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ABSTRACT 

In many computer graphics applications, like stylized rendering, technical illustrations, digital printing, or volume 
rendering it is required that “continuous tone” models be represented by drawing dots that are either black or white at any 
given surface point. The arrangement of dots must be chosen so that the illusion of a continuous shade is preserved. In 
this paper, we propose a method to generate such effects on arbitrary surface and volume structures. The black and white 
patterns are carved out of a solid texture, in which the spatial arrangement of dots is encoded for arbitrary tones. These 
patterns are applied to the respective structures using hardware accelerated 3D textures. As a matter of fact, neither does 
our approach rely on any surface parameterization nor do point primitives have to be used to render the patterns. In 
addition, by introducing a non-linear gamma-function, charcoal or pen and ink like effects can be achieved. For stylized 
rendering, we further enhance the artistic impression of silhouettes by generating outlines. 
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1. INTRODUCTION 

In this paper, the emphasis is on imitating artistic drawing methods that are widely used in non-
photorealistic rendering of static imagery – Point Stippling in combination with Silhouette Rendering. Both 
methods are assisted by graphics hardware, thus enabling interactive rendering of complex models and 
scenes. The basic rendering styles we are able to imitate by means of the proposed methods are illustrated in 
Figure 1. Many articles have extolled the virtues of non-photorealistic techniques for the rendering of 
polygonal and volumetric models. Besides its use in computer arts and entertainment, non-photorealistic 
rendering (NPR) techniques have been employed frequently in computer-generated publishing of medical or 
technical illustrations and sketches (Gooch and Gooch 2001). Many of these techniques exploit the fact that 
shading constitutes an important visual cue for deriving spatial information from a 2D image, as long as the 
relation between shadowed and illuminated areas is maintained. Based on this observation, fine artists and 
illustrators have developed a wide range of techniques for depicting shading in a stylized way. These 
techniques, among others, include stippling, hatching and painting with a limited palette of tones (see Figure 
2). Apart from esthetic aspects, such techniques were often imposed by limitations of the available print 
media, computer assisted techniques predominantly tried to mimic traditional artistic methods and styles. 

 
 

Stipple drawings are made up of points that combine to give the illusion of a “continuous tone“ model. In 
classical halftoning, dots are either black or white, whereas more stylized impressions can be achieved by 
allowing points to accept shades of grey. The artist can control the size, the shape and the arrangement of 
points to generate additional visual cues that provide an effective means for enriching or even substituting 
traditional representations. The arrangement of dots must be chosen so that the illusion of a continuous shade 
is preserved (Hodges 1989).  



          
  a) b) c) 

Figure 1: a) Charcoal-like effects b) & c) Stipple Volume rendering with Silhouette Rendering 
 
The contribution of this work to the field of computer generated point stippling is twofold: Firstly, we 

present a simple, yet powerful and efficient method for generating stipple drawings of surface and volume 
structures. Therefore, stipple patterns are encoded in one single 3D solid texture by a stationary white noise 
distribution. At each object point, the pattern is carved out of this texture by sampling the respective value in 
a fragment shader program. Based on the comparison between the point’s continuous tone and the grey value 
of the encoded texture sample, the fragment color is set to either black or white. Secondly, we enrich 
traditional stippling techniques to allow for the simulation of different drawing styles. We introduce a non-
linear gamma function to be applied to the diffuse lighting term in the shader program. By means of this 
technique, artistic styles like charcoal-like effects can be simulated. 
 

 Our choice of technique was mainly driven by the following requirements. Our method should be able to 
render both surface and volumetric structures. For surfaces, it should be independent of any parameterization 
thus avoiding distortions in case of non-regularly spaced texture samples. The technique should not rely on 
point primitives thus reducing memory and bandwidth requirements. Finally, it should be applicable to large-
scale geometric and volumetric models and scenes, yet suitable for real-time applications. We therefore 
decided to exploit the capabilities of modern graphics cards providing hardware supported vertex and 
fragment shader. Our approach relies on the functionality that is provided by any of today’s commodity 
GPUs - the Pixel Shader 2.0 API. 

 

  
 a) b) c) d) 
Figure 2: Examples of artistic shading. a) Stippled Illustration of the Stanford bunny b) Baldung Grien, The Fall of Man, 
Detail, 1511, Woodcut c) Henry Matisse, Figure décorative sur fond ornemental, Detail, 1925-26, Oil on canvas, 
d) Cartoon-like toon shading 

2. PREVIOUS WORK 

 Imitating artistic stipple drawings by means of a computer can be performed in a variety of different 
ways. In particular, approaches differ in the way stippling patterns are generated, and in the primitives that 
are used to render these patterns. Deussen et al. (2000) and Secord (2002) employed relaxation techniques in 
screen space and in object space using Voronoi diagrams, respectively. Aiming at high-quality and even 
distributions of stipples, both techniques are not suited for interactive application in general. The benefits of 



point primitives for the rendering of stipple dots have been demonstrated by Pastor and Strothotte (2002) and 
Lu et al. (2002). Whereas the former approach addresses the problem of how to generate coherent patterns 
that do not introduce flickering in animations, the latter one demonstrates the effectiveness of stippling 
techniques for enhancing or even substituting traditional volume renderings. 2D stippling textures have been 
introduced by Praun et al. (2001). Based on a consistent surface parameterization, 2D texture maps 
comprised of the stipple patterns to be used are mapped onto polygonal objects. Majumder and Gopi (2002) 
have developed a hardware accelerated charcoal rendering technique that can create a variety of different 
styles by applying contrast enhancement operators to 2D stipple textures. This is similar to the nonlinear 
lighting model that we use to gain more control over shading. 

 
Techniques for extracting and rendering silhouettes can be classified into image-space, object-space or 

hybrid approaches. Saito and Takahashi (1990) introduced the G-Buffer, which stores depth maps of the 
rendered scene. On these maps, imaging operations are performed to detect silhouettes. Raskar and Cohen 
(1999) determined image-space silhouettes by clipping slightly transformed back-faces against the depth 
buffer. In this way, the extraction of geometric outlines can be avoided.  In Object-space methods on the 
other hand silhouette edges are determined geometrically, either by testing every edge of the object or by 
applying more efficient randomized algorithms as proposed by Markosian (Markosian 2000). Next, visibility 
testing is performed to determine visible silhouettes. Object-space visibility tests calculate the intersections 
between silhouette edges analytically (Arthur Appel 1967, Aditi Majumder and M. Gopi 2002). Due to 
performance issues, the visibility determination might also be performed in image-space. This is 
accomplished by scan-converting silhouette edges in software and by comparing depth values to those values 
already in the depth buffer. Finally, as proposed by Isenberg et al. (2002), visible parts can be further 
processed to eliminate artifacts, and they are rendered using stylized primitives, e.g. lines (Lander 2000) or 
textured triangle strips (Northrup and Markosian 2000, Isenberg et al. 2002). 

3. POINT STIPPLING 

In the following, we will demonstrate the stippling of polygonal objects. As will be explained later, for 
the stippling of volumetric objects the algorithm only has to be slightly modified. We assume an illumination 
model using achromatic light and material be evaluated on a per-vertex or per fragment basis during 
rendering. For every fragment a grayscale shade is generated that can be accessed in the fragment shader 
program.  

3.1 3D stipple textures 

 
Figure 4: The polygonal model is carved out of a 3D solid noise texture 

 
At the core of our approach we construct a solid noise texture that is comprised of uniformly distributed 

random values ∈ (0,1). This texture is mapped onto the object to be stippled. Therefore, object coordinates 
are properly scaled to the range of (0,1), and at every mesh vertex its world space coordinate is issued as 3D 
texture coordinate. This coordinate is used to look-up the noise texture. In Figure 4 the basic algorithm is 
depicted. Note that by scaling the objects’ coordinates and by employing the OpenGL extension 
GL_REPEAT, we can periodically replicate the solid texture to fill an arbitrarily extended region in 3D 



space. This allows us to use 3D textures of reasonable resolution, and thus to keep memory requirements as 
low as possible. In general, periodic structures will only be visible if the resolution falls below a critical size. 
This will be demonstrated later on in this paper. 
 

The described algorithm does not yet generate stipple drawings. Rather than that, the polygonal model is 
textured with random noise. In the present scenario, however, we aim at correlating the number of stipple 
points that are drawn in a certain area with the intensity of the shading in this area. In addition, in order to 
simulate traditional halftoning, stipples should be either black or white. This is achieved by letting each 
fragment compare its shade with the sampled noise value. Only if the noise value is larger than the 
illumination value is the stipple turned on. Otherwise it is turned off and the fragment color is set to white. 
Therefore, for every fragment the following simple stipple test is performed: 

 
0:1?illumtf ccc ≤=  

 
Here, fc  and tc  denote the final fragment color and the noise value, respectively. illumc  is the shading 

value that has been generated for the fragment. In Figure 5 this process is illustrated. 
 

 
Figure 5: The solid texture is used to generate the stipple pattern according to surface illumination. 

 
The stipple test is performed in a fragment shader program. The program is evaluated for every rendered 

surface point. As input parameters it gets assigned the illumination value and the respective texture 
coordinate. Finally, the shader outputs either white or black depending on the reconstructed texture sample. 

 
Due to the uniform distribution of random values in the solid texture, the number of fragments that are 

drawn black inversely corresponds to the brightness of the respective surface point. In dark regions 
statistically more texture samples are larger than the illumination values, which results in the appropriate 
stipple distribution. 

 

3.2 Stipple distribution and shape 

 
In particular the bright surface regions in Figure 5 show a very irregular distribution of stipple dots. In 

some areas only a small number of points can be found, while in other areas having the same brightness more 
points are placed. This is a direct implication of the limited resolution of the noise texture, which was only 

316 in the current example. Independent of the resolution, any noise value is resampled with the same 
expectation value. However, by using lower resolutions, the variance of this random process is continuously 
increased. As a matter of fact, point stipples are spaced more and more regularly with increasing texture 
resolution. This is demonstrated in Figure 6, where noise textures of resolution 38 , 316 , and 364 were used. 
Particularly in the highlighted regions one can clearly observe much more regular stipple patterns with 
increasing resolution.  
 
 



 
  38  316    364  

Figure 6: The solid stippling texture is used at different resolutions. 
 

Apart from the stipple distribution, the 3D random texture also imposes restrictions on the shape of the 
stipple dots. In imitating the traditional halftoning process our technique renders dots as either black or white 
pixels, but visually more pleasant effects can often be achieved if anti-aliased dots are drawn. To generate 
such effects, anti-aliased point primitives or bi-linearly interpolated 2D stipple textures have been used in 
most previous examples. 
 

To generate similar effects we might generate the final pixel color by averaging multiple samples from a 
supersampled image. The middle image of Figure 7 was generated by rendering the scene in full screen anti-
aliasing mode, which is supported by most consumer class graphics cards. Due to the averaging process, 
many of the black dots become grey, thus reducing the contrast in the final image. 
 

 
Figure 7: Different alternatives to generate anti-aliased point stipples are shown. a) Original black-and-white stippling, 

b) Supersampling in screen space, c) surface based anti-aliasing 
 

In a second attempt, we can also perform anti-aliasing in object space. Therefore, in addition to the 
texture coordinate also each surface point normal N

r
 is specified in the fragment shader program. Then, a 

local tangent space is computed from the normal vector and an arbitrary vector T
r

 not coinciding with the 
normal. Usually, the tangent vector  is parallel to the direction of increasing s or t on a surface parameterized 
over s and t. Because our approach does not rely on a parameterization, however, we choose T

r
 from two 

alternative vectors orthogonal to each other. In this way, we can always select a tangent non-collinear with 
the normal. 

 
By performing two cross products in the shader program we end up with a local coordinate system that is 

attached to the surface point. Anti-aliasing is now performed in local tangent space by sampling the 3D noise 
texture at nearby points in the tangent plane around the current surface point. For each adjacent point we 
assume the same illumination as we have computed for the current point. This is in coincidence with the 
assumption that the surface is locally planar. For each neighboring sample the black-or-white stipple test is 
performed, and the results are averaged to obtain the final fragment color. This can be seen in the rightmost 
image of Figure 7.  

 
Obviously, because we use a static tangent vector to derive the tangent space coordinate system, the 

positions of nearby points in the tangent plane vary with varying object orientation. In animations, the effect 
results in a slightly visible flickering of the generated grey-values. 



 

3.3 Non-linear shading model 

 In the following, we will introduce a slight modification of the stippling approach as described. We 
propose a non-linear shading model, which can be used to create a variety of artistic styles ranging from 
charcoal to pen and ink drawings. In addition, it can be directly applied to other non-photorealistic 
techniques, for instance computer generated halftoning.  

 
Figure 8: Examples of gamma functions using different values for α 

 

Our proposed point stippling algorithm works by comparing at each surface point the intensity to the 
grey-value of the corresponding element in the 3D noise texture. Based on the result of this thresholding 
operation, the stipple is turned on or off. This approach, however, gives artists little control over the relative 
size of the differently patterned regions on the surface. In general, it is not possible to locally change the 
threshold used to determine the stipple pattern. We therefore modify the linear diffuse lighting equation 
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where al and dl are the ambient and diffuse light intensities, am and am represent the ambient and diffuse 
material intensities, L is the light direction at the surface point and N is the surface normal. We introduce a 
non-linear gamma function for calculating the diffuse component of I, resulting in 
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Applying a gamma function (see Figure 8) to the diffuse lighting term causes either the middle tones to be 
accentuated (for α < 1) and the very light and dark tones to be compressed and vice versa for α > 1. As a 
result, the boundary between differently textured regions is shifted. Moreover, the dynamic range 
compression can be used effectively to achieve charcoal-like effects as we demonstrate in Figure 9. 

 
Figure 9: Examples of drawing styles generated with α values of 1.1, 1.4, 2.0, and 2.7. 

 



One of the nice features of the described intensity modification is that it can be directly applied to any 
digital halftoning technique. Typically, an intensity value at each surface point is computed using standard 
Gouraud shading with achromatic light and materials. This intensity value is then used to determine which 
halftone pattern is applied to a surface point. Without ever modifying the halftone patterns, or the textures 
that are used to store these patterns, the illustrated effects can be achieved, by correcting the calculated 
intensity on a per fragment basis. Additional rendering styles that can be achieved by means of such 
modifications are depicted in Figure 10. 
 

 
Figure 10: Examples of different drawing styles. Left: Three tone stippling, Right: Anti-aliased stipples 

3.4 Volume Stippling 

The proposed technique can directly be applied to volumetric structures. Because stippling is performed 
by means of a fragment shader program, it can be attached to any rendering technique as long as object 
coordinates are accessible in the shader. In 3D texture based volume rendering, for instance, texture 
coordinates specified at each vertex of the proximity geometry used to render the volume already provide this 
information. Furthermore, by considering the volume data itself in the stipple test, we can restrict the 
stippling process to particular scalar values, i.e. to enhance surface like structures. 

4. SILHOUETTE RENDERING 

For silhouette rendering we apply a method similar to the one proposed by Saito and Takahashi (1990). 
We generate the final image in two passes. In the first pass we fill three textures. Firstly, the image of the 
scene as it would look without the silhouettes. Secondly, the normal map of the image. This map can be 
generated by simply rendering into two render targets at once, and by appending a single line of code to the 
current fragment shader that writes the normal of every fragment into the second render target. Finally we 
also capture the depth buffer in a third texture. 

 
In a second render pass we use the normal- and depth- buffer contents and compute first order derivatives 

on these buffers using central differences for every pixel on the screen. By thresholding these two derivates 
we can detect both internal and external edges and highlight them in the third texture by reducing the 
luminance of the respective fragments from the first texture generated in the first pass.  

5. CONCLUSION 

In this paper, we have emphasized novel approaches for computer generated stippling of surface and 
volume structures and for the rendering of silhouettes. For point stippling, the major contribution is the 
initiation of a 3D stipple texture - a new primitive that has several advantages compared to previous 
approaches. No longer does the stippling process depend on a surface parameterization, and many different 
rendering styles can be achieved by modulating texture samples on a per-fragment basis. Furthermore, our 
approach effectively takes advantage of hardware assisted 3D texture mapping, thus enabling interactive 



stippling of large-scale models and scenes. Without any modifications, the technique can be used for point 
stippling volumetric objects. This is a direct implication of using a solid texture for the stippling process. 

 
Our method is easy to implement and can be used as back-end in any rendering technique without that the 

core implementation needs to be modified. By specifying appropriate inputs to the fragment shader program, 
various stippling styles can be integrated into arbitrary applications. For instance, arbitrary smooth-step 
functions can be integrated into the anti-aliasing process by simply increasing the support of the applied low-
pass filter. Although a slight overhead in terms of memory requirement is introduced by the 3D noise texture, 
due to the periodic replication of texture coordinates the initially specified texture can be kept at an 
acceptable resolution. On recent GPUs – such as the NVIDIA Geforce 8800 GTS – the overhead introduced 
by the stippling is around 1ms at a resolution of 1600x1200 and thus should only significantly impact 
applications running above 1000 fps without stippling. 

 
 The extraction of silhouettes was performed in screen space by employing a simple two pass rendering 

scheme, here in the worst case an overhead of about 5ms on current GPUs is introduced at a resolution of 
1600x1200. Thus the algorithm will only impact applications running faster than 200 fps. Note that this is the 
worst case as many of today’s systems already apply some deferred shading scheme that already extracts the 
normal- and a depth- map, in that case our silhouettes rendering approach becomes much faster. 

 
We are currently trying to further improve our approaches with respect to the following issues. In 

animations, the described techniques introduce slight flickering or popping artifacts. In this respect, for point 
stippling we investigate ways to construct customized 3D mip-maps that allow for distance based anti-
aliasing. For stylized silhouettes, on the other hand, popping as introduced might be desirable in artistic 
character animations. These effects can often be seen in cartoons and free-hand sketches. An elaborate 
investigation of the advantages of stylized rendering techniques in animation tools is a challenging future 
research direction. 
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