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Abstract
We present an image-based algorithm for interactive rendering depth-of-field effects in images with depth maps.
While previously published methods for interactive depth-of-field renderingsuffer from various rendering artifacts
such as color bleeding and sharpened or darkened silhouettes, our algorithm achieves a significantly improved
image quality by employing recently proposed GPU-based pyramid methods for image blurring and pixel disoc-
clusion. Due to the same reason, our algorithm offers an interactive rendering performance on modern GPUs and
is suitable for real-time rendering for small circles of confusion. We validate the image quality provided by our
algorithm by side-by-side comparisons with results obtained by distributed ray tracing.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

In contrast to the infinitesimal aperture of an ideal pinhole
camera, real optical systems feature a finite-size aperture.
Thus, only points close to the focal plane, i.e., within the
depth of field, appear to be in focus while all points that
are not close to the focal plane are blurred, i.e., projected
to a circle of confusion on the image plane. Depth of field
does not only provide important depth cues but can also be
used to draw the attention of viewers to specific regions of
the image. Therefore, depth of field is an indispensable fea-
ture of photorealistic rendering and photography retouching.
However, rendering with depth of field at interactive frame
rates—or even in real time—without severely compromising
image quality is still a challenging task as discussed in detail
by Demers [Dem04].

Several of the previously published approaches to this
problem are discussed in Section2 while our algorithm is
presented in Section3. In a nutshell, our method employs
image post-processing techniques to achieve interactive ren-
dering performance for any (opaque) color image with a
depth map, i.e., an RGBZ image. This image is decomposed
into several sub-images according to the pixels’ depth. Each
of these sub-images is blurred uniformly since all pixels of
one sub-image feature similar depth values, which corre-
spond to circles of confusion of approximately the same size.

The blurred sub-images are then blended in back-to-front or-
der to compute the resulting image with depth of field.

One of the main features of our algorithm, is a new disoc-
clusion technique for pixels that are not visible in the origi-
nal pinhole image but contribute to the resulting image with
depth of field because of partial occlusions, i.e., they are vis-
ible from some points on the simulated lens of finite size
but not from its center. The second contribution is a com-
positing technique that avoids most rendering artifacts at lo-
cations where sub-images are separated. Another important
contribution of our work is the implementation of all the
aforementioned image processing techniques by GPU-based
pyramid methods that were recently published by Strengert
et al. [SKE06,KS07]. Thus, our approach is particularly well
suited as a post-process for interactive GPU-based renderers.

We validate the image quality of our results, which are
presented and discussed in Section4, by a comparison with
images computed by the ray tracerpbrt published by Pharr
and Humphreys [PH04], which is based on distributed ray
tracing [CPC84].

2. Background and Related Work

Instead of discussing prior work in chronological order, we
will first discuss the approaches that offer the best approx-
imation to physical depth of field and proceed with meth-
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Figure 1: A thin lens camera:(a) Construction of rays for
distributed ray tracing.(b) Construction of the circle of con-
fusion of a point.(c) Plot of the diameter of the circle of
confusion of a point as a function of its z coordinate.

ods that introduce additional approximations. Thus, meth-
ods suitable for high-quality off-line rendering are discussed
first, followed by lower-quality interactive and real-time ren-
dering techniques. The discussion in this section is limited to
background information and approaches that are actually re-
lated to our proposed method; more comprehensive surveys
of rendering techniques for depth of field are provided, for
example, by Demers [Dem04] and Barsky et al. [BHK∗03].

2.1. Distributed Ray Tracing

Distributed ray tracing using stochastic sampling was first
suggested by Cook et al. [CPC84] (and later patented
[CPC93]) for off-line rendering of effects such as gloss, soft
shadows, motion blur, and depth of field. For the latter, it
extends the pinhole camera model by allowing for rays that

enter the three-dimensional scene through any point of a thin
camera lens. In other words, a thin camera lens of finite size
is stochastically sampled.

Employing the approximations for thin lenses, the lens
model is reduced to the focal lengthf of the lens and its
radius f/(2N), whereN denotes the f-number, also called
focal ratio, relative aperture, or aperture number. (Note that
Cook et al. use the symbolF for the focal length andn for
the f-number.) Our camera model also includes the specifi-
cation of the distancezview between the lens and the view
plane, which is equal to the distance between the lens and
the image plane as the latter is positioned symmetrically to
the view plane with respect to the center of the lens, which is
also the origin of thez axis in Figure1a. The distance of the
focal planezfocal (or “focal distance,” not to be mistaken for
the focal lengthf ) is determined by the thin lens equation:

1
zview

+
1

zfocal
=

1
f
⇒ zfocal =

zview f
zview− f

. (1)

Alternatively,—and for the purpose of scene modeling often
more conveniently—zview can also be determined for spe-
cific values off andzfocal:

zview =
zfocal f

zfocal− f
. (2)

To render with depth of field using distributed ray trac-
ing, a point on the lens plane is chosen for each sample
point on the image plane. The ray from this point on the
image plane through the point on the lens is traced into the
three-dimensional scene as illustrated in Figure1a. While
the refraction of the ray at a physically modeled lens could
be computed by Snell’s law, the computation can be simpli-
fied for small, thin lenses with the help of geometric optics
as suggested by Cook et al. [CPC84].

For each sample point on the image plane, the algorithm
starts by computing the intersection of the traditional ray
through the center of the lens (corresponding to the posi-
tion of the pinhole) and the focal plane atzfocal. Then, the
ray from the chosen point on the lens plane through the pre-
viously computed point on the focal plane is traced into the
scene. This is the correct direction since all rays starting at
the same point on the image plane converge in the same point
on the focal plane; in particular, the ray through the chosen
sample point on the lens plane and the ray through the center
of the lens.

Pharr and Humphreys [PH04] present this algorithm but
implement it slightly differently: in the code of their ray
tracerpbrt [PH04], rays do not start on the lens plane but
on the view plane—which is identified with the near clip-
ping plane—; therefore, the intersection point of the view
plane with the pinhole ray through the center of the lens has
to be shifted to the intersection of the view plane with the ray
starting from the sample point on the lens plane. This shift is
given by the distance of the latter point to the center of the
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lensscaledby (zfocal−zview)/zfocal since both rays intersect
on the focal plane as illustrated in Figure1a. Unfortunately,
this scaling factor is missing in the source code ofpbrt,
version 1.02. However, the missing factor is very close to 1
if zview� zfocal and the factor is constant for all pixels of an
image, i.e., it corresponds to a (usually very small) scaling
of the lens radius.

Distributed ray tracing is based on stochastic sampling;
however, the latter is not restricted to ray tracing. As men-
tioned by Cook [Coo86], stochastic sampling can also be
applied to scan-line algorithms, e.g., “REYES” [CCC87], to
generate depth of field and motion blur effects.

2.2. Splatting

While distributed ray tracing approximates physical depth of
field very well, it has to trace many rays in a potentially com-
plex scene for each pixel of the image; thus, the algorithm is
most suited for off-line, non-interactive rendering. Less ac-
curate but faster approaches to rendering with depth of field
are based, for example, on splatting [KŽB03,PC82,Shi94].
In the context of GPU programming this kind of technique
is sometimes characterized as “scattering.” Since points that
are not close to the focal plane appear blurred on the image
plane, these blurred projections may be (pre-)computed and
splatted into the framebuffer. In principle, this approach can
also provide a good approximation to physical depth of field
if all points—including occluded points—are splatted with
correct depth blurring. Ǩrivánek et al. [KŽB03] present such
a system for point-based surfaces. However, the required in-
formation about (partially) occluded points is often unavail-
able; in particular, because many culling and deferred shad-
ing techniques are designed to skip the computation of this
data in order to increase the rendering performance. There-
fore, almost all approaches to depth-of-field rendering at in-
teractive frame rates are based on post-processing color im-
ages with depth maps; e.g., RGBZ images stored in color
framebuffers with depth buffers. In this case, the depth co-
ordinatezpoint is usually transformed before it is stored in a
depth buffer. For example, the transformed depthz′point could
be defined as

z′point
def
=

(

zpoint−znear
)

zfar

(zfar−znear)zpoint
. (3)

The inverse relation for computingzpoint from z′point is:

zpoint =
zfarznear

zfar−z′point(zfar−znear)
. (4)

Splatting pixels of a previously computed image with
depth map is an important post-processing method for ren-
dering depth of field, which is characterized as a “forward-
mapped z-buffer technique” by Demers [Dem04]. In fact,
the first approach to depth of field in computer graphics
by Potmesil and Chakravarty [PC82] employs this idea.
Potmesil and Chakravarty also present a computation of the

diameterc of the circle of confusion of a point at distance
zpoint that is out of focus; i.e., not on the focal plane atzfocal:

c
def
= cz→∞

∣

∣zpoint−zfocal
∣

∣

zpoint
with cz→∞

def
=

f
N

zview

zfocal
. (5)

Figure 1b illustrates a purely geometric construction of
the circle of confusion while previous publications [CPC84,
PC82] present a derivation employing laws of geometric op-
tics. In Figure1b, the point atzpoint is projected to the image
plane by intersecting this plane with a ray from the point at
zpoint to the center of the lens. All rays starting from the pro-
jected point on the image plane at−zview through any point
on the lens plane converge in the same point on the focal
plane at distancezfocal. Therefore, the lens of radiusf/(2N)
is projected to a disk of radiusrpoint around the point atzpoint
with

rpoint
def
=

f
2N

∣

∣zpoint−zfocal
∣

∣

zfocal
. (6)

This disk of radiusrpoint is projected to the image plane—or
in our case of Figure1b equivalently to the view plane—
by following rays through the center of the lens. Thus, the
diameter of the projected circle atzview is equal to

2rpoint
zview

zpoint
(7)

which is equal to the diameterc of the circle of confusion
defined in Equation (5) as can be shown with the help of
Equation (6).

Note that the diameterc is specified in the same units as
world coordinates. It can be converted to a length in pixels
by multiplying it with the ratio of the image heighthpix in
pixels divided by its heighth in units of world coordinates.

While an improvement of the splatting algorithm by
Potmesil and Chakravarty has been presented by Shinya
[Shi94], it should be noted that all post-processing ap-
proaches to depth-of-field rendering have to result in a worse
approximation than distributed ray tracing as their input data
is insufficient since it does not include any information about
partially occluded points that are not visible in the pinhole
image.

2.3. Pre-Filtering

In general, most graphics hardware architectures—or more
specifically, GPUs—are less suited for splatting approaches
(i.e., scattering) than for techniques based on image interpo-
lation or texture lookup operations (i.e., gathering). There-
fore, the most efficient GPU implementations of depth-
of-field effects employ hardware-supported filtering of the
pinhole image, e.g., by mip-mapping. To this end, several
blurred versions of the pinhole image with filter kernels of
different sizes are generated and stored in texture images.
Then, the diameter of the circle of confusion is computed
for each pixel according to its depth, and the corresponding

c© The Eurographics Association and Blackwell Publishing 2007.
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blurred texture image is interpolated to determine the color
of the resulting image with depth of field. This technique
was first published by Rokita [Rok93] and is particularly
well suited for GPU-based approaches as noted by Demers,
who characterizes it as a “reverse-mapped (that is, texture-
mapped) z-buffer technique” [Dem04].

Most variants of this method provide a rather coarse
approximation of depth-of-field effects since they do not
only suffer from the missing partially occluded points but
also show several forms of color bleeding because depth is
not taken into account by the pre-filtering. Therefore, sev-
eral improvements to this technique have been published
[Dem04,HSC∗05,MvL00] and also patented [BLBD05]. Of
particular interest in the context of our work is the “fast
approximation” by Mulder and van Liere [MvL00] since it
computes Gaussian image pyramids for an efficient blurring
of the pinhole image. Unfortunately, none of the interactive
post-processing techniques solves the problem of partially
occluded points.

2.4. Blurring of Sub-Images

Barsky et al. [Bar04, BTCH05] have presented a non-
interactive system, which avoids color bleeding by first de-
composing the pinhole image into sub-images (correspond-
ing to depth intervals in the depth map) before applying
the blur filters. In this case, the problem of missing par-
tially occluded points manifests itself in dark silhouettes
of the sub-images. Moreover, the decomposition into dis-
crete sub-images results in rendering artifacts at the loca-
tions where sub-images are separated as they are blurred in-
dependently. Barsky et al. address both problems by extend-
ing (i.e., extrapolating) sub-images with the help of rather
complex image processing techniques. Unfortunately, this
algorithm does not appear to be suitable for interactive ren-
dering. While Barsky et al. [BTCH05] do not provide tim-
ings for their software implementation, Barsky [Bar04] re-
ports rendering times of a few minutes per frame for a simi-
lar system.

In order to achieve an interactive rendering performance
on GPUs, it is necessary to accelerate both, the blurring of
sub-images and the disocclusion of partially occluded pix-
els. To this end, our approach employs GPU-based pyrami-
dal image processing techniques suggested by Strengert et
al. [SKE06, KS07] to efficiently extend sub-images of the
pinhole image in the case of disocclusions, and to blur the
resulting sub-images before compositing them in the result-
ing image with depth of field. While our algorithm features a
similar structure as the work by Barsky et al., the algorithm
and the implementation details differ drastically to allow for
an interactive rendering performance on GPUs.

Another image blurring approach to depth of field is
based on anisotropic diffusion of the pinhole image and
was first published by Bertalmió et al. [BFS04]. Unfortu-
nately, this approach will inevitably show artifacts that can

only be alleviated by decomposing the pinhole image into
sub-images according to its depth map (e.g., one foreground
and one background sub-image) and processing these sub-
images separately. However, to guarantee the same image
quality, it is necessary to decompose the pinhole image into
as many sub-images as required by the algorithm presented
by Barsky et al. [BTCH05]. In this case, the uniform blurring
of each sub-image is considerably more efficient.

3. Proposed Depth-of-Field Rendering

Similarly to the work by Barsky et al. [BTCH05], our pro-
posed method decomposes an input image according to its
depth map into sub-images (denoted byI (i) with integer
indices i) and processes, i.e., blurs, these sub-images sep-
arately before they are blended from back to front (corre-
sponding to descending indicesi) to form the resulting im-
age with depth of field. The overall data flow is illustrated
in Figure2. Each sub-image is initially set to the input pin-
hole image (Figure2a) and its depth map (Figure2b). Then,
the following five steps are performed on each of the sub-
images:

• culling of foreground pixels (Figure2c),
• disocclusion of culled pixels (Figure2d),
• matting according to the pixels’ depth (Figure2e),
• blurring (Figure2f), and
• blending to accumulate the resulting image (Figure2h).

In the remainder of this section, each of these steps is dis-
cussed in more detail.

3.1. Culling of Foreground Pixels

The processing of sub-images starts by computing a uniform
blur radius for each sub-image as specified in Section3.4.
The particular radii are carefully chosen to achieve the op-
timum performance of the pyramidal blurring method. In
other words, the blurring method dictates the blur radius

r(i)
pix for each sub-imageI (i). This blur radius is identified

with a uniform radius of the circle of confusion that approx-
imates the circle of confusion of all pixels of sub-imageI (i).
However, to determine which pixels of the input depth map
should contribute to sub-imageI (i), a depth coordinatez(i)

has to be computed for each sub-image. Using Equation (5)

the radiusr(i)
pix can be related toz(i):

r(i)
pix = r(z→∞)

pix
|z(i)−zfocal|

z(i)
with r(z→∞)

pix
def
=

hpix

h
cz→∞

2
(8)

wherehpix denotes the image height in pixels andh the same
height in units of world coordinates. By solving this equation
for z(i), the depth coordinate of sub-imageI (i) can be com-

puted as a function ofr(i)
pix:

z(i)
def
=

zfocal

1+ r(i)
pix/r(z→∞)

pix

for i < 0, (9)
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Figure 2: Data flow in our method:(a) input pinhole image,(b) input depth map,(c) sub-images after culling of foreground
pixels,(d) sub-images after disocclusion of culled pixels,(e) sub-images after matting,(f) sub-images after blurring,(g) ray-
traced reference image,(h) blended result of our method. In (c)–(f) only the opacity-weighted RGB components of the sub-
images I(5) (top) to I(−2) (bottom)are shown; all sub-images are embedded in an image of a larger size than the input image.

c© The Eurographics Association and Blackwell Publishing 2007.



M. Kraus & M. Strengert / Depth-of-Field Rendering by Pyramidal Image Processing

z(0) def
= zfocal, (10)

z(i)
def
=

zfocal

1− r(i)
pix/r(z→∞)

pix

for i > 0. (11)

For i < 0, z(i) can be computed for anyr(i)
pix while for i > 0—

i.e., in the background of the focal plane—z(i) is only well

defined forr(i)
pix < r(z→∞)

pix . This is to be expected because
c(z) is bound from above bycz→∞ as illustrated in Fig-

ure1c. However, sincer(i)
pix is independent ofr(z→∞)

pix , there

is always an indeximax such thatr( j)
pix ≥ r(z→∞)

pix for all

j > imax; thus, the depth coordinatesz( j) are ill-defined. In
most cases, the corresponding sub-imagesI ( j) can be ig-
nored since their blur radius is too large for any of the pixels
of the input image; thus, these sub-images are necessarily
empty and are set to transparent black. Note thatimax should

be chosen such thatr(imax−2)
pix < r(z→∞)

pix < r(imax−1)
pix . There-

fore, z(i−1), z(i), andz(i+1) might be ill-defined. This, how-
ever, does not affect the culling of foreground pixels which
only depends onz(i−2) as explained next.

Once the depth coordinatesz(i) of all sub-images are com-
puted, the actual culling of foreground pixels can be per-
formed. Due to the particular matting function discussed in
Section3.3, all pixels with depth coordinatesz< z(i−2) are
considered foreground pixels for sub-imageI (i). These pix-
els are culled, i.e., set to transparent black, while all other
pixels of I (i) are set to the opaque color of the input image
as illustrated in Figure2c.

3.2. Disocclusion of Pixels

The color of culled foreground pixels (i.e., transparent black)
will bleed into regions of actual pixels of a sub-image when
it is blurred as discussed and illustrated by Barsky et al.
[BTCH05]. In our method, this would result in semitrans-
parent silhouettes around culled foreground objects. In order
to avoid these artifacts, the culled foreground pixels have to
be “disoccluded;” i.e., color and depth of culled pixels have
to be interpolated from the surrounding pixels that have not
been culled.

To this end, we employ the GPU-based pyramidal interpo-
lation method for scattered pixel data published by Strengert
et al. [SKE06]. Interpolated colors are only assigned to
transparent pixels, i.e., the previously culled foreground pix-
els. Additionally, new depth coordinates are interpolated for
these pixels in order to enable the matting function, which is
discussed next, to distinguish disoccluded pixels that should
be part of a particular sub-image from disoccluded pixels
that belong to its background and should therefore not con-
tribute to the specific sub-image.

As a result of the disocclusion, all pixels of sub-image
I (i) are set to an opaque color, which is either the pixel’s

color of the input image or an interpolated color for culled
foreground pixels. Examples are presented in Figure2d.

3.3. Matting of Sub-Images

In this work, “matting” refers to the computation of an opac-
ity for all pixels included in a sub-image before the sub-
image is blurred. The opacity of all pixels that do not belong
to this sub-image is set to zero. As the decision whether a
pixel is included in a sub-image only depends on its depth
coordinatez, we specify the opacity by the matting func-
tion ω(i)(z) ∈ [0,1], which is illustrated in Figure3. The ba-
sic shape has to be adapted in some special cases as dis-
cussed below. Since opacity-weighted colors are employed,
the matting functionω(i)(z) is also multiplied to all color
components; thus,ω(i)(z) may also be considered a “weight-
ing function.” The effect of a weighted selection of pixels
within a certain depth range is illustrated in Figure2e. While
the simple piecewise-linear shape ofω(i)(z) was chosen to
accelerate its evaluation in a GPU-based fragment program,
there are some important features, which are discussed in
detail next since they are crucial to avoid rendering artifacts.

First of all, the matting function is applied before blur-
ring. This order is plausible if the pixels of the unblurred
sub-image are considered sources of splats, which contribute
to multiple sub-images as specified by the matting function.
In fact, the matting functionω(i)(z) cannot be evaluated after
blurring the sub-image because splats of different depth co-
ordinates can overlap; thus, there is no longer a unique depth
coordinatez for each pixel.

Secondly, the matting function is usually a continuous
function to guarantee smooth transitions of pixels—again
considering them as the sources of splats—between multiple
sub-images as their depth coordinates (or the focal distance
or the lens radius) vary.

Thirdly, the integral of the matting function is not normal-
ized. In fact, most pixels of the input image will contribute
to three sub-images with a summed weight (or opacity) of
the contributions of 2. This is necessary to address the dis-
cretization problem discussed by Barsky et al. [BTCH05],
i.e., to generate blurred but completely opaque surfaces that
cross multiple sub-images. In some sense, our solution ex-
tends sub-images in the direction of the negativez axis and
therefore includes additional pixels of surfaces that cross
multiple sub-images while surfaces are not extended if there
are no further pixels within a certain depth range. On the
other hand, Barsky et al. address the problem by extend-
ing sub-images in screen space and therefore require more
expensive image analysis techniques. The additional opac-
ity added by our method constitutes no problem since the
blending of opacity-weighted colors discussed in Section3.5
guarantees that a color of any opacity can be blended over an
opaque pixel of the same color without changing it. An anal-
ogy from everyday life is to put an additional layer of the

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 3: The matting functionω(i)(z) for sub-image I(i)

with exemplary depth coordinates z(i−2) to z(i+1).

same paint onto an already opaquely painted surface with-
out changing the color of the surface.

As mentioned above, the matting function has to be
adapted in some cases. For instance, the minimum indeximin
and the maxium indeximax of sub-images might be fixed
to guarantee an almost constant frame rate. In this case,
the front ramp ofω(imin)(z) should be replaced by a con-
stant plateauω(imin)(z) = 1 for z< z(imin) in order to include
all foreground pixels in the frontmost sub-image. The back
ramp ofω(imax)(z) should be modified analogously. Further-
more, the same modifications of the back ramp are applied if
z(i) or z(i+1) are ill-defined. Forω(imax)(z) we also replace the
front ramp by a step function atz(imax−2) to avoid semitrans-
parent silhouettes of objects inI (imax−1) in front of I (imax).
While the discontinuous step function in the modified mat-
ting function results in popping artifacts in animations, the
semitransparent silhouettes are more objectable in static ren-
derings. In most cases, however, both kinds of rendering ar-
tifacts are avoided by the mentioned choice ofimax such that

r(imax−2)
pix < r(z→∞)

pix < r(imax−1)
pix .

3.4. Blurring of Sub-Images

As illustrated in Figure2f, the RGBA components of a
sub-image are blurred by a pyramid method presented by
Strengert et al. [SKE06] with the improvement of a 4× 4
box analysis filter discussed by Kraus and Strengert [KS07].
For sub-imageI (i) the number of reduce (and expand) oper-
ations in this pyramid method is chosen to be|i|. Since each
level of the image pyramid corresponds to a scaling by 2, the

blur radiusr(i)
pix is proportional to 2|i|−1 for i 6= 0 while there

is no blurring fori = 0. To estimate the constant factor, we
compared the effect of the pyramidal blurring method with a
convolution by a Gaussian filter of standard deviationσpix.
The best fit forσpix varies between 0.8 and 0.9 depending on
the screen position due to the structure of the image pyramid.
Therefore, we estimate the blur radius by

r̃(i)
pix ≈ 0.85×2|i|−1 for i 6= 0 and ˜r(0)

pix = 0. (12)

Within our proposed method, however, this approxima-

tion underestimates the blurring. This is due to the particular
matting discussed in Section3.3because a pixel that features
a depth coordinate less than but close to the depthz(i) of
sub-imageI (i) also contributes to the sub-imagesI (i−1) and
I (i+1). Either the sub-imageI (i−1) or the sub-imageI (i+1)

features a blur radius that is twice as large asr(i)
pix (and even

larger for i = 0). Although the weight of the contributions
to these images are reduced by the matting function, the
blended result will visually resemble a considerably stronger

blur radius than suggested by ˜r(i)
pix. As a coarse approxima-

tion we estimate this effect by a factor of 2.0. Thus, we set

the “perceived” blur radiusr(i)
pix of sub-imageI (i) for our

method to:

r(i)
pix

def
= 2.0×0.85×2|i|−1 for i 6= 0 and r(0)

pix
def
= 0. (13)

This definition is employed in the computation ofz(i), which
is described in Section3.1.

3.5. Blending of Sub-Images

To composite all blurred sub-images in the output image

Idof
RGB, the color components of a sub-imageI (i)RGB have to be

attenuated by the opacity componentsI ( j)
A with j < i of all

sub-images in front of the sub-imageI (i):

Idof
RGB

def
=

imax

∑
i=imin

I (i)RGB

i−1

∏
j=imin

(

1− I ( j)
A

)

. (14)

This equation is implemented by blending each blurred sub-
image “over” a color image buffer̂IRGB, which is initially
cleared to black before it is used to accumulate the blurred
sub-images:

ÎRGB← I (i)RGB+
(

1− I (i)A

)

ÎRGB. (15)

The RGB color components of sub-imageI (i) must not be

multiplied by its opacity componentsI (i)A since the blur-
ring discussed in the previous section implicitly computes
opacity-weighted colors because color and opacity compo-
nents are blurred simultaneously.

After all sub-images have been processed, the image
buffer ÎRGB stores the resulting output imageIdof

RGB as illus-
trated in Figure2h. In Figure2g a ray-traced reference image
is provided for a side-by-side comparison with our results,
which are discussed next.

4. Discussion and Results

We validate the visual quality of images generated by our
method with the help of side-by-side comparisons with ren-
derings of the same scene by the ray tracerpbrt by Pharr
and Humphreys [PH04]. In order to ensure a fair compari-
son, we employed the very samepbrt scene that is used to
illustrate rendering with depth of field in Figures 6.8 and 6.9
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Figure 4: Comparison of renderings with depth of field generated bypbrt (left column)and images computed by our method
(right column)for four settings of thepbrt parameterlensradius: 0.001, 0.003, 0.01, and0.03 (from top down).

of the book aboutpbrt [PH04]. The formal scene descrip-
tion is available on the CD-ROM accompanying this book.

The scene was first rendered bypbrt simulating a pin-
hole camera as depicted in Figure2a. The depth map for
this image was also computed as shown in Figure2b. This
data constitutes the input of our method, which allows us to
enhance the pinhole image with depth-of-field effects for a
large range of focal distanceszfocal and lens radiif/(2N);
examples are presented in the right column of Figure4. For
comparison, we also show the resulting images computed
by pbrt in the left column of Figure4. As discussed in
Section3.4, our method approximates a convolution with
a Gaussian filter corresponding to a Gaussian distribution
of samples on the lens plane around the center of the lens.

Unfortunately,pbrt, version 1.02, only provides a uniform
sampling of the lens disk, which results in a different visual
effect, known as “Bokeh” in photography. Since these dif-
ferences are of no concern in our case, we implemented a
Gaussian distribution of samples on the lens plane. To this
end, the uniform sampling of the lens implemented by the
function call

ConcentricSampleDisk(sample.lensU,
sample.lensV, &lensU, &lensV);

on page 270 of thepbrt book has to be replaced by:

GaussianSampleDisk(sample.lensU,
sample.lensV, &lensU, &lensV);

which calls our implementation of a Box-Muller transform
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Figure 5: Comparison of a rendering with depth of field generated bypbrt (bottom, left)and an image computed by our
method(bottom, right). The latter is based on a pinhole image generated bypbrt (top, left)and its depth map(top, right).

in polar form [BM58]. We added its definition to thepbrt
file mc.cpp:

COREDLL void GaussianSampleDisk(float u1,
float u2, float *x, float *y) {

float r = sqrtf(fabsf(2.0f *
(u1 > 0.0f ? logf(u1) : 0.0f)));

float theta = 2.0f * M_PI * u2;

*x = r * cosf(theta);

*y = r * sinf(theta);
}

Our code modifications implicitly change the meaning of the
pbrt parameterlensradius from the radius of a finite
disk (corresponding to the lens radiusf/(2N)) to the stan-
dard deviationσ of a Gaussian distribution.

Apart from the image dimensionwpix×hpix and the depth
coordinateszfocal, znear, and zfar, our implementation re-

quires the specification ofr(z→∞)
pix , which can be computed

in terms of the parameters specified inpbrt scene descrip-
tion files:

r(z→∞)
pix

def
=

hpix

h
cz→∞

2
=

hpix

2zfocaltan
(

γfovy/2
)

f
2N

. (16)

With these parameters, our method allows us to com-
pute similar depth-of-field effects from a pinhole image
as generated bypbrt’s distributed ray tracing. Of course,
we still cannot hope to generate identical results since our
method is based on image post-processing of 2D images
while distributed ray tracing has access to the actual three-
dimensional scene geometry. In fact, the side-by-side com-

parisons in Figures4 and5 indicate that the blur radiusr(i)
pix

is still underestimated by our computation discussed in Sec-
tion 3.4—resulting in too much blur compared to the ref-

erence images. Nonetheless, the visual similarity to the ref-
erence images appears to be sufficient for many—in partic-
ular interactive—applications. Moreover, hardly any of the
typical rendering artifacts of interactive depth-of-field algo-
rithms occur; in particular, there are no darkened silhouettes
around objects and almost no incorrect color bleeding ex-
cept for very large lens radii. However, in many cases an
antialiased input image and/or depth map will result in arti-
facts due to the interpolation of depth coordinates at silhou-
ettes of objects; thus, in general it is preferable to provide
our method with non-antialiased input images.

We tested our OpenGL implementation on a Windows
XP system with an NVIDIA GeForce 7900 GTX GPU
equipped with 512 MB. All sub-images were embedded in
1024×1024 images and processed in four half-float RGBA
framebuffer objects of size 1800× 1024. The example de-
picted in Figure2 (also depicted in the third row of Figure4)
required the processing of 12 sub-images (I (5) to I (−6)) and
rendered in about 70.4 ms (14.2 fps). Smaller circles of con-
fusion result in the processing of fewer sub-images; for ex-
ample, the image depicted in the first row of Figure4 re-
quired 6 sub-images (I (2) to I (−3)) and rendered in about
34.5 ms (29 fps).

5. Conclusion and Future Work

We have demonstrated that high-quality rendering of depth-
of-field effects is within the reach of GPU-based implemen-
tations of the sub-image blurring approach, which was origi-
nally proposed by Barsky et al. [BTCH05]. Furthermore, we
successfully implemented the required image operations—
in particular, blurring and disocclusion of pixels—by pyra-
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mid methods to achieve a rendering performance that is suit-
able for real-time rendering in the case of not too large
image sizes and small circles of confusion. Many applica-
tions could benefit from this technique; for example, in-
teractive photography retouching, virtual reality renderers,
games, etc.

Future work includes performance optimizations of our
prototypical implementation, research on the perceived blur-
ring performed by our method, and on possibilities to im-
plement approximations to non-Gaussian filters; for exam-
ple, by replacing the pyramidal blurring by alternative meth-
ods based on infinite impulse response filters or fast Fourier
transforms.
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