain when operations are interleaved by
using multiple threads for “matrix update”, “multigrid up-
date” and “multigrid solve” on the dual core PC. The time
step used in the current implementation was set to 0.03 sec-
onds. By performing a dynamic simulation using a small
time step we avoid that local rotations between successive
frames become very large, which otherwise makes element
warping more difficult to be applied in a numerically sta-
ble way. The last column indicates the time required by
the segmentation algorithm on the respective grids once the



Figure 9. Our system enables easy-to-use face deformations . The second image shows the fixed
vertices in red and the intensity of the yellow color illustr ates the stiffness intensity (a 128 × 128
simulation grid was used).
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256 1 1 1 2 1 3
1K 3 1 2 6 4 8
4K 16 7 9 32 17 16

16K 47 21 25 93 56 35
64K 201 90 98 389 238 79

256K 904 411 416 1731 1064 182

Table 1. Timing statistics in [ms] for the main
parts of the proposed deformation method.
By exploiting both cores of the CPU to inter-
leave numerical operations (column labelled
MT) the performance can be nearly doubled.

user selects a new object.

The timing statistics indicate that our method performs
considerably faster than the methods proposed by Igarashi
et al. [16] and Botsch et al. [7]. While Botsch et al. solve
for energy minimizing affine transformations of about 5K
elements at one second using a Newton solver for the result-
ing non-linear system, the same number of elements can be
physically simulated at roughly 40ms seconds on a single
core using our extended multigrid. On the other hand, we
observe that our method is clearly slower compared to the
MLS method by Schaefer et al. [22], which can compute as-
rigid-as-possible deformations for 10K elements in roughly
4ms. It is worth noting, however, that the performance of
the MLS method greatly benefits from using pre-computed
quantities that solely depend on the initial rest positionsof
the issued control points. In an interactive deformation ses-
sion, where the user frequently selects arbitrary scales and
regions to deform, these quantities have to continuously be
re-computed and we expect the performance differences to

become significantly smaller.
In terms of deformation options and user control our

method distinguishes from previous approaches in sev-
eral aspects. The most striking difference is that it ad-
heres to a full physical model thus supporting a wide
range of different types of global and local image defor-
mations. In particular, our method provides a large reper-
toire of physics-based deformations ranging from as-rigid-
as-possible to fully elastic and volume conserving deforma-
tions. The method is thus much more flexible than previous
approaches in selecting the most appropriate deformation
for specific image parts. By combining interactive stiffness
editing and anisotropic material laws the user can flexibly
use a magnitude of different deformations in one single im-
age.

Figure 9 shows an example where different deformations
have been applied to parts of the images. These deforma-
tions were selected to mimic real material values for specific
parts at the one hand and to artistically manipulate other
parts on the other hand. As can be seen, there is almost
no restriction on the kind of deformations applied, yet still
allowing for interactive manipulation by the user.

One additional aspect that makes our method distinct
from previous approaches is the particular control mecha-
nism it provides. Although entirely hidden by the user, ev-
ery deformation is driven by external forces acting on the
finite elements to be deformed. This kind of user control is
different to mechanisms solely based on control points as
used in [7, 16, 22], both with respect to user interaction and
deformation effects. By constraining the object transforma-
tion via control points the user can specify very precisely
to which position particular structures should be displaced.
Our approach, on the other hand, is less precise in that the
displacements are not specified directly but their movement
due to external forces is computed. Consequently the dis-
placements are less predictable and more effort is required
to transform particular vertices to a desired position.



Figure 10. A wave force template is applied
to the image. In the upper right image, a
uniform stiffness distribution is used result-
ing in a very distorted planet. On the lower
right, the planets were assigned a hard stiff-
ness whereas the space was assigned soft
stiffness. In the image on the lower left, the
planets were fixed by vertex fixation. All ex-
amples use a 128 × 128 simulation grid.

Force-based control handles, on the other hand, have the
advantage that arbitrary force fields can be used to deform
the image. Figure 10 shows an example where a global
force field simulating wave-like deformations was applied
to an image, once with the planet having the same stiffness
than the background, once with the planet fixed, and once
with the planet having a very high stiffness. An additional
application is shown in Figure 11, where a cartogram is gen-
erated by using multiple force-controls at once. Cartogram
are maps in which area is not preserved, and instead an-
other thematic mapping variable is substituted for area. By
applying radially symmetric force fields in each state to ei-
ther grow or shrink the area depending on such a mapping
variable, the generation of cartograms can be performed in
a very simple, controllable, and automatic way.

Furthermore, the use of forces fields enables realistic and
fast keyframe animations by either interpolating between
multiple global force fields or by specifying animation paths
for the movement of local force fields over time (see Figure

Figure 11. Using the proposed force tem-
plates, information visualization can be
achieved. Here, each US state is scaled
appropriately by using a radially symmetric
force field to achieve the cartogram on the
right (a 256 × 256 simulation grid was used).

12). Because in either case in-between displacements are
computed by simulating the deformation from the interpo-
lated or animated force field, the resulting displacements
show a very smooth behavior and are in accordance with
the underlying physical model.

7. Conclusions and Future Work

In this work, we have presented a technique for im-
age deformation that enables flexible control over the
kind of deformations to perform. We have shown that
physics-based simulation combined with advanced numer-
ical schemes is an effective and efficient tool for image
deformation. Built upon such a simulation framework we
have presented several novel extensions that enable intuitive
freeform deformations including different kinds of transfor-
mations. By integrating application-specific material laws
and by establishing stiffness as a powerful modeling pa-
rameter we can flexibly select between as-rigid-as-possible
and plastic deformations. It is especially the combination
of rigidity and elasticity that offers a variety of additional

Figure 12. With just a few mouse-clicks, vi-
sual pleasant animations can be created. The
images show two captured keyframes fol-
lowed by a frame interpolated along an ani-
mation path.



deformation options in comparison to previous methods.
Due to the efficiency of the physics-based simulation en-

gine, including highly optimized operations to assemble and
update the system matrices, we were able to couple this
CPU engine with a real-time segmentation algorithm run-
ning on the GPU. We have shown that on-the-fly segmenta-
tion and stiffness assignment are very powerful and useful
modeling options, and we have described several ways the
user can interact with the image being deformed.

In the future, we will investigate how to further improve
the control mechanisms provided by our deformation tool.
We have the feeling that in some cases control points or
lines as used in some of the previous methods allow for a
more precise control of the deformation. To achieve this,
we will investigate how to solve static elasticity problems
with mixed boundary conditions (forces and displacements)
efficiently and how to adapt such schemes to the problem of
image deformation.
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