
Real-Time Editing, Synthesis, and Rendering
of Infinite Landscapes on GPUs

Jens Schneider, Tobias Boldte, Rüdiger Westermann

Computer Graphics & Visualization Group
Technische Universität München

Boltzmannstrasse 3, 85748 Garching
Email: {jens.schneider, westermann}@in.tum.de

Abstract

Recent advances in algorithms and graphics hard-
ware have opened the possibility to render large ter-
rain fields at interactive rates on commodity PCs.
Due to these advances it is possible today to inter-
actively synthesize artificial terrains using procedu-
ral descriptions. Our paper extends on this work by
presenting a new GPU method for real-time editing,
synthesis, and rendering of infinite landscapes ex-
hibiting a wide range of geological structures. Our
method builds upon the concept of projected grids
to achieve near-optimal sampling of the landscape.
We describe the integration of procedural shaders
for multifractals into this approach, and we propose
intuitive options to edit the shape of the resulting
terrain. The method is multi-scale and adaptive in
nature, and it has been extended towards infinite and
spherical domains. In combination with geo-typical
textures that automatically adapt to the shape being
synthesized, a powerful method for the creation and
rendering of realistic landscapes is presented.

1 Introduction and Related Work

Based on ideas on the organizing principles of nat-
ural phenomena [13], there exists at least empirical
evidence on fractals in geological structures such
as landscapes, rivers and coastlines. Such struc-
tures obey the typical fractional Brownian or 1/fβ

”motion”, and they can thus be modelled as a ran-
dom walk exhibiting certain stochastic properties.
Based on this observation a number of different
approaches for fractal terrain synthesis have been
suggested over the last decades. For a thorough
overview we refer to [5]. Today, fractal models are
most commonly generated using Fourier filtering

[25], midpoint displacement [14] or noise synthesis
[20]. As the approach used here is of the latter type,
we will briefly describe the underlying concept.

Perlin [20, 21] introduced a synthetic, functional
fractal model as a summation of several, appro-
priately scaled-down copies of a band-limited,
stochastic noise function. The Rescale-and-Add
method by Saupe [26, 27] extends the heuristic
formulas of Perlin to a full fractal model. It
allows a 2D fractal displacement noise with locally
varying fractal dimension (a measure of the surface
roughness) to be created by summing vector-
valued Perlin noise functions at different scales
and frequencies. Simultaneously Musgrave [16]
introduced noise synthesis to enable local control
of fractal dimension and other parameters of the
generating random process. As these methods use
multiple scalings to locally control the statistic
properties of the random process underlying the
fractal synthesis, the type of fractals they generate
is referred to as multifractals.

The advantages of the functional approach are:
1 The function can be evaluated locally at

only those locations required during render-
ing, enabling efficient terrain synthesis on pro-
grammable graphics hardware (GPUs) [7, 8].

2 The level of detail of the terrain being gener-
ated can be adapted to the local image resolu-
tion, thus anti-aliasing the fractal [19].

3 All parameters of the function may vary lo-
cally over the object domain.

4 The basis functions underlying the fractal syn-
thesis process can be modulated to adapt lo-
cally to particular design features.

Due to the high degree of sophistication to which
functional approaches for fractal modelling have
developed, it is by now possible to create landscapes



at impressive realism, including many different ge-
ological formations as well as terrain specific tex-
tures [2, 18]. While being acknowledged as a fine
technique as such, the most demanding part is to
deal with the ”parametric nightmare” of the syn-
thesizer’s high dimensional feature space. So far,
fractal landscape editors either restrict the designers
flexibility or overwhelm the user with a plethora of
parameters. An embedding of these parameters into
a tight visual feedback loop such that the user can
directly monitor the effects of editing actions is not
yet available. Such an embedding allows simulating
many kinds of different landscapes in an intuitive
way, and helps to match the modelled scenery with
the designer’s expectations while shortening both
the design process and time to market. Especially
in applications like computer games or computer-
animated films this is of particular interest.

Techniques that are open to this kind of inter-
action can also be directly integrated into virtual
environments to continuously modify outdoor sce-
narios based on context. By modifying landscapes
depending on external parameters like game status,
player’s expertise, or difficulty, the immersiveness
of such scenarios can be increased significantly.
Even more, they allow the user to create its own
synthetic worlds that can be altered directly at run-
time by individual and context-specific guidelines
(similar to the Populous series of games [15]). As
it is impossible to pre-compute the per se infinite
variety of different structures, parameterized eval-
uation methods enabling continuous transitions be-
tween different formings have to be considered.

The reason why the aforementioned scenario has
not yet become reality is twofold. Firstly, terrain
generation methods featuring arbitrary local control
of surface properties are in general too expensive to
be used for interactive synthesis of high-resolution
terrains. Secondly, the creation of synthetic images
of dynamic terrain models is time- and memory-
consuming, and is hence not suited for use in in-
teractive environments without further ado. For in-
stance, ray-tracing of procedural fractal height val-
ues [17, 18] is far from interactive. But even for
non-procedural terrains, ray-tracing and scanline al-
gorithms [1, 4] require static height fields to har-
ness their full potential. Since scanline algorithms
also involve streaming renderable primitives to the
GPU, the performance is considerably limited due
to bandwidth requirements.

1.1 Contribution

Figure 1: A fractal landscape generated by our method.
Note the striking geological features and geo-typical tex-
tures. On recent GPUs, synthesis and rendering on a
1280×1024 viewport runs at 70 fps.

In this paper, we present a real-time fractal
terrain synthesizer. The algorithms we propose are
designed with respect to the aforementioned re-
quirements. They are combined into a WYSIWYG
interface to allow the intuitive design of highly
detailed terrain models. Our approach involves two
distinct procedures: editing and rendering, where
the synthesis of the landscape is directly integrated
into the rendering procedure. This avoids any
intermediate data structures for storing height
values other than the ones needed to form the final
image. Editing and rendering involve a number of
novel techniques and they provide many features
not available in previous methods.

Editing: Because the user interacts directly with
the same representation used to form the final im-
age, the fractal’s parameter space can be managed
conveniently. We use painting and brushing on
gray-scale images representing the fractal’s basis
functions for editing. Against common knowledge,
editing basis functions can be highly intuitive, but
only if coupled with immediate visual feedback.
This approach turns out to be an amazingly pow-
erful paradigm enabling multi-resolution terrain
editing via the frequency bands of basis functions.

Rendering: We exploit the functional nature of
the terrain, which allows for point-wise synthesis
at arbitrary positions. Rather than performing the
synthesis as a distinct and decoupled procedure,
it is tightly integrated into the rendering process,



such that both steps can be implemented on the
GPU. This exploits parallelism and memory band-
with while limiting bus transfer to compact and
local editing updates. We utilize a projected grid
approach to minimize both the number of point
evaluations and to achieve near-optimal sampling.
For this, a screen-space aligned grid is projected
onto the fractal’s surface by deforming grid points
out of the base domain. Anti-aliasing is performed
for each point by computing the appropriate level
of fractal detail. To further increase the landscape’s
realism, geo-typical materials are synthesized by
example (see Figure 1). For each point of the
projected grid, so-called proto-textures [2] are com-
bined, either by using a slope/height parameterized
weighting function [3], or using editable weights.

The remainder of this paper is organized as fol-
lows. In Section 2.1 we describe the theory behind
noise synthesis. We then present the WYSIWYG
interface used for fractal editing in Section 3. In
Section 4 we discuss synthesis and rendering of the
terrain on the GPU. Finally, we conclude the paper
and discuss directions for future work.

2 Multifractal Terrain Synthesis

In the following we will briefly review the theoreti-
cal basis behind noise synthesis and stochastic frac-
tals. The functional approach described here is well
suited for evaluation on recent GPUs, as it requires
only simple arithmetic operations and locally con-
tiguous texture access.

2.1 The Rescale-and-Add Method

Figure 2: Noise synthesis using Equation (1) with vary-
ing parameters. The three image pairs illustrate the mean-
ing of varying lacunarity, Hurst exponent, and number of
octaves (the respective values are larger in the right im-
ages).

A random 2D grid of N(0,1) Gauss-distributed
numbers with zero mean and variance equal to one,
called the noise lattice, is generated first and stored
in a 2D texture map. On the GPU this grid is ex-
tended by means of bi-linear interpolation and tex-

ture repetition into a C1 continuous, periodic func-
tion, called noise [20] or, more accurately, auxiliary
function S(~x) [26]. A 2D fractal is generated by
superposition of several appropriately scaled-down
copies of the auxiliary function:

H(x1, x2) = H(~x) =

k1
X

k=k0

1

rkH
S(rk~x) (1)

The evaluation can be done for any arbitrary point
independently of its neighbors. It can be efficiently
performed in a pixel shader on the GPU that is pa-
rameterized with the point coordinates ~x, the lacu-
narity r, and the Hurst exponent H = 3−D, where
D is the fractal dimension of the surface. Equipped
with these parameters, the shader computes frac-
tal height values using multiple evaluations (texture
fetches) of the noise lattice. The meaning of the dif-
ferent parameters is illustrated in Figure 2.

The summation limits are calculated in accor-
dance with the smallest and largest structures (fre-
quencies) desired at a certain position of the terrain.
k0 determines the global fractal structure and is cal-
culated only once for a sequence, while k1 defines
the smallest level of visible detail (high frequency
information), and is usually changed from point to
point depending on the perspective distortion. In
Section 4 we will explicitly discuss how to select
k1 in a way such to avoid aliasing artifacts.

2.2 Domain Warping

The Rescale-and-Add method creates convincing
terrain fields on medium scales. On larger scales,
however, the result is too homogeneous to appear
realistic. The reason is that the auxiliary function
S(~x) is designed to be stochastically invariant un-
der rotation, translation, and scaling. This results in
very regular and artificially looking geo-structures.

A more natural appearance can be achieved by
using domain warping. Instead of synthesizing the
terrain over the domain D ⊆ R

2, a continuous
re-parametrization Φ : D 7→ D is utilized, on
which the synthesis is then performed. In [5] such a
mapping was suggested to simulate breaking waves
on a 2D-only domain embedded in 3D. To over-
come the homogeneous structure of the terrain we
suggest roughness- and height-dependent rotation
and translation of the domain. This breaks up the
stochastic invariances of the basis functions in a
controlled and restricted way.



We therefore assume that each domain coordi-
nate (x1, x2) is transformed by a general rota-
tion/translation matrix (where φ is the angle of ro-
tation and ~t the translation vector):

„

x′

1

x′

2

«

=

„

cos φ − sin φ t1
sin φ cos φ t2

«

·

0

@

x1

x2

1

1

A

To avoid evaluations of trigonometric functions
we represent the rotation by a unit vector ~r =
(cos φ, sin φ):

„

x′

1

x′

2

«

=

„

r1 −r2 t1
r2 r1 t2

«

·

0

@

x1

x2

1

1

A

Observing that geological structures and formations
in nature vary depending on surface height [16], we
introduce a height-dependent roughness Ri = R0 ·
Hi, where R0 := 1/(r · H). Hi is the height of
a surface point after evaluation of the first i terms
of Equation (1), i.e., the height after accumulating
octave i. To add domain warping to the synthesis
process we apply a different mapping depending on
Ri for every octave i:

~ri+1 = ~c1 · Ri + ~c2 + ~ri

~ti+1 = ~c3 ·
Hi

Ri

The rotation vector ~ri+1 is re-normalized after ev-
ery iteration. To perform the above updates, three
additional constant 2D vectors ~c1, ~c2, and ~c3 are
introduced. ~c1 controls the amount of rotation de-
termined by the current roughness, while ~c2 per-
forms a constant update. The third vector ~c3 con-
trols the influence of the current height and rough-
ness on the translation. The basic idea is that the
amount of rotation increases with roughness, result-
ing in turbulent structures, similar to cooled-down
lava, while stretching those regions more signifi-
cantly that are less rough or at higher altitudes to
additionally make them appear washed out.

Even though this procedure comes at the expense
of evaluating more parameters in the innermost loop
of the synthesizer, it effectively breaks up the homo-
geneity of the terrain, since it adds organic shapes
that resemble natural geo-evolution. Two exam-
ples that show the effects of the domain warping
described here are shown in Figure 3. These ex-
amples were generated using ~c1 = (0.35, 0.16)t,
~c2 = (−0.07, 0.13)t, ~c3 = (0.11, 0.17)t, ~r0 =

Figure 3: The effect of domain warping is illustrated. A
simple noise function was used for the auxiliary function.
Left: Without domain warping the terrain looks rather ho-
mogeneous and uniform. Right: By using domain warping
curved, lava-like features are generated.

(1, 0), and ~t0 = (0, 0). Different formations can be
achieved by modifying the control vectors ~ci using
the fractal editor described in the next chapter.

3 Interactive Fractal Editing

An important feature of the proposed system is the
fractal editor. In the spirit of a WYSIWYG inter-
face, the editor provides the user with immediate vi-
sual feedback to each action. The user can literally
paint basis functions represented by gray-scale im-
ages. Several of these gray-scale images Ii, replac-
ing the aforementioned noise lattice, are then com-
posed into the auxiliary function S(~x) (see Equa-
tion (1)) using individual weights wi:

S(~x) =
X

i

wi · Ii(x) (2)

where the wi are renormalized on the GPU to sum
up to 1 after each editing command. Thus S(~x) is a
convex combination of basis functions, allowing to
achieve a particular look of the terrain such as 30%
desert and 70% craters easily. To offer maximum
flexibility, the user can also choose to load images
from disk to act as basis functions or weights. This
keeps the interface intuitive and simple, yet offers
the user the possibility to resort to any painting or
imaging program. In addition to standard painting
tools, a series of image filters such as low- and high-
pass and normalizing filters is implemented.

Internally, all basis functions and weights are
stored in 2D textures. Exploiting the fact that tex-
tures may comprise up to four channels, and that
basis functions and weights will always be fetched
at the same position to compute Equations (1) and
(2), weights and basis functions are packed together
to minimize fetches from different textures. This al-
lows the various editing features as well as the fil-
ters to be implemented highly efficient on the GPU.



Also, bus transfer between CPU and GPU is largely
avoided, allowing the rapid visual feedback needed
to quickly design new virtual worlds.

Subsequently we will refer to this part of the
editor as the fine-scale synthesizer because it con-
trols the global look of the fractal terrain. This is
achieved by repeating the texture globally over the
2D base domain, which also allows infinite land-
scapes to be generated. However, care has to be
taken to avoid artifacts due to texture boundaries.
This ensures that images are always tiling by offer-
ing only painting operations that wrap around the
image in two dimensions. If the user chooses to
load an image that is not tiling, the lacunarity r as
well as the domain warping can be adjusted very
easily to generate artifact-free images.

To decouple the fine-scale appearance from the
base shape, i.e., the appearance of structures vs.
their positions, a low-frequency fractal height field
is added to the structures being generated by the
fine-scale synthesizer. As base-level and detail are
largely uncorrelated, the designer can roughly de-
velop a prototype of the shape of the landscape by
sketching mountains, valleys, seas and oceans on a
coarse-resolution base domain. The final look-and-
feel of the landscape is then modelled by means of
the fine-scale synthesizer.

The benefits of this basis function oriented ap-
proach are obvious: Interacting with gray-scale im-
ages representing weights or heights is highly intu-
itive, and permits various external tools to be used
in order to achieve the desired look rapidly. Fur-
thermore, all images to describe a fractal planet can
be compressed using standard image compression
schemes. This could become interesting in the near
future, since 3D gaming becomes uqiquitous [22],
yet traditionally handheld devices feature only nar-
row communication channels.

The editing system also provides control over
fractal parameters, such as roughness, lacunarity,
and water level, as well as the vectors used for do-
main warping. Due to the intuitive use of all edit-
ing options including direct visual feedback, user
experiments have shown that persons not famil-
iar with the editor achieve very convincing results
within only a few minutes. On the colorplate (Fig-
ure 8 right) a snapshot of a typical editing session
is shown, including a fine-scale input texture (top-
left), a low-frequency sketch-pad (bottom-left), and
the final editing result (right).

4 Rendering

The renderer evaluates the fractal height field pro-
cedurally only for the visible fraction of the terrain.
For every vertex in the viewport, Equations (1) and
2 are evaluated by using the input textures and frac-
tal parameters as specified by the user. The entire
rendering procedure is performed on the GPU by
means of shader programs. To determine the ver-
tices that lie within the view port, a projected grid
[9, 10] is utilized and extended towards the render-
ing of spherical domains.

4.1 Projected Grid and LOD

view plane

base domain

Figure 4: The basic idea of the projected grid is to start
with a regular grid in screen space, to project this grid
onto the base domain, and to deform the vertices of this
grid out of the base domain according to the height values.

The basic idea of the projected grid is as follows.
1. Start with an uniform grid in screen space.
2. Project this grid onto the base domain.
3. Evaluate the height at the respective domain

coordinate and displace the grid.
4. Render the displaced grid.

This method has some beneficial properties. Firstly,
the projected grid tries to optimize object space tri-
angles such that they project to approximately the
same area in screen space. Secondly, since the
topology of the grid is static, for a given camera
angle the grid projected to the base domain can be
cached on the GPU. Since no topologic restrictions
apply on a per-vertex basis, vertices can be pro-
cessed independently of each other. Thirdly, the
amount of triangles and thus the amount of work-
load on both the CPU and GPU is known a pri-
ori, and can be adapted to the available process-
ing power easily. However, there are also some
drawbacks. The computation of normals on the pro-
jected grid is more involved than on a regular grid.
The grid also has to be extended slightly beyond
the vertices visible to avoid holes at the viewport
boundaries. In order to circumvent the latter prob-
lem, the maximum height of the terrain needs to
be known a priori (see Figure 5). Then a second,



so-called projector frustum is used, which is con-
strained to match the camera frustum as close as
possible. However, it may diverge from the camera
frustum for aesthetic reasons, i.e. to prevent arti-
facts that would otherwise occur at grazing camera
angles. For more details we refer to the work of
Johanson [10].

base domain

view frustum

projector frustum

horizon

maximum mountain height

Figure 5: If using a projected grid for rendering, the
maximum height of the terrain has to be known a priori.
Otherwise, features might be missed. The projector frus-
tum is then required to include each point in the base do-
main potentially contributing to the final image.

For each vertex of the projected grid, a level-of-
detail can be computed by projecting neighboring
vertices into the base domain. Since the grid is reg-
ular in screen space, only this spacing is necessary
to obtain an estimate of the local object space grid
spacing δ. The number of octaves λ required to
evaluate Equation (1) is then obtained by:

λ =
log δ

H · log r

λ is just the logarithm to the base rH , the constant
quotient between two consecutive amplitudes in
the rescale-and-add method. As λ generally is not
an integer value, we interpolate linearly between
bλc and dλe octaves. To do so, bλc octaves are
summed up during synthesis and the next octave
weighted by the fractional part λ − bλc is added.
Thus, geomorphing [6, 24] is virtually for free.

To perform fractal terrain synthesis over a spher-
ical domain, the planar basis domain is warped
around a sphere after the vertices have been pro-
jected. This is illustrated in Figure 6. To avoid
anisotropic sampling around the sphere two con-
cepts are used. The first is to introduce an artificial
horizon behind which no landscape will be synthe-
sized. The rationale is that atmospheric or fogging
effects typically limit the viewing distance behind a
certain point. Also, such an approach has tradition-
ally offered games and interactive environments an
intuitive quality vs. performance tradeoff. The sec-
ond idea is to move samples closer together towards

the viewer, in such a way that consecutive grid cells
obtain the same angular distance with respect to the
sphere’s center (see Figure 6). Since each vertex
already stores its relative, pre-projective grid posi-
tion, no further information is needed. If the viewer
moves close to the surface, we switch back to the
conventional projected grid.

equalized angular distancea

a
a

a

Figure 6: Extending the projected grid to spherical do-
mains. Left: A simple mapping of the planar base do-
main to a sphere results in anisotropic sampling patterns.
Right: Samples are moved closer to each other such that
they cover equal angular distances with respect to the
sphere’s center.

Both variants are evaluated in the fragment
shader, just before the synthesis of the terrain takes
place. After the vertices in the base domain have
been generated, the fractal’s height is computed for
each position, and the deformed vertex is stored in
an intermediate vertex texture for future rendering.

Once the vertex texture describing the height
field has been computed, additional properties for
the rendering process are derived in a second pass.
This includes normals for lighting, and the slope
(i.e. normal magnitude) and water depth used for
the proto-texturing described in the next section.
The water depth is defined with respect to an user-
defined water-level. All properties are then stored
in textures with floating point precision.

4.2 Proto-Texturing

Proto-texturing is a common method to generate
geo-typical textures [2]. The idea is to use a set
of textures that serve as prototypes for the simula-
tion of real material, i.e. grass, sand, rock, snow
etc. A height/slope-dependent weighting function
is typically utilized to blend the textures together.
In this way, many of the textural variations found
in nature can be reproduced. On the other hand, if
proto-textures are rendered and the user moves fur-
ther away from the height field, artifacts emerge due
to the use of periodically repeated textures.

To avoid this effect, Dachsbacher et al. [3] pro-
posed to use color information only and to syn-



thesize the texture procedurally at every point dur-
ing rendering. The intrinsically complex shader is
amortized by caching parts of the results on the
GPU. We suggest a different strategy, based on the
observation that the periodic structures are essen-
tially caused by the variance of the color values in
the proto-textures. Consequently we build a custom
mipmap such that the variance is continuously de-
creased with each level. This can be accomplished
by first applying the smoothing filter as is usually
done to compute mipmaps, and then take a weighted
average between the smoothed image and the global
mean of the colors. The user can control the pro-
cess by selecting suitable filters and by providing a
weighting parameter to affect the variance distribu-
tion across the levels. Exploiting log-step texture
reduce operations [11] this step can be fully imple-
mented on the GPU. The effect is demonstrated in
Figure 7.

Figure 7: The effect of reducing the variance of the
texture through the mipmap levels is demonstrated. Left:
Normal mipmap using a Lanczos filter for downsampling.
Right: mipmap with reduced variances.

In the colorplate (Figure 8 left), an example
demonstrating the potential of proto-textures is
shown. As can be seen, at steep rock formations
(where ‖∇H‖2) is large) the grass texture is sup-
pressed due to a low weight, while the rock texture
gets assigned a relatively high weight and hence is
clearly visible.

4.3 Water

Water depths are computed per vertex according
to an user-selected water level. As proposed by
Schneider et al. [28], the water surface can then be
rendered without major performance impact. While
in the original paper the water surface was synthe-
sized, we use a time-resolved normal map to ob-
tain the appearance of moving waves. To achieve
a different visual look for shallow and deep water,
the strength of the bump effect, the reflectivity and
the color of the surface are modulated with the wa-

ter depth. This gives shallow water a more trans-
parent, less reflective look, while deep oceans get
the green-ish hue observed in nature. Since the ge-
ometry of the ground is considerably more complex
than the simple pool scene in the original paper, de-
termining the length of the transmitted ray can no
longer be done using simple ray/hemicube intersec-
tion. Instead, we approximate the length by assum-
ing a locally flat ground and computing a ray/plane
intersection taking the interpolated per-pixel water
depth into account. The resulting length can then be
used to approximate caustics and extinction as pro-
posed by Hall et al. [23]. The result is shown on the
colorplate (Figure 10).

4.4 Results

We have used the proposed fractal synthesizer to
generate a number of different scenes including
auxiliary functions composed of several basis func-
tions, proto-textures, and a texture-based water sur-
face. All of our tests were run on a single processor
Pentium 4 equipped with an nVidia GeForce 7800
GTX. The described system was implemented us-
ing OpenGL. In all of our tests the landscape was
evaluated at the vertices of a 512×512 projected
grid. The final rendering of this grid was done
onto a 1280 × 1024 frame buffer. Up to ten oc-
taves where added to procedurally evaluate the frac-
tal landscape. The results are shown on the color-
plate (Figures 8 to 10).

Besides the appealing quality of the synthesized
landscapes, even at these high resolutions the syn-
thesizer still runs at highly interactive rates. All
scenes are synthesized and rendered at about 70 fps
on our target architecture. Of this time, roughly
20% is spent for projecting the grid vertices and
evaluating the fractal at the projected grid points.
The remaining time is spent for level of detail com-
putations and texturing, of which about 60% are
consumed by the latter task.

5 Conclusions and Future Work

We have presented an interactive fractal landscape
synthesizer on programmable graphics hardware,
which exploits the intrinsic strengths of GPUs to
generate and render high-quality, high-resolution,
textured and shaded terrains. Since the user inter-
acts with the same data that is used to form the



image, the parameter space can be intuitively man-
aged. To our best knowledge this is the first time an
interactive WYSIWYG interface for the synthesis
of high-quality fractals has been proposed. Since
the synthesis step is directly integrated into the
rendering procedure, our method requires neither
any polygonal representation nor a pre-processing
stage. The suggested method is well suited for ap-
plications where the shape of the landscape is per-
manently modified by the user.

In the future we aim at enhancing the synthesizer
about local displacement overlays to enable realis-
tic simulation of global and local erosion features.
Such overlays can be used to encode changes in
height caused by natural processes, and they can
easily be integrated into the rendering process to
modify the synthesized height values.

We will further try to extend our work towards
the simulation of entire virtual planets, including at-
mospheric effects as well as surface vegetation on
the surface. Especially plants being created auto-
matically based on the current terrain characteristics
seem to be a challenging but also promising task.

To deal with the aforementioned drawbacks of
the projected grid, we would like to investigate the
suitability of the geometry clipmap approach [12].

References
[1] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton,

F. Ponchio, and R. Scopigno. BDAM – batched dy-
namic adaptive meshes for high performance terrain
visualization. In Eurographics, 2003.

[2] G. Corpes. Procedural landscapes. Presen-
tation at Game Developer’s Conference, 2001.
//www.cix.co.uk/∼glennc/gdcetalk files/frame.htm.

[3] C. Dachsbacher. Shader X, chapter Cached Proce-
dural Textures for Terrain Rendering. Charles River
Media, 2005.

[4] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C.
Miller, C. Aldrich, and M. B. Mineev-Weinstein.
ROAMing terrain: real-time optimally adapting
meshes. In IEEE Vis ’97, pages 81–88, 1997.

[5] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin,
and S. Worley. Texturing & Modelling - A Procedu-
ral Approach, 3rd Edition. Morgan Kaufmann Pub-
lishers, 2003.

[6] R.L. Ferguson, R. Economy, W.A. Kelly, and P.P.
Ramos. Continuous terrain level of detail for visual
simulation. In IMAGE V Conference, 1990.

[7] S. Green. GPU Gems 2, chapter Implementing
Improved Perlin Noise, pages 409–416. Addison-
Wesley Professional, 2005.

[8] J.C. Hart. Perlin noise pixel shaders. In Graphics
Hardware Workshop, 2001.

[9] D. Hinsinger, F. Neyret, and M.P. Cani. Interactive
animation of ocean waves. In ACM Symposium on
Computer Animation, pages 161–166, 2002.

[10] C. Johanson. Real-time water render-
ing - introducing the projected grid con-
cept. Master’s thesis, Lund University, 2004.
http://graphics.cs.lth.se/theses/projects/projgrid.

[11] J. Krüger and R. Westermann. Linear algebra op-
erators for GPU implementation of numerical algo-
rithms. In ACM SIGGRAPH, 2003.

[12] F. Losasso and H. Hoppe. Geometry clipmaps: Ter-
rain rendering using nested regular grids. In ACM
SIGGRAPH, 2004.

[13] B. Mandelbrot. The Fractal Geometry of Nature.
W.H. Freeman, 1982.

[14] G.S.P. Miller. The definition and rendering of terrain
maps. In ACM SIGGRAPH, 1986.

[15] P. Molyneux. Populous. Bullfrog Productions, 1989.
[16] F. K. Musgrave, C.E. Kolb, and R.S. Mace. The syn-

thesis and rendering of eroded fractal terrains. In
ACM SIGGRAPH, pages 41–50, 1989.

[17] F.K. Musgrave. Texturing & Modelling - A Proce-
dural Approach, 3rd Edition, chapter 17. Morgan
Kaufmann Publishers, 2003.

[18] Pandromeda. MojoWorld. www.mojoworld.com.
[19] D.R. Peachey. Antialiasing solid textures. ACM

SIGGRAPH, ’Functional Based Modeling’ Course
Notes, 1988.

[20] K. Perlin. An image synthesizer. In ACM SIG-
GRAPH, pages 287–296, 1985.

[21] K. Perlin and E.M. Hoffert. Hypertexture. In ACM
SIGGRAPH, pages 253–262, 1989.

[22] K. Pulli. Ubiquitous 3D - graphics everywhere.
Point-Based Graphics keynote presentation, 2005.
http://research.nokia.com/people/kari pulli/.

[23] D.P. Greenberg R.A. Hall. A testbed for realistic im-
age synthesis. In ”IEEE” Computer Graphics and
Applications, pages 10–20, 1983.

[24] S. Röttger, W. Heidrich, P. Slussalek, and H.P. Sei-
del. Real-time generation of continuous levels of de-
tail for height fields. In WSCG, pages 86–93, 1998.

[25] G. Sakas. Modeling and animating turbulent gaseous
phenomena using spectral synthesis. The Visual
Computer, 9(4):200–212, April 1993.

[26] D. Saupe. Point evaluation of multi-variable random
fractals. In Visualisierung in Mathematik und Natur-
wissenschaft, Bremer Computergraphik Tage, 1988.

[27] D. Saupe. Simulation und Animation von Wolken
mit Fraktalen. In Informatik Fachberichte 222, Proc.
GI Jahrestagung, 1989.

[28] J. Schneider and R. Westermann. Towards real-time
visual simulation of water surfaces. In Vision, Mod-
eling and Visualization, 2001.



Figure 8: Left:Combination of proto-textures using a height/slope-parameterized blending function. Note the absence
of grass on steep rock formations. Right: The WYSIWYG user interface of the fractal landscape editor. A fine-scale
input texture(top-left), a low-frequency sketch-pad (bottom-left) and the final exiting result using proto-texturing (right)
is shown).

Figure 9: Left: Rock formations using domain warping. Right: Sand dunes made possible by domain warping.

Figure 10: Left: Animated water surfaces are integrated into the fractal synthesizer without sacrificing performance.
Right: Lake in a fractal landscape.


