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Abstract. The rendering of lower resolution image data on higher res-
olution displays has become a very common task, in particular because of
the increasing popularity of webcams, camera phones, and low-bandwidth
video streaming. Thus, there is a strong demand for real-time, high-
quality image magnification. In this work, we suggest to exploit the high
performance of programmable graphics processing units (GPUs) for an
adaptive image magnification method. To this end, we propose a GPU-
friendly algorithm for image up-sampling by edge-directed image interpo-
lation, which avoids ringing artifacts, excessive blurring, and staircasing
of oblique edges. At the same time it features gray-scale invariance, is ap-
plicable to color images, and allows for real-time processing of full-screen
images on today’s GPUs.

1 Introduction

Digital image magnification is by no means a trivial technical task—in fact, many
real-life scenarios include perceptional issues which are not covered by the theory
of signal processing. In particular, human subjects often perceive theoretically
optimal magnifications of images as less sharp and more blurred than images
magnified with algorithms that heuristically add high frequencies to the sampled
signal. This is due to the fact that humans often have a more precise model of the
physical signal than the sampled image data can provide. For example, we often
expect regions of uniform colors with sharp edges in images although the finite
sampling of a digital image cannot provide this information. Thus, improving
image magnification algorithms for subjectively sharper results is—in a technical
sense—an ill-posed problem. Nonetheless, the challenge exists and became more
important in recent years due to the increasing popularity of higher resolution
display devices such as PC screens, video beamers, and HDTVs, while video
DVDs and TV signals still provide lower resolutions. There are also new popular
image sources, e.g., webcams, camera phones, and internet video streams, which
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often provide even lower resolutions. Thus, it is common to up-sample images
before rendering them.

In many of the conceivable scenarios, programmable graphics processing units
(GPUs) are employed to render the image data. Therefore, we propose to use
these GPUs for advanced image magnification techniques—in particular because
off-line preprocessing of image data is often not possible due to the lack of com-
munication bandwidth, available memory, or the requirement to avoid latencies;
for example, in interactive applications. The image magnification algorithm pre-
sented in this work is particularly well suited for implementations on GPUs.

Additional requirements and related work are discussed in Section 2. In Sec-
tion 3, a one-dimensional edge model is presented and a method for magnifying
this ideal edge without blurring nor ringing artifacts is derived. The adaptation
of this method for GPU-based image magnification is discussed in Section 4
while Section 5 presents experiments and results.

2 Requirements and Related Work

Several previously published concepts and ideas are crucial in the design of our
method. In this section, we discuss the most important design requirements and
related publications.

2.1 Pyramidal Magnification

Many image magnification methods are restricted to a magnification factor of 2.
Factors equal to powers of 2 are implemented by the corresponding number of
magnification operations while arbitrary factors are implemented by up-sampling
to the smallest power of 2 that is greater than the requested factor and a mini-
fication step that employs, for example, bilinear interpolation. This pyramidal
approach provides the optimal (linear) time complexity while considerably sim-
plifying the up-sampling algorithm and its implementation—in particular if the
method is implemented in hardware. Figure 1a illustrates an image pyramid,
which consists of the coarse image (1 × 1 pixel) at the top and two finer image
levels (2 × 2 pixels and 4 × 4 pixels), which are synthesized from the original
image by expanding the image data by a factor of two in each magnification
step.

There are two different schemes for the positioning of the new samples, which
are called primal and dual scheme (or face-split and vertex-split scheme) in the
literature on subdivision surfaces. The primal scheme inserts new samples be-
tween old samples while keeping the old samples. This is the more traditional
interpolation scheme in image magnification methods since it guarantees an in-
terpolation of the original colors by preserving them, and also avoids most com-
putations for all the old samples, i.e., one quater of the pixels of the magnified
image.

The dual scheme places all new samples symmetrically between old samples
and discards the old samples as illustrated in Fig. 1b. This approach has been
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Fig. 1. (a) Image pyramid consisting of three levels. (b) Dual subdivision scheme.

employed by Zhao and de Haan [1] and Strengert et al. [2] as it is more appro-
priate for a single-pass implementation and/or a GPU-based implementation.
Moreover, the uniform interpolation of samples according to the dual scheme
with the weights depicted in Fig. 1 results in a C1-continuous biquadratic B-
spline filtering in the limit of infinitely many up-sampling steps [2].

2.2 Edge Preservation

In practice, image data is usually undersampled. Therefore, reconstructing im-
ages with the ideal sinc filter would result in ringing artifacts unless an additional
low-pass filter is applied. This low-pass filtering, however, is often perceived as
a blurring of the image. As mentioned in the introduction, human subjects esti-
mate the optimal sharpness of edges in images not only based on the displayed
data but also based on their knowledge about the depicted objects. Thus, human
subjects often correctly assume that the physical signal featured sharper edges
than the sampled image data. Therefore, model-based image up-sampling meth-
ods have been proposed that attempt to solve the inverse problem of determining
the physical signal, which led to the given image data under the assumption of
a certain observation model [3].

A somewhat more modest goal is realized by adaptive interpolation meth-
ods, which detect strong edges in images and adapt the interpolation weights
accordingly to avoid an interpolation across these edges. Therefore, this approach
is also called edge-directed image interpolation. In terms of a model-based ap-
proach, this corresponds to identifying those edges which have not been sampled
at a sufficiently high frequency and, therefore, appear blurred in a technically
correct reconstruction of the finite resolution image data. Figures 2c and 2f on
page 6 illustrate the sharpening effect of edge-directed interpolation in a one-
dimensional example. Since the physical signal of the edge is assumed to feature
an infinitely sharp edge as depicted in Fig. 2a, the slope of the up-sampled edge
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signal in Fig. 2f is increased (in comparison to the original edge signal in Fig. 2c)
to approximate the sampling of this edge at a higher resolution. It should be em-
phasized that excessive sharpening of edges has to be avoided since the lack of
any blurring due to a sampling process is very noticeable. Moreover, excessive
sharpening of two-dimensional images results in staircasing artifacts of oblique
edges similar to aliasing artifacts.

Techniques for edge detection in adaptive edge-directed interpolation meth-
ods are usually based on pixel correlation [1, 4], local pixel classification [5–7],
or local gradients [8, 9]. In this work, we adapt the boundary model proposed
by Kindlmann and Durkin [10], which is related to the edge detectors by Canny
[11] and by Marr and Hildreth [12].

2.3 Gray-Scale Invariance

Adaptive interpolation methods are nonlinear mappings of images because the
interpolation weights depend on the image data. In general, this can result in un-
desirable dependencies on the overall intensity or on the local illumination. These
disadvantages can be avoided if the adaptive interpolation method is required
to be homogeneous; i.e., the up-sampled image should show a multiplicative
scaling behaviour for scaled input data. In the context of edge-directed interpo-
lation, this requires an edge detection method that works independently of the
absolute scale of edges. Of course, this assumes a signal-to-noise ratio, which
is also scale-invariant. As quantized image data already violates this assump-
tion, gray-scale invariance cannot be achieved perfectly. Nonetheless, it is an
important design requirement for adaptive interpolation methods as noted, for
example, by Pietikäinen [7].

2.4 Color Interpolation

Applicability to color images is an obvious requirement for general image magnifi-
cation methods. Applying the adaptive interpolation separately to all color com-
ponents will usually result in unpleasant color shifts. Therefore, edge-directed
interpolation methods (including our approach) are usually designed to detect
edges in luminance images and adapt the weights for an interpolation of color
vectors.

2.5 GPU-Based Interpolation

Some of the requirements for high-performance GPU-based interpolation meth-
ods can be identified in the design of the linear, non-adaptive image zooming
method proposed by Strengert et al. [2]. Specifically, this method also applies
pyramidal magnification with the dual sampling scheme. Even more important is
the consistent use of bilinear image interpolation supported by OpenGL graphics
hardware. In the context of adaptive interpolation, this amounts to offsetting the
sampling coordinates of a (dependent) bilinear image interpolation such that the
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weights of the GPU-based bilinear interpolation are adapted automatically by
the GPU. This indirect adaptation of interpolation weights is also applicable to
color images if the offsets to the sampling coordinates are computed from lumi-
nance data while the dependent bilinear image lookup interpolates color image
data.

3 Ideal Edge Characterization

Analogously to the work by Kindlmann and Durkin [10], we first choose a one-
dimensional edge model and develop an exact magnification method for this
continuous model. The method does not suffer from ringing artifacts but pre-
serves the ideal edge without any blurring. Moreover, it is gray-scale invariant
and can be applied to color images.

For an ideal edge the observed physical signal is assumed to feature an arbi-
trarily sharp, discontinuous change from a value ymin to ymax at position x0 as
depicted in Fig. 2a. Therefore, this physical signal is modeled by a parameterized
step function:

ymin + (ymax − ymin) Θ(x − x0). (1)

Due to the measurement, however, the sampled signal is blurred. For the sampled
edge signal f(x), this observation process is modeled by a convolution with a
normal distribution with standard deviation σ (Fig. 2b):

f(x) = (ymin + (ymax − ymin)Θ(x − x0)) ⊗
1√
2πσ

exp

(

− x2

2σ2

)

. (2)

The resulting function f(x) is a parameterized error function plotted in Fig. 2c
and serves as our model of the sampled signal for an ideal edge:

f(x) =
ymin + ymax

2
+

ymax − ymin

2
erf

(

x − x0√
2σ

)

. (3)

The position x0 of the ideal edge is characterized by the maximum of f ′(x)
and the zero crossing of f ′′(x) as illustrated in Fig. 2d. These criteria are ex-
ploited by the edge detectors by Canny [11] and by Marr and Hildreth [12],
respectively. However, f ′(x) and f ′′(x) are less appropriate for the characteri-
zation of the transition region of an ideal edge as their scale depends on ymin

and ymax, which are not known a priori. Therefore, we form a scale-invariant
expression from f ′(x) and f ′′(x):

d(x)
def
=

−σ2f ′′(x)

f ′(x)
. (4)

For our model of the ideal edge, d(x) is equal to x − x0 as plotted in Fig. 2e;
thus, a zero crossing of d(x) corresponds to the position x0 of an (ideal) edge.
Moreover, the definition of d(x) is independent of ymin, ymax, and x0; thus, it
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Fig. 2. Detection and sharpening of an ideal edge: (a) parameterized step function,
(b) normal distribution filter modeling the measurement process, (c) sampled ideal
edge signal, (d) first and second derivative of the sampled signal, (e) offset d(x) for
resampling (solid line) and clamped offset d̂(x) (dotted line), (f) resampled (and sharp-
ened) signal f(x + d(x)) (solid line) and f(x + d̂(x)) (dotted line).

can be employed for a scale-invariant characterization of transition regions in an
edge magnification method as explained next.

We consider the magnification of the ideal edge signal depicted in Fig. 2c
by a factor of 2. At twice the resolution, the edge signal should be twice as
sharp, i.e., the convolution in (2) should be computed with a normal distribution
with half the standard deviation σ/2. Since the scaling in x direction is only
dependent on σ, it is also possible to compute the magnified edge signal by
rescaling the distance x − x0, i.e., the resulting sharper edge signal is given by
f (2 (x − x0) + x0) as depicted in Fig. 2f. This expression, however, allows us to
employ our scale-invariant edge characterization:

f (2 (x − x0) + x0) = f (x + (x − x0)) = f (x + d(x)) . (5)

Thus, we can achieve the sharpening of an ideal edge due to a magnification by
a factor of 2 simply by resampling the signal with the positional offset d(x) =
−σ2f ′′(x)/f ′(x). It should be emphasized that this resampling of the data with
a positional offset maps very well to the GPU-based bilinear image interpolation
discussed in Section 2.5.

While this method works for the ideal edge signal, it is obivously not very
useful for arbitrary signals since the numerical computation of the offset d(x)
is unstable. However, this problem can be easily avoided by clamping the offset
between symmetrical bounds −m and +m:

d̂(x)
def
= max(−m,min(+m, d(x))). (6)
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As illustrated by the dotted curves in Figs. 2e and 2f, the clamping has only
limited effect in the case of the ideal edge signal if f(x) is already close to
ymin for x < x0 − m and close to ymax for x > x0 + m. On the other hand,
clamping the offset stabilizes the resampling process even for f ′(x) → 0 since

any offset d̂(x) ∈ [−m,+m] will lead to approximately the same resampling

result f(x + d̂(x)) ≈ f(x) for f ′(x) ≈ 0.

4 Proposed Method for GPU-Based Up-Sampling

First we present our method for a gray-scale image f(x) with pixel data defined
at integer coordinates of x. As mentioned in Section 2 our method employs a dual
up-sampling scheme, i.e., the coordinates of the two new pixel positions between
the integer coordinates n and n+1 are n+ 1

4
and n+ 3

4
as illustrated in Fig. 1b. The

resampling of f(x) at these positions employs a bilinear interpolation; therefore,
it corresponds to the subdivision scheme of biquadratic B-splines [2]. Analogously
to the one-dimensional magnification method discussed in Section 3, we offset
the resampling positions x by a vector d̂(x) to sharpen undersampled edges by

resampling at f(x + d̂(x)).
For the two-dimensional generalization of the one-dimensional offset d(x) =

−σ2f ′′(x) / f ′(x) from Section 3, it is necessary to compute derivatives across
edges, i.e., in the direction of the gradient ∇f(x). Approximating the second
derivative across an edge by the Laplacian ∆f(x) [10] and choosing the normal-
ized gradient ∇f(x)/|∇f(x)| for its direction, the offset d(x) becomes:

d(x)
def
=

−σ2∆f(x)

|∇f(x)|2 ∇f(x). (7)

Additionally, the absolute value of the offset d(x) should be clamped, say to m:

d̂(x)
def
= min(m, |d(x)|) d(x)

|d(x)| . (8)

Alternatively, each coordinate of d(x) could be clamped between −m and +m
separately. Actual values of m should be approximately 0.25 because of the sam-
pling scheme depicted in Fig. 1b: For larger values of m, the translated sampling
positions might no longer be well separated, which leads to a susceptibilty to
noise. If m is significantly smaller, the sharpening will become ineffective.

The second free parameter of our method is the standard deviation σ of the
Gaussian filter simulating the blurring due to the observation process. This para-
meter controls the maximum scale of edges that are sharpened; i.e., the smaller
σ, the fewer (harder) edges are sharpened. For σ = 0 no edges are sharpened
and our method degenerates to the biquadratic B-spline filtering proposed by
Strengert et al. [2]. On the other hand, the larger σ, the more (softer) edges are
sharpened. It should be noted that for σ >∼ 1, anti-aliased and other intention-
ally soft edges might be sharpened. This should be avoided because it is likely
to result in aliasing artifacts such as staircasing of oblique edges.
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In general, an optimal value of σ does not exist; thus, it is preferable to let
users adjust σ between 0 and 1 according to their preferences. Another alterna-
tive might be to determine an appropriate σ from statistics about edges detected
at various scales: If no soft edges are detected, a large value of σ is less likely to
result in artifacts. If, however, no hard edges are detected, even a rather small
value of σ can result in artifacts due to too strong sharpening.

The approximations of the terms ∇f(x) and ∆f(x) in our proposed compu-
tation of d(x) are based on a low-pass filtered version of the image f(x), which
is denoted by f̃(x). Similarly to the technique presented by Strengert et al. [2],
the employed 3× 3 Bartlett filter can be implemented by a sequence of two con-
volutions with 2 × 2 box filters, each of which can be implemented by a single
bilinear image interpolation:

f̃
def
=

1

16





1 2 1
2 4 2
1 2 1



 ⊗ f =
1

4





1 1 0
1 1 0
0 0 0



 ⊗ 1

4





0 0 0
0 1 1
0 1 1



 ⊗ f. (9)

This smoothing is necessary for a numerical robust computation of ∇f(x) by
central differences at a new pixel position x:

∇f(x) ≈ 1

2

(

f̃
(

x + (1 0)>
)

− f̃
(

x − (1 0)>
)

f̃
(

x + (0 1)>
)

− f̃
(

x − (0 1)>
)

)

. (10)

The Laplacian operator for the computation of ∆f(x) is approximated by a
particular filter applied to f̃(x), which can be evaluated by means of a second
convolution with a Bartlett filter:

∆f(x) ≈ 1

4





1 2 1
2 −12 2
1 2 1



 ⊗ f̃(x) = 4





1

16





1 2 1
2 4 2
1 2 1



 ⊗ f̃(x) − f̃(x)



 . (11)

In summary, the computation of d(x) requires 7 (non-dependent) bilinear
image interpolations per new, resampled pixel (2 for f̃ per pixel of the original
image, i.e., 0.5 per pixel of the magnified image; 4 for ∇f(x); 0.5 for the Bartlett-

filtered f̃ ; and 2 for ∆f(x)). The clamped offset vector d̂(x) is then employed

for a dependent bilinear image interpolation f(x + d̂(x)), which determines the
pixel data of the magnified image. It is important that this last dependent image
interpolation accesses the unfiltered data f (instead of f̃); thus, the low-pass
filtering, which is necessary to compute smooth derivatives, does not lead to any
blurring of the magnified image.

As discussed in Section 2.4, the extension of this method to color images is
straightforward if luminance edges are detected and sharpened. For each pixel of
a color image fc, the luminance is computed and stored in a gray-scale image f .
This image is used to compute d̂(x) as described above. However, the dependent
image interpolation accesses the original color image fc in order to adaptively
up-sample this image. Results of a prototypical implementation of the proposed
magnification method are presented in the next section.
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5 Experiments and Results

Figure 3 presents some results of our adaptive image up-sampling algorithm.
Figure 3c shows a magnification by factor 4 and Figure 3f by factor 8, both for
the parameter settings σ = 0.7 and m = 0.25. For comparison, Figs. 3a and 3d
depict the original pixels with constant pixel colors, while Figs. 3b and 3e show
the magnification with biquadratic B-spline filtering [2], which corresponds to
our method for σ = 0.

We have implemented our method for GPUs that support the OpenGL ex-
tensions GL ARB fragment program and GL EXT framebuffer object using four
16 bit floating-point RGBA buffers. For zoom factors of 2, 4, 8, and 64 with a
target image size of one megapixel, our implementation for static color images
achieves frame rates of 256, 186, 172, and 165 frames per second (i.e., 3.9, 5.4,
5.8, and 6.1 milliseconds per frame) on an NVIDIA GeForce 6800 GT, which
was released in 2004. For the same problem, the more recent NVIDIA GeForce
8800 GTX performed at 1437, 1055, 961, and 876 frames per second (0.70, 0.95,
1.04, and 1.14 milliseconds).

(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison of three image magnification methods for the 512×512 Lena image
with magnification factor 4 in the top row and factor 8 in the bottom row: (a) and
(d) sample-and-hold, (b) and (e) biquadratic B-spline filtering (a special case of our
method for σ = 0), (c) and (f) our method for σ = 0.7 and m = 0.25.
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6 Conclusion

We have identified several important requirements for a GPU-based, adaptive
image magnification algorithm in order to design and implement an appropriate
method on programmable GPUs. In particular, our algorithm features gray-scale
invariance, is applicable to color images, and adapts interpolation weights for an
edge-directed image interpolation to avoid the blurring of edges. The method is
designed to exploit GPU-supported dependent image interpolation for the adap-
tation of bilinear interpolation weights; therefore, our implementation makes
good use of the rasterization performance offered by modern GPUs and pro-
vides full-screen image zooming in real time for almost all application scenarios
that include a GPU.

Apart from improving the proposed method and its parameters, long-term
future work should include research on GPU-based implementations of alterna-
tive image magnification algorithms, e.g., adaptive interpolation based on pixel
correlation [1, 4] and model-based image magnification methods [3].
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