
Eurographics Symposium on Point-Based Graphics (2007)
M. Botsch, R. Pajarola (Editors)

Efficient Point-Based Rendering Using Image Reconstruction

Ricardo Marroquim1, Martin Kraus2, and Paulo Roma Cavalcanti1

1Universidade Federal do Rio de Janeiro, Brazil
2Technische Universität München, Germany

Abstract

Image-space reconstruction of continuous surfaces from scattered one-pixel projections of points is known to po-

tentially offer an advantageous time complexity compared to surface splatting techniques. We propose a new algo-

rithm for hardware-accelerated image-space reconstruction using pull-push interpolation and present an efficient

GPU implementation. Compared to published image-space reconstruction approaches employing the pull-push

interpolation, our method offers a significantly improved image quality because of the integration of elliptic box-

filters and support for deferred Phong shading. For large point-based models, our GPU implementation is capable

of rendering more than 50 M points per second—including image-space reconstruction and deferred shading.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Bitmap and framebuffer
operations – Display algorithms – Viewing algorithms; I.3.7 [Computer Graphics]: Hidden line/surface removal

1. Introduction

Point-based graphics have evolved from a specialized tool
for particle systems [CHP∗79] to one of the most power-
ful concepts in computer graphics. In numerous applications,
points have been proven to be a suitable primitive for model
acquisition, processing, animation, and rendering [GP07].
In this work, we focus on point-based surface rendering on
GPUs (graphics processing units).

The performance of programmable GPUs has been suc-
cessfully employed for real-time, point-based surface ren-
dering by multipass EWA (elliptical weighted average)
splatting techniques [KB04, SP04, SPL04]. Most of these
techniques consist of a visibility pass to compute a depth
map, an attribute pass to blend colors, normals, and other at-
tributes, a normalization pass to finalize the interpolation of
attributes, and a deferred shading pass. While this approach
achieves a high rendering performance even for high-quality
images [BHZK05,GBP06], the efficiency of this GPU-based
method is not optimal since the two object-order passes,
namely the visibility pass and the attribute pass, have to pro-
cess all displayed points, i.e., the time complexity of both
passes is O(n× ā) for n splats, each covering on average
ā pixels. On the other hand, the worst-case time complex-
ity of the normalization pass and also of the shading pass
(assuming local shading operations) is O(m) for a viewport

consisting of m pixels, i.e., it is independent of the number
of projected splats.

Many alternative point-based rendering techniques have
been published in the literature on point-rendering tech-
niques. One of the basic requirements for any surface ren-
dering method is the reconstruction of continuous surfaces
without holes. While these holes are avoided by a suffi-
ciently high initial sampling rate [LW85], this solution is
not always practical or possible. An alternative approach
is the filling of holes by an image-space reconstruction
of surfaces [For79, GD98, PZvBG00], i.e., an interpolation
of scattered pixel data. The algorithm by Forrest produces
only one-pixel holes, which “are filled most effectively by
a simple averaging technique” [For79]. In contrast to this
approach, the method proposed by Grossman and Dally
[GD98] can handle large gaps between one-pixel projections
of points. To this end, they employ a variant of the pull-
push interpolation suggested by Gortler et al. [GGSC96]
to reconstruct a continuous surface. Although Pfister et al.
[PZvBG00] render larger splats instead of one-pixel points,
they also employ the pull-push algorithm to fill holes be-
tween these splats. However, this image-space hole filling
method resulted in an inferior image quality while it re-
quired additional implementation efforts. Furthermore, the
method did not map well to hardware-accelerated implemen-
tations. Thus, subsequent research was focused on improv-

c© The Eurographics Association 2007.



R. Marroquim, M. Kraus, & P. R. Cavalcanti / Efficient Point-Based Rendering Using Image Reconstruction

ing splat shapes to avoid holes between splats while mini-
mizing rasterization overdraw, in particular for EWA splats
[ZPvBG01, RPZ02, GP03, ZRB∗04, BHZK05, GBP06].

Nonetheless, it is worthwhile to consider the time com-
plexity of the image-space reconstruction by means of the
pull-push algorithm. Since this algorithm is of complex-
ity O(m) for a viewport of m pixels [GGSC96, Bur88] and
the projection of n points to single pixels is of complexity
O(n), the complexity of the whole algorithm is O(n+m)
[GD98]. On the other hand, the complexity of most splat-
ting algorithms is O(n× ā+m) with the average splat size
ā. Moreover, the visibility pass introduced by Pfister et
al. [PZvBG00] results in two object-order passes in most
GPU-based surface splatting techniques [RPZ02,GP03], and
therefore leads to a worse constant for the dependency on the
number of points n in these GPU implementations.

Strengert et al. [SKE06] have recently presented an effi-
cient GPU implementation of the pull-push algorithm; thus,
an efficient implementation of the image-space reconstruc-
tion for point-based surface rendering is also feasible. Un-
fortunately, the algorithm by Grossman and Dally [GD98] is
not well suited for GPUs; in particular because their method
for finding gaps projects points not only to a frame buffer
of the target resolution but also to a coarser level of a hi-
erarchy of depth buffers. Therefore, at least one additional
object-order pass is required in a GPU implementation. Fur-
thermore, the per-point selection of a level of a render-target
hierarchy is not well supported by GPUs.

One contribution of our work is therefore the design and
GPU implementation of an efficient point-based rendering
technique using image-space reconstruction by means of a
variant of the pull-push interpolation. The second contribu-
tion of this work is the integration of elliptical box-filters—
i.e., 2D projections of 3D discs—in the pull-push interpo-
lation, which considerably improves the rendering of silhou-
ettes. In combination with deferred Phong shading [BSK04],
this results in a significant improvement of image quality
compared to published image-space reconstruction methods
[GD98, PZvBG00]. As compared to surface splatting tech-
niques that provide a similar image quality, our algorithm
features a higher rendering performance due to the improved
complexity and the single object-order pass.

The next section summarizes related work, while Sec-
tion 3 presents our algorithm and its implementation on
GPUs. Results obtained with a prototypical implementation
of this algorithm are discussed in Section 4. In Section 5, po-
tential improvements and extensions of our method as well
as directions for future research are suggested.

2. Related Work

This section mentions only some selected publications re-
lated to point-rendering techniques. More comprehensive
surveys of point-based graphics have been published by

Kobbelt and Botsch [KB04] and Sainz et al. [SP04, SPL04].
The forthcoming book on point-based graphics edited by
Gross and Pfister [GP07] includes also the latest research
results in point-based graphics.

As published by Csuri et al. [CHP∗79], points have been
used to model and render “soft” phenomena such as smoke
since the 1970s. At the same time, points have also been em-
ployed to render surfaces as published by Forrest [For79].
Catmull and Clark [CC78] have presented a subdivision
scheme for B-spline patches, which is suitable for ren-
dering surfaces by subdividing them to sub-pixel points.
This concept was implemented in the form of “micropoly-
gons” within the Reyes architecture published by Cook et
al. [CCC87]. The first in-depth discussion of points as graph-
ics primitive was provided by Levoy and Whitted [LW85].

Surface interpolation by a pyramid algorithm was sug-
gested by Burt [Bur88] and employed by Gortler et al.
[GGSC96], who named their variant “pull-push algorithm.”
This method was adapted by Grossman and Dally [GD98]
for an image-space reconstruction of undersampled point-
based surfaces, i.e., in the case of large gaps between pro-
jected points. While Grossman and Dally separated the find-
ing and filling of gaps, Popescu et al. [PEL∗00] described a
hardware-architecture that implements a more elaborate sep-
aration of visibility and reconstruction for image-based ren-
dering. For point-based rendering, Pfister et al. [PZvBG00]
employed the pull-push algorithm to fill holes between splats
instead of one-pixel projections of points.

Subsequent research avoided these holes by splatting as
suggested by Rusinkiewicz and Levoy [RL00]. Of partic-
ular interest were EWA splats as published by Zwicker et
al. [ZPvBG01]. Hardware-accelerated EWA splatting was
published by Ren et al. [RPZ02] and Guennebaud and Paulin
[GP03]. Improvements of EWA splatting include perspec-
tive accurate splatting by Zwicker et al. [ZRB∗04], deferred
splatting by Guennebaud et al. [GBP04], and deferred Phong
splatting by Botsch et al. [BSK04]. Further improvements of
this GPU-based approach were presented, for example, by
Botsch et al. [BHZK05] and Guennebaud et al. [GBP06].

Apart from these multipass splatting methods, several al-
ternative point-rendering techniques have been presented; in
particular, a “single-pass” splatting technique [ZP06,ZP07],
dedicated splatting hardware [WHA∗07], and ray tracing
of points [SJ00, AA03, WS05]. The “single-pass” splatting
technique proposed by Zhang and Pajarola [ZP06, ZP07]
requires a costly preprocess to compute groups of non-
overlapping splats (in object space) and is therefore less suit-
able for dynamic point sets. While the dedicated hardware
published by Weyrich et al. [WHA∗07] achieves promising
performance results, the prototypical hardware cannnot pro-
vide the rendering performance of splatting techniques im-
plemented on today’s GPUs. Ray tracing of points was first
published by Schaufler and Jensen [SJ00] and led to work by
Adamson and Alexa [AA03], and Wald and Seidel [WS05].

c© The Eurographics Association 2007.



R. Marroquim, M. Kraus, & P. R. Cavalcanti / Efficient Point-Based Rendering Using Image Reconstruction

3D points with attributes
Hposition, normal, radius, etc.L

projection

scattered pixel data
Hdepth, normal, radius, etc.L

interpolation

continuous pixel data
Hdepth, normal, etc.L

shading

image of surface
Hdepth and colorL

Figure 1: Data flow in the proposed point-based surface rendering technique.

The approach is particularly advantageous for many global
illumination effects and for rendering of very large point
models, which do not fit into graphics memory.

Inspite of its linear complexity, there are not many
hardware-accelerated implementations of the pull-push al-
gorithm [GGSC96] because it requires a logarithmic num-
ber of switches of the render target. These switches have
been a major bottleneck in the past; therefore, Lefebvre
et al. [LHN05] tried to avoid them in their approxima-
tion of the pull-push algorithm at the cost of a worse time
complexity and reduced interpolation quality. However, a
GPU-based implementation of the pull-push algorithm by
means of the OpenGL extension for framebuffer objects
performs extremely efficient as demonstrated by Strengert
et al. [SKE06]. This motivated our research on applying a
GPU-based pull-push interpolation to point-based rendering,
which led to the method described in the next section.

3. Point Rendering Using Image Reconstruction

Figure 1 presents an overview of our point-based surface
rendering technique. The input data of our algorithm con-
sists of an unordered set of three-dimensional points with
attributes, which are projected to the viewport. However, in
contrast to splatting techniques, only one single pixel is ras-
terized for each point. Details about the projection are dis-
cussed in Section 3.1. After projecting the points, a con-
tinuous surface is reconstructed from the resulting scattered
pixels by means of a pull-push interpolation as discussed in
Sections 3.2 and 3.3. Based on the resulting continuous pixel
data, the deferred shading of the surface is computed as de-
scribed in Section 3.4.

3.1. Projection of Points to Single Pixels

Points are projected to the viewport by a standard model-
view matrix. In addition to viewport clipping, we also em-
ploy backface culling based on the local surface normal vec-
tor specified for each point. Apart from this normal vector,
the only additional attribute required by our algorithm is a
radius that specifies the extent of the point’s influence. This
radius corresponds to the splat size of splatting techniques

and can be computed from the local sampling spacing. Since
we are only concerned with point rendering in this work, we
will not discuss the acquisition of points, their normal vec-
tors, nor sampling spacings; instead we refer the reader to
the literature on these problems [KB04,GP07]. For the same
reason, hierarchical point representations and dynamic level-
of-detail selection are not discussed in this work while they
could be integrated in the point projection of our method.

Further potential point attributes are, for example, color
and texture coordinates. For each point at most one pixel is
rasterized; thus, the point’s attributes are written to at most
one pixel of the framebuffer. Since a depth buffer is em-
ployed for depth culling, each pixel stores the attributes of
at most one point. Note that the point’s attributes will usu-
ally consist of more than four components; thus, a hardware-
based implementation requires support for sufficiently many
multiple rendering targets.

Since at most one pixel is rasterized for each point, pixel
overdraw is dramatically reduced in comparison to splat-
ting techniques. In fact, this advantage was already noted
by Grossman and Dally [GD98]. Another advantage of our
approach is the limitation to one object-order pass, i.e., all
points are processed only once. The requirement of two
object-order passes, i.e., a visibility pass in addition to the
attribute pass, is a major disadvantage of most hardware-
accelerated splatting approaches as noted by Zhang and Pa-
jarola [ZP06, ZP07] and Weyrich et al. [WHA∗07].

3.2. Pull-Push Interpolation: Pull Phase

The pull-push algorithm consists of a pull phase and a sub-
sequent push phase [GGSC96]. The former phase computes
coarser levels of an image pyramid of the viewport image by
reducing the pixel dimensions by a factor of two in each step.
The push phase of our method employs this image pyramid
to fill arbitrarily large gaps, i.e., to interpolate missing pixels
and also to overwrite pixels that are occluded by a surface as
discussed in the next section.

In the pull phase, pyramid levels are computed in bottom-
up order based on the viewport image containing projections

c© The Eurographics Association 2007.



R. Marroquim, M. Kraus, & P. R. Cavalcanti / Efficient Point-Based Rendering Using Image Reconstruction

1�4

1�4

1�4

1�4

(a)

1�4 1�4

1�4 1�4

(b)

Figure 2: Interpolation of pixel attributes in the pull phase.

of points. The attributes of a pixel of a coarser level are deter-
mined by averaging the corresponding four pixels of the finer
pyramid level as illustrated in Figure 2. However, only pixels
that specify valid data are included in the average. Whether
a pixel is valid or not, is indicated by a binary flag per pixel.
On the finest level, only the one-pixel projections of points
are marked to specify valid data while all other pixels are
marked invalid. When averaging four invalid pixels to com-
pute a pixel of a coarser pyramid level, the new pixel is also
marked invalid and is left to be computed during the push
phase.

After eliminating invalid pixels, a preliminary depth test
is performed to also eliminate occluded pixels. To this end,
each one-pixel projection is associated with a depth inter-
val. The minimum depth of this interval is determined by
the projected point’s z coordinate while the maximum depth
is computed by the minimum depth plus the radius of the
point. A pixel is only used for averaging if its depth interval
intersects the depth interval of the frontmost pixel, i.e., the
pixel with the smallest minimum depth coordinate among
the valid pixels, which potentially contribute to the average
as depicted in Figure 2. Note that even though occluded pix-
els are removed from the interpolation of pixels of coarser
levels, they are still present in the finer level. However, oc-
cluded pixels are recomputed in the following push phase as
discussed in the next section.

In general, the attributes of a new pixel of a coarser level
are determined by averaging the valid, “unoccluded” pix-
els; however, the minimum and maximum depth values of
a new pixel are set to the smallest and largest depth values of
all contributing pixels, respectively. This guarantees that the
depth interval of the new coarser pixel contains all intervals
of the averaged pixels from the finer level.

To accurately reconstruct the model’s silhouette and
boundaries, the reconstruction includes elliptical box-filters,
which limit the region of influence of each projected point.
Each pixel’s ellipse is computed by an orthogonal projection
of a circle onto the view plane. The circle’s orientation in ob-
ject space is determined by the pixel’s normal vector while
its radius is set to the radius mentioned in Section 3.1. Thus,
the ellipse’s major axis is aligned perpendicularly to the 2D

(a) (b)

Figure 3: (a) Displacement vector (thick arrow) for pixel p3

computed after three steps of the the pull phase. Pixel p0 is

the original projected sample at the center of the ellipse, p1

is the center of the pixel at level 1, etc. The dotted lines repre-

sent the difference vectors summed at each iteration. (b) The

attributes computed for pixel p0 define a new ellipse (contin-

uous line), with center at c0, by averaging two coarser level

ellipses (dotted lines) with centers at c1 and c2.

projection of the normal vector and its length is twice the
radius; furthermore, the minor axis is parallel to the normal
vector and its magnitude is the length of the major axis mul-
tiplied by the normal’s z coordinate. While the center of an
ellipse in the finest pyramid level is just the pixel’s center,
an additional 2D displacement vector is computed for each
pixel to specify the ellipse’s center with sub-pixel precision
in coarser pyramid levels. This vector is similar to the sam-
ple offset proposed by Popescu et al. [PEL∗00].

For the pull phase, the ellipses are not actually used;
nonetheless, normal vectors and radii are computed for all
pixels by averaging valid pixels of finer levels, as explained
above, because this data is required in the push phase. Be-
fore averaging displacement vectors, however, the difference
vector from the corresponding pixel center to the center of
the coarser pixel is added; the arrows in Figure 2b depict
these vectors. This process guarantees that the coarser pixel
maintains a reference to the exact position of the ellipse. An
example of the evolution of the displacement vector during
the pull phase is illustrated in Figure 3a.

When a pixel of a coarser level is computed by averaging
more than one valid pixel, the new normal vector, radius, and
displacement vector define an ellipse that approximates two
or more ellipses from the finer level (see Figure 3b). During
the push phase, the ellipse is reconstructed and acts as an
inside/outside test, i.e., an elliptical box-filter, to improve the
interpolation of pixels as described in the next section.

3.3. Pull-Push Interpolation: Push Phase

After the image pyramid has been built in bottom-up order
in the pull phase, the push phase works in top-down order,
i.e., from coarser to finer levels. In this push phase, only the
attributes of invalid and “occluded” pixels are (re)computed.
Here, a valid pixel is considered “occluded” if its minimum

c© The Eurographics Association 2007.



R. Marroquim, M. Kraus, & P. R. Cavalcanti / Efficient Point-Based Rendering Using Image Reconstruction

3�16 9�16

1�16 3�16

(a)

1�16 3�16

3�16 9�16

(b)

Figure 4: Interpolation of pixel attributes in the push phase.

1�13 0

3�13 9�13

Figure 5: Push interpolation for three contributing pixels.

depth value is outside the depth interval of the corresponding
pixel in the next coarser pyramid level.

The basic interpolation scheme is depicted in Figure 4.
The attributes of four pixels of a coarser pyramid level are
used to interpolate the attributes of a pixel of a finer level.
The weights are depicted in Figure 4 and correspond to bi-
quadratic B-spline subdivision, as published by Catmull and
Clark [CC78]; they also correspond to Doo-Sabin subdivi-
sion of a regular quadrilateral mesh.

Analogously to the pull phase, only pixels with valid at-
tributes are included in the interpolation; thus, the weights
have to be renormalized in the case of less than four valid
pixels. For example, Figure 5 illustrates the interpolation of a
pixel from only three pixels of a coarser level. The weights of
the contributing pixels according to Figure 4 are 1

16 , 3
16 , and

9
16 . After division by their sum 13

16 , the renormalized weights

depicted in Figure 5 are 1
13 , 3

13 , and 9
13 .

In addition to the binary flag marking invalid pixels, ellip-
tical box-filters, which have been computed in the pull phase
for all pixels, are used to eliminate pixels whose region of in-
fluence does not include the pixel that has to be recomputed.
If the center of this pixel is not within the ellipse of a coarser
pixel, the latter is eliminated from the weighted average; i.e.,
its weight is set to 0. In Figure 5, the pixel labeled “0” does
not contribute to the interpolation, since its ellipse (dotted in
Figure 5) does not cover the center of the pixel to be recom-
puted, while the three other ellipses include this center. For

(a) (b)

Figure 6: (a) Illustration of the point distribution in the

Head model, (b) rendering with our method.

(a) (b)

Figure 7: Comparison between (a) non-deferred shading,

and (b) deferred shading in our method.

clarity, all displacement vectors of ellipse centers relative to
pixel centers are assumed to be (0,0)> in this example; how-
ever, this is usually not the case.

The push phase only recomputes invalid and occluded
pixels; thus, the attributes of all other pixels are just copied
from the image pyramid computed in the pull phase.

3.4. Deferred Shading

Once the push phase has been performed for all levels of
the image pyramid, the finest level contains interpolated at-
tributes for all pixels that are determined to be within the sil-
houette of a reconstructed surface as indicated by the binary
attribute flag. For these pixels, Phong shading can be com-
puted since the normal vectors have also been interpolated.
Additionally, any optional attributes such as colors or texture
coordinates can be included in the shading computation.

Figures 6 demonstrates that gaps between points are in-
terpolated with correct depth occlusions while Figure 7 com-
pares non-deferred shading by a software splatting technique
in Figure 7a with the deferred shading by our method de-
picted in Figure 7b, which features sharper specular high-
lights.

3.5. Ping-Pong Implementation on GPUs

While the hardware-accelerated implementation of the point
projection and the deferred shading computation is straight-

c© The Eurographics Association 2007.



R. Marroquim, M. Kraus, & P. R. Cavalcanti / Efficient Point-Based Rendering Using Image Reconstruction

(a) (b) (c)

Figure 8: Ping-pong rendering between two image buffers: (a) bottom-up pull phase, (b) copy phase, (c) top-down push phase.

forward, the GPU-based implementation of the pull-push al-
gorithm is less obvious. Strengert et al. [SKE06] present an
implementation that reads and writes at the same time to one
render target. While the result of this operation is unspecified
by OpenGL, some GPUs offer undocumented support for it.
In this section we present a GPU implementation that does
not rely on unspecified hardware behavior and is therefore
implementable on any OpenGL hardware supporting frame-
buffer objects.

Figure 8 illustrates our ping-pong implementation; in par-
ticular, the pull phase is depicted in Figure 8a. Two image
buffers are required, which alternately act as renderbuffer
and texture image, respectively. Each image buffer contains
all levels of the pyramid image; for the purpose of illustra-
tion, Figure 8 employs a rather inefficient packing of the
pyramid levels into one image buffer. As depicted by Fig-
ure 8a, the pull phase rasterizes all odd levels of the pyra-
mid image into one image buffer and all even levels into the
second image buffer. As discussed in Section 3.3, the push
phase requires access to data from one odd and one adja-
cent, i.e., even, level of the pyramid at the same time. Thus,
an additional copy phase is necessary, which simply copies
each level image to the image buffer that is lacking it as il-
lustrated in Figure 8b. After the copy phase is completed,
the ping-pong implementation of the push phase rasterizes
all levels of the pyramid in top-down order. As depicted in
Figure 8c, it can access two adjacent levels of the pyramid
image without reading and writing to the same image buffer
at the same time.

The pull, copy, and push phases require several render
target switches; specifically, the number of switches is of
O(log

√
m) for a square viewport image consisting of m pix-

els. Thus, these switches are not time critical for modern
GPUs and viewports of reasonable size. Results of a proto-
typical GPU implementation are reported in the next section.

4. Results

We tested our algorithm on a GeForce 7800 GTX with
512 MB memory connected via PCI Express 16× to a Linux

computer with an Intel Pentium 4 CPU (3 GHz), 2 GB RAM,
and installed NVIDIA driver, version “1.0-9755.” The mod-
els were preprocessed to compute a normal vector and a
radius of influence of each point. At runtime, all point at-
tributes were transferred to the GPU by means of OpenGL
vertex buffer objects. Image data was processed in one
OpenGL framebuffer object with four 16-bit floating-point
RGBA image buffers and a 32-bit depth buffer. All ver-
tex and fragment shaders were implemented in the OpenGL
shading language.

Rendering times for several point-based models are sum-
marized in Table 1; exemplary renderings of these models
are depicted in Figures 6b, 7b, 9, and 10. The fourth col-
umn of Table 1 presents rendering times in milliseconds for
a 512×512 viewport while the sixth column presents times
for a 1024× 1024 viewport. Apart from the total time per
frame, we have also included two times in parentheses: the
time required for the projection of points as described in Sec-
tion 3.1 and for the pull-push interpolation discussed in Sec-
tions 3.2 and 3.3. As expected, these two operations require
most of the rendering time while other operations, e.g., the
deferred shading, are almost negligible.

Our measurements demonstrate that the rendering time
for small models is dominated by the pull-push interpola-
tion; i.e., by the viewport resolution. On the other hand, the
rendering time for large models on small viewports is dom-
inated by the projection of points and therefore by the num-
ber of points. For large models on a 1024× 1024 viewport,
our implementation renders the equivalent to between 50 M
and 60 M splats per second—including surface reconstruc-
tion and deferred shading. For comparison, Zhang and Pa-
jarola [ZP06] reported a performance of up to 24.9 M splats
per second and Guennebaud et al. [GBP06] reported 37.5 M
splats per second—both for the same viewport size on the
same GPU. While our algorithm does not provide the same
image quality, it should be noted that the performance of our
method is independent of the size of points while splatting
techniques achieve their peak performance only for small
splat sizes.

c© The Eurographics Association 2007.



R. Marroquim, M. Kraus, & P. R. Cavalcanti / Efficient Point-Based Rendering Using Image Reconstruction

Table 1: Models and rendering performance. ∗Each total rendering time per frame is followed in parentheses by the time for

the point projection and the time for the pull-push interpolation (all rendering times are in milliseconds).

512×512 viewport 1024×1024 viewport

model # points fps time per frame∗ fps time per frame∗

Head 25 K 82 12 ms (0.2 ms, 12 ms) 24 42 ms (0.3 ms, 38 ms)

Armadillo 173 K 71 14 ms (1.4 ms, 13 ms) 22 46 ms (1.7 ms, 41 ms)

Happy Buddha 544 K 61 16 ms (5.1 ms, 11 ms) 21 47 ms (4.9 ms, 39 ms)

Asian Dragon 3610 K 26 39 ms (28 ms, 10 ms) 14 71 ms (29 ms, 38 ms)

Thai Statue 5000 K 20 49 ms (38 ms, 10 ms) 12 82 ms (39 ms, 38 ms)

(a) (b) (c) (d)

Figure 9: Renderings with our method of the (a) Armadillo,

(b) Happy Buddha, (c) Asian Dragon and (d) Thai Statue.

5. Future Work and Conclusions

We have presented a new pull-push interpolation for image-
space reconstruction in point-based rendering. Compared to
prior work by Grossman and Dally [GD98], our algorithm
offers a significantly improved image quality by integrat-
ing elliptical box-filters and employing deferred Phong shad-
ing. Moreover, we presented an efficient GPU implementa-
tion, which performs significantly better than splatting tech-
niques in case of high rates of rasterization overdraw, e.g.,
for screen-filling scenes of high depth complexity. There-
fore, we consider our method to be a valuable complement
to previously published splatting techniques.

There are some limitations of our algorithm, which de-
serve future research. For example, extremely dense pro-
jections of points in screen space result in aliasing artifacts
since only one point per pixel is taken into account. More-
over, the employed elliptical box-filters result in sharp sil-
houettes, i.e., they also feature some aliasing. Furthermore,
the surfaces computed by our variant of the pull-push in-
terpolation are not as smooth as, for example, biquadratic
B-spline subdivision surfaces [CC78].

On the other hand, there are many promising extensions
and applications of our algorithm. Of particular interest is
the integration of hierarchical data structures for large point-
based models and scenes; e.g., the sequential point trees pub-
lished by Dachsbacher et al. [DVS03].

(a) (b)

Figure 10: Renderings of details of the (a) Asian Dragon

and (b) Thai Statue.

6. Acknowledgements

We would like to acknowledge the grant of the first author
provided by Brazilian agency CNPq (National Counsel of
Technological and Scientific Development).

References

[AA03] ADAMSON A., ALEXA M.: Ray tracing point set
surfaces. In SMI ’03: Proceedings of Shape Modeling In-

ternational 2003 (2003), pp. 272–279.

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M.,
KOBBELT L.: High-quality surface splatting on today’s
GPUs. In Proceedings of the Eurographics/IEEE Sympo-

sium on Point-Based Graphics ’05 (2005), pp. 17–24.

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.:
Phong splatting. In Proceedings of the Eurographics Sym-

posium on Point-Based Graphics ’04 (2004), pp. 25–32.

[Bur88] BURT P. J.: Moment images, polynomial fit fil-
ters, and the problem of surface interpolation. In Proceed-

ings of Computer Vision and Pattern Recognition (1988),
pp. 144–152.

[CC78] CATMULL E., CLARK J.: Recursively generated
B-spline surfaces on arbitrary topological meshes. Com-

puter Aided Design 10, 6 (1978), 350–355.

c© The Eurographics Association 2007.



R. Marroquim, M. Kraus, & P. R. Cavalcanti / Efficient Point-Based Rendering Using Image Reconstruction

[CCC87] COOK R. L., CARPENTER L., CATMULL E.:
The Reyes image rendering architecture. In SIGGRAPH

’87: Proceedings of the 14th Annual Conference on

Computer Graphics and Interactive Techniques (1987),
pp. 95–102.

[CHP∗79] CSURI C., HACKATHORN R., PARENT R.,
CARLSON W., HOWARD M.: Towards an interactive high
visual complexity animation system. In SIGGRAPH ’79:

Proceedings of the 6th Annual Conference on Computer

Graphics and Interactive Techniques (1979), pp. 289–
299.

[DVS03] DACHSBACHER C., VOGELGSANG C., STAM-
MINGER M.: Sequential point trees. In Proceedings SIG-

GRAPH ’03 (2003), pp. 657–662.

[For79] FORREST A. R.: On the rendering of surfaces. In
SIGGRAPH ’79: Proceedings of the 6th Annual Confer-

ence on Computer Graphics and Interactive Techniques

(1979), pp. 253–259.

[GBP04] GUENNEBAUD G., BARTHE L., PAULIN M.:
Deferred splatting. Computer Graphics Forum 23, 3
(2004), 653–660.

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.:
Splat/mesh blending, perspective rasterization and trans-
parency for point-based rendering. In Proceedings of

the IEEE/Eurographics/ACM Symposium on Point-Based

Graphics ’06 (2006), pp. 49–58.

[GD98] GROSSMAN J. P., DALLY W. J.: Point sample
rendering. In 9th Eurographics Workshop on Rendering

’98 (1998), pp. 181–192.

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI

R., COHEN M. F.: The Lumigraph. In SIGGRAPH ’96:

Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques (1996), pp. 43–54.

[GP03] GUENNEBAUD G., PAULIN M.: Efficient screen
space approach for hardware accelerated surfel render-
ing. In Proceedings of Vision, Modeling and Visualization

2003 (2003), pp. 485–495.

[GP07] GROSS M., PFISTER H. (Eds.): Point-Based

Graphics. Morgan Kaufmann Publishers, 2007.

[KB04] KOBBELT L., BOTSCH M.: A survey of point-
based techniques in computer graphics. Computers &

Graphics 28, 6 (2004), 801–814.

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Octree
textures on the GPU. In GPU Gems 2 (2005), Pharr M.,
(Ed.), Addison Wesley, pp. 595–613.

[LW85] LEVOY M., WHITTED T.: The use of points as
a display primitive, Technical Report TR 85-022, Univer-
sity of North Carolina at Chapel Hill, 1985.

[PEL∗00] POPESCU V., EYLES J., LASTRA A., STEIN-
HURST J., ENGLAND N., NYLAND L.: The WarpEngine:
An architecture for the post-polygonal age. In Proceed-

ings SIGGRAPH ’00 (2000), pp. 433–442.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J.,
GROSS M.: Surfels: Surface elements as rendering prim-
itives. In Proceedings SIGGRAPH ’00 (2000), pp. 335–
342.

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A mul-
tiresolution point rendering system for large meshes. In
Proceedings SIGGRAPH ’00 (2000), pp. 343–352.

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object
space EWA surface splatting: A hardware accelerated ap-
proach to high quality point rendering. Computer Graph-

ics Forum (Eurographics 2002) 21, 3 (2002), 461–470.

[SJ00] SCHAUFLER G., JENSEN H. W.: Ray tracing point
sampled geometry. In Proceedings of the Eurograph-

ics Workshop on Rendering Techniques 2000 (2000),
pp. 319–328.

[SKE06] STRENGERT M., KRAUS M., ERTL T.: Pyramid
methods in GPU-based image processing. In Proceed-

ings of Vision, Modeling, and Visualization 2006 (2006),
pp. 169–176.

[SP04] SAINZ M., PAJAROLA R.: Point-based rendering
techniques. Computer & Graphics 28, 6 (2004), 869–
879.

[SPL04] SAINZ M., PAJAROLA R., LARIO R.: Points
reloaded: Point-based rendering revisited. In Proceedings

of the Eurographics Symposium on Point-Based Graphics

’04 (2004), pp. 121–128.

[WHA∗07] WEYRICH T., HEINZLE S., AILA T., FAS-
NACHT D., OETIKER S., BOTSCH M., FLAIG C., MALL

S., ROHRER K., FELBER N., KAESLIN H., GROSS

M.: A hardware architecture for surface splatting.
ACM Transactions on Graphics (Proceedings ACM SIG-

GRAPH 2007) 26, 3 (2007).

[WS05] WALD I., SEIDEL H.-P.: Interactive ray tracing
of point-based models. In Proceedings of the Eurograph-

ics/IEEE VGTC Symposium on Point-Based Graphics ’05

(2005), pp. 9–16.

[ZP06] ZHANG Y., PAJAROLA R.: Single-pass point ren-
dering and transparent shading. In Proceedings of the

Eurographics/IEEE VGTC Symposium on Point-Based

Graphics ’06 (2006), pp. 37–48.

[ZP07] ZHANG Y., PAJAROLA R.: Deferred blending: Im-
age composition for single-pass point rendering. Com-

puter & Graphics 31, 2 (2007), 175–189.

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J.,
GROSS M.: Surface splatting. In Proceedings SIG-

GRAPH ’01 (2001), pp. 371–378.

[ZRB∗04] ZWICKER M., RÄSÄNEN J., BOTSCH M.,
DACHSBACHER C., PAULY M.: Perspective accurate
splatting. In GI ’04: Proceedings of the 2004 Conference

on Graphics Interface (2004), pp. 247–254.

c© The Eurographics Association 2007.


