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Abstract

Recent advances in algorithms and graphics hardware have opened the possibility to render caustics at interactive
rates on commodity PCs. This paper extends on this work in that it presents a new method to directly render caus-
tics on complex objects, to compute one or several refractions at such objects and to simulate caustics shadowing.
At the core of our method is the idea to avoid the construction of photon maps by tracing photons in screen-space
on programmable graphics hardware. Our algorithm is based on the rasterization of photon paths into texture
maps. Intersection events are then resolved on a per-fragment basis using layered depth images. To correctly
spread photon energy in screen-space we render aligned point sprites at the diffuse receivers where photons ter-
minate. As our method does neither require any pre-processing nor an intermediate radiance representation it can
efficiently deal with dynamic scenery and scenery that is modified, or even created on the GPU.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computing Methodologies]: COMPUTER
GRAPHICSThree-Dimensional Graphics and Realism; 1.3.3 [Computing Methodologies]: COMPUTER GRAPH-

ICSPicture/Image Generation

1. Introduction and Related Work

Caustics are a light phenomenon that is caused by converg-
ing light, and they can appear whenever light impinges at
reflecting or transmitting material. A caustic is observed as
a brightness, or radiance, increase due to many light paths
hitting a surface at the same position. These paths may have
been reflected or refracted one or several times before im-
pinging at the receiver. In this work, we restrict the discus-
sion to specular-to-diffuse light transport, where reflected or
refracted light hits a diffuse receiver causing light rays to
terminate. In Figure 1, a number of different caustics and
refractions are illustrated.

As the receiver, in general, does not know from which direc-
tions the light converges towards it, caustics cannot easily
be simulated using conventional ray-tracing or scanline al-
gorithms. As these methods backtrace the light paths from
the eye point, all possible directions the light could arrive
from have to be sampled at a caustics receiver. While it is
impossible in general to directly render caustics effects us-
ing single pass scanline algorithms, indirect lighting effects
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involving specular reflections can be simulated via Monte
Carlo ray-tracing [Kaj86, VG97]. As these techniques come
at the expense of tracing many rays to sample the incom-
ing energy at every receiver point, only parallel implementa-
tions [WBS*02, PMS*99] have the potential to run at inter-
active rates.

Instead of sampling the incoming energy for every receiver
during the rendering pass, Arvo [Arv86] proposed a two pass
method that first creates an illumination map containing the
indirect illumination received by an object and then samples
this map in the final rendering pass. The method was named
backward ray-tracing because it creates the illumination map
by tracing rays from the light source instead of the eye point
as in conventional ray-tracing. A different strategy to create
the illumination map based on the projection of area splats
was later proposed by Collins [Col94]. Inspired by the work
of Heckbert and Hanrahan [HH84] on beam tracing, a vari-
ation of backward ray-tracing that creates caustics polygons
by projecting transmitted light beams onto diffuse receivers
was suggested by Watt [Wat90]. A similar approach has been
utilized by Nishita and Nakamae [NN94] for the rendering
of underwater caustics.

Following the early work on two-pass ray-tracing, Jensen
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Figure 1: GPU photon tracing can be used to simulate a variety of different light effects at interactive frame rates. Even the
rightmost scene including a dynamic object, shafts of light and caustics shadowing still runs at 10 fps on a 800x600 viewport.

and Christensen [JC95] introduced the more general concept
of photon maps. The key idea is to first emit energy samples
into surface-aligned maps via backward ray-tracing and then
reconstructing radiance estimates from these maps in the fi-
nal rendering pass. It is in particular due to the computa-
tional cost for building accurate photon maps via ray-tracing
that even GPU implementations [PDC*03,PBMHO02] cannot
achieve interactive rates for dynamic scenery of reasonable
size. Only parallel implementations on multi-processor ar-
chitectures [GWS04, WHS04] have shown this potential so
far.

As caustics - in particular if caused by dynamic objects - are
a light phenomenon that adds increasing realism and diver-
sity to any 3D scene and rendering, much effort has been
spent recently on developing techniques that can be used in
interactive applications like computer games or virtual real-
ity environments. In the following we will discuss the most
fundamental concepts behind them.

1.1. GPU Caustics

Before summarizing previous work on interactive caustics
rendering we will first briefly describe how to employ func-
tionality on GPUs to efficiently construct illumination maps.
This preliminary discussion is restricted to planar receivers
that receive energy via one single specular indirection. As
refractions at a water surface above planar grounds satisfy
these assumptions, this particular example is used in the fol-
lowing. The purpose of this discussion is to introduce some
of the basic GPU concepts used today to render caustics at
interactive rates and to demonstrate the state of the art in this
field. Later in the text we will present efficient techniques
that are far less limited in the kind of transmitting objects
and receivers they can render

On recent GPUs the render-to-vertexbuffer functionality al-
lows the output of the fragment units to be directly rendered
into a vertex buffer. By using this functionality caustics can
be rendered into an illumination map in two passes. In the
first pass, a water surface with color coded normals is ren-
dered from the light source position and a simple fragment

program calculates for each fragment the refracted line of
sight. If the equation of the planar receiver is known the in-
tersection points between these lines and the receiver can be
computed analytically, too. Assuming the mapping of the il-
lumination map to the receiver being known, the intersection
points can be transformed into the local parameter space be-
fore they are output to a vertex array. In the second pass,
this array is rendered as a point set into an illumination tex-
ture map, where contributions to the same texel are summed
by accumulative blending [SB97]. Figure 2 shows a typical
scene that can be rendered using this method.

Figure 2: Caustics on planar receivers: 2567 Photons are
rendered as point primitives into a cube-map. On a 1K x 1K
viewport the scene is rendered (including the construction of
a’5x128% cube-map) at over 130 fps on current GPUs. The
illumination map for the bottom plane is shown on the right.

As pointed out by Wyman and Davis [WDO06], the rendering
of the vertex array using one pixel sized point primitives re-
sults in speckled caustics. In addition it was observed, that
the rendering of points with the same intensity does not ac-
count for the spread of transferred energy over an area re-
ceiver. To overcome this limitation two different approaches
were suggested. Either the intersection points of reflected or
refracted light rays with the planar receiver are connected
and rendered as caustics polygons with area-dependent in-
tensity, or the intensity at the receiver is computed by adding
the contributions from all photons hitting the object and by
spreading these intensities in image space. Both alternatives
assume adjacent primitives - either vertices in the vertex ar-
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ray or pixels in image-space - belonging to the same object
and being close to each other in world space.

With respect to the aforementioned GPU implementation
of caustics effects two questions remain to be answered.
First, how can several reflections or refractions be handled.
Second, how can intersections between light rays and arbi-
trary, i.e. non-planar, diffuse receivers be computed. Wyman
[WymO5a] proposed to approximate the exit point of a light-
ray refracted several times in the interior of a focal object by
a linear interpolation between two distances: The distances
from the entry point to the convex hull of the object into
the direction of the inverse normal and into the direction of
the undistorted light ray. While the former distance is pre-
computed the latter is obtained from the depth buffer at run-
time. The refracted image of the surrounding scene is then
obtained using a final lookup into an environment map. An
extension to this approach that also accounts for geometry
close to the exit point was later proposed in [WymO5b]. Al-
though the approximation of the refracted ray is valid only
if the object is convex and both intersection points along the
inverse normal and the undistorted ray fall within the same
polygon, in particular if the refraction is low the method
gives realistic results at impressive frame rates.

Shah and Pattanaik [SKPar] estimate the intersection point
between a single refracted light ray and a receiver using
the undistorted image of the receiver as seen from the light
source. Starting with an initial guess for the intersection
point, its position is corrected by iteratively moving this
point along the refracted ray in screen-space. As a conse-
quence, the quality of this method strongly depends on the
initial guess as well as on the size and the shape of the re-
ceiver.

Nishita and Nakamae [NN94] employed frame buffer hard-
ware for blending polygonal caustics beams. This work was
later extended by Iwasaki et al. [IDNO2] to efficiently utilize
the potential of programmable graphics hardware. Wand and
Strasser [WS03] suggested to gather the radiance at sam-
ple points on a receiver by rendering the scene as seen from
these points. The method effectively accounts for caustics
shadowing, but it requires the scene to be rendered several
times and restricts the gathering to a rather small solid angle.
Larsen and Christensen [LCO04] proposed to compute pho-
ton maps on the CPU, to render photons as point primitives
and to filter the photon distribution in image-space on the
GPU. Distance impostors were introduced in [SKALPOS5]
to efficiently approximate the intersection points between
light rays and reflections (refractions) stored in environment
maps. Ernst et al. [EAMJO05] built on the concepts of polygo-
nal caustics beams and shadow volumes [Cro77]. For every
patch of the focal object a caustics volume is created, and
it is used as a shadow volume that illuminates points of the
scene inside that volume. The method is well suited for the
rendering of underwater scenery including shafts of light,
but it introduces a significant geometry load and does not ac-
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count for the blocking of caustics rays by a receiver. Iwasaki
et al. [IDNO3] suggested an acceleration technique for caus-
tics simulation based on the voxelization of polygonal ob-
jects into a stack of 2D slices. Approximate caustics can then
be rendered by computing the intensities on these slices.

1.2. Contribution

From the above discussion it becomes clear that it is still
a challenge to develop techniques that enable real-time and
accurate rendering of caustics on and caused by complex ob-
jects. The method proposed in this work addresses these re-
quirements in that it provides an effective means to resolve
inter-object light transfer as well as several refractions at
complex and dynamic polygonal objects. This is achieved
by the following strategy:

e Photon rays are traced in screen-space on programmable
graphics hardware. This is realized by rendering line
primitives with respect to the current view. To be able
to resolve intersection events at arbitrary positions along
these lines they are rasterized into texture maps.

e Intersections between photon rays and objects in the scene
can now be detected using layered depth maps and simple
fragment operations.

e By rendering oriented point sprites at the receiver pixels in
screen-space we account for the energy transport through
beams of light. The use of energy splats significantly min-
imizes the number of photons that have to be traced.

In combination, an interactive method at high visual qual-
ity is proposed. As this method does neither require any
pre-processing nor an intermediate radiance representation
it can efficiently deal with dynamic scenery and scenery that
is modified or even created on the GPU. Caustics shadow-
ing is implicitly accounted for by terminating photon rays
at the diffuse objects being hit. By only slight modifications
the method can be used to render shafts of light.

Besides the advancements our method achieves, the follow-
ing limitations are introduced by its special layout: First,
as intersection events are resolved in screen-space, intersec-
tions with triangles not covering any pixel will be missed,
i.e. triangles outside the view frustum, triangles parallel to
the view direction and triangles below the screen resolution.
Second, the accuracy of the method depends on the accuracy
of the scan-conversion algorithm implemented by the raster-
izer as well as the floating point precision in the GPU shader
units. It is thus clear that the proposed method can pro-
duce images that are different to an exact solution. It is, on
the other hand, worth noting that the proposed method sig-
nificantly speeds-up photon tracing and makes it amenable
to interactive and dynamic scenarios. In addition, as will
be shown in a number of examples throughout the text, it
achieves very plausible results without notable artifacts.
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The remainder of this paper is organized as follows. In Chap-
ter 2 we describe the rasterization of photon rays into tex-
ture maps and we show how intersections along these rays
can be detected using layered depth images. The next Chap-
ter is dedicated to rendering issues such as oriented point
sprites and the simulation of shafts of light. In Chapter 4 we
describe the extension of our technique to simulate several
refractions in the interior of an object. We then give timing
statistics for different scenarios. The paper is concluded with
a discussion of future improvements.

2. Screen-Space Photon Tracing

In the following we assume, that for a set of photons emit-
ted from the light source all specular-to-specular bounces
have been resolved and a final specular-to-diffuse energy
transfer is going to take place. For each photon a position
along with the direction of this transfer is stored in the trans-
fer map. For single refractions, for instance at a water sur-
face, the GPU-based approach as described above can be
directly used to generate this information. More complex
bounces can be simulated using either the method proposed
by Wyman [WymO05a] or the one we present at the end of
this chapter.

The problem is to find for all photons the intersections with
the receiver objects in the direction of light transfer. This can
be done on a per-fragment basis by rendering caustics rays
as line primitives clipped appropriately at the scene bound-
aries. The idea then is to process the fragments being gener-
ated during the rasterization of these lines by a pixel shader,
and to only illuminate those pixels that correspond to an in-
tersection point. Assuming that the depth image of the scene
is available in a texture map, intersections can be detected by
depth comparison in the pixel shader. Every fragment reads
the corresponding value from the depth map and compares
this value to its own depth. If both values differ less than a
specified threshold the fragment color is set. Otherwise the
fragment is discarded.

The envisioned algorithm has two basic problems: First, as it
finds and illuminates all intersection points along the photon
paths it is not able to simulate the termination of these paths
at the first intersection points. While a shadow algorithm
could be utilized to attenuate this effect, caustics imping-
ing in the interior of the shadow cast and especially shadow-
ing effects due to dynamic focal objects cannot be simulated
in this way. Second, intersections with occluded geometry,
which is not present in the depth map, cannot be found (see
Figure 3).

2.1. Line Rasterization

To overcome the aforementioned limitations we suggest to
rasterize photon rays into a texture map and to perform inter-
section testing for every texel in this map. The first intersec-
tion along each ray can then be determined using a log-step

Top View

Figure 3: If a pixel shader illuminates all line-object inter-
sections in view-space, this yields incorrect results. In the
example, five hits instead of three would be illuminated due
to the black sphere being occluded in view space. In the
two right images a scene is rendered without (left) and with
(right) caustics shadowing. The artifacts can be clearly ob-
served.

texture reduce operation [KWO03b]. The coordinates of the
detected receiver points, now stored in the RGB components
of a texture map, can finally be rendered in turn on the GPU
without any read-back to the CPU.

Every photon ray is rendered into a distinct row of a 2D off-
screen buffer, i.e. a texture render target (see Figure 5). This
is accomplished by rendering for each photon a line prim-
itive. Due to performance issues the set of all these lines is
stored in a vertex array in GPU memory. For every line being
rendered a vertex shader fetches the respective photon posi-
tion & and direction d from the transfer map, and it computes
the number of fragments, n ¢, that would have been generated
for this line by the rasterizer. This number can simply be ob-
tained from the projection of ¢ and 6+t -d into screen-space.
The shader then displaces the initial vertex coordinates such
as to generate a line starting at the left column of the off-
screen buffer and covering ny fragments (see Figure 4). In
addition, the screen-space position of ¢ and 6+ ¢ - d is as-
signed as texture coordinate to the start and the end vertex,
respectively, of every line.

During scan-conversion the rasterizer interpolates the tex-
ture coordinates along the horizontal lines. It thus gener-
ates for every fragment the screen-space position it would
have been mapped to if the initial caustics ray was rendered
as a line primitive. A pixel shader operating on these frag-
ments can use this position to fetch the respective value
from the depth map and to compare the interpolated screen-
space depth to this value. If an intersection is determined, the
screen-space position of the fragment in the off-screen buffer
is written to that buffer. Otherwise the fragment is discarded
(see Figure 4).

After all lines have been rasterized, a texture is generated
that stores in each row all the intersections between a par-
ticular photon ray and the visible objects in the scene. By
applying a horizontal texture reduce operation the first in-
tersection points are rendered into a single-column texture
map. For photon rays that are almost parallel to the view di-
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Figure 4: The pink object at the bottom reflects the light from
the light source and causes three caustics rays. These are
processed by the vertex shader, which computes the length
of each ray and transforms them to horizontal lines of equal
length. The rendering of these lines generates the image
shown at the bottom. Red, green and blue pixels indicate
hits with an object, and grey cells indicate fragments that
have been discarded in the pixel shader. Into white cells a
[fragment has never been rendered.

rection and thus only cover a very few fragments a minimum
line length is enforced. If the number of rows in the render
target is less than the number of photons, the process is re-
peated for the remaining photons until all of them have been
processed.

mal

Figure 5: The right image shows an except of the ray in-
tersection texture while in the image the corresponding rays
can be seen. For this image a very large epsilon was chosen.

Similar to volume ray-casting on GPUs [KWO03a, SSKEO05],
photon tracing can also be implemented as a single pixel
shader being executed for each photon. In theory, the
advantage of such an implementation is that the traversal
process can stop as soon as an intersection with any of the
objects in the scene is found. However, a comparison with
the approach suggested here revealed a loss in performance
of about 50%. We attribute this observation to the fact
that early-out mechanisms like the early-z test or breaks
in a pixel shader introduce some overhead, either a branch
instruction or additional rendering passes. Moreover, since
the pixel shader hardware runs in lock-step, a performance
gain can only be achieved if all fragments in a contiguous
array exit the program early. These observations are backed
up by latest GPUBench [BFHO04] results (Results for our
target architecture, the GeForce 7800 GTX, are available
at http://graphics.stanford.edu/projects/gpubench/results/).
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These results attest current GPUs a rather bad branching
performance even if all fragments in a 4x4 block exit the
program simultaneously.

2.2. Depth Peeling

In the presentation so far intersections with occluded geom-
etry have been entirely ignored. The reason for this is that
only one single depth map containing the depth values of the
visible fragments has been considered. As can be imagined
easily this limitation introduces false results and noticeable
artifacts.

To be able to compute the intersection between photon rays
and all objects in the scene we generate a layered depth im-
age [SGwWHS98] from the current viewing position. There-
fore we employ depth-peeling [Eve01]. In the current imple-
mentation we use depth-peeling not only to generate multi-
ple depth maps but also to generate multiple normal maps
of the layered fragments. In the caustics rendering approach
with lines, instead of comparing the fragment’s depth to only
the values in the first depth layer we now compare it to the
values in the other layers as well. An intersection is indicated
by at least one entry in the layered depth map that is close to
the fragments depth.

To generate the layered depth image we need to know the
depth complexity of the scene for the current view. The
depth complexity can be determined by rendering the object
once and by counting at each pixel the number of fragments
falling into it during scan-conversion. The maximum over all
pixels is then collected by a texture reduce-max operation.
As the depth complexity of a scene can vary significantly de-
pending on the view-point and the viewing direction, depth-
peeling has to be restricted to a maximum number or passes
to maintain a constant frame rate. Interestingly, our experi-
ments have shown that it is usually sufficient to only consider
up to eight depth layers. This is due to the fact that deeper
layers do in general not contain a significant number of frag-
ments, and only a few of them block any photon ray that
would otherwise be seen by the viewer. In scenarios where
the depth complexity is high because the scene consists of
many objects, separate depth images for each object should
be favored to reduce geometry load and memory overhead.

2.3. Recursive Specular-to-Specular Transfer

The proposed method enables the tracing of photons through
the scene until the first intersection with any object in this
scene is found. For every photon the algorithm outputs the
position of the intersection point, the normal at this point
and the direction of the incoming photon ray. It is thus easy
to simulate subsequent specular-to-specular light transfer by
reflecting or refracting the incoming ray at the intersection
point, and by writing both the point coordinate and the mod-
ified direction vector into the transfer map. The algorithm is
then restarted with the updated map.
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3. Rendering

When light hits a diffuse surface where it is emitted equally
in all directions the scene is illuminated at the point of inter-
section. As we have described above, for all photons these
receiver points are encoded in the transfer map. To mini-
mize the number of photons to be traced through the scene
we assume that a given photon deposits a certain amount
of energy in the surrounding of the intersection point. Sim-
ilar in spirit to the distance weighted radiance estimate pro-
posed by Jensen [Jen97] we spread the photon energy over
a finite area centered around the intersection point. Surface
points within this area receive an energy contribution that is
inversely proportional to their distance to the center. In con-
trast, however, in our approach we do not gather the energy
from nearby photons but we accumulate the contributions by
rendering area illumination splats.

3.1. Sprite Rendering

To simulate the spread of energy at a particular point in the
scene we employ point sprites. Point sprites are a means
to draw points as customized textures with texture coordi-
nates interpolated across the point. In the current scenario
we can simply render one sprite for each point stored in the
transfer map. By exploiting the render-to-vertexbuffer func-
tionality or texture access in a vertex shader such a render-
ing operation can entirely be realized on the GPU. Unfortu-
nately, point sprites come with the restriction that they are
screen aligned, i.e. they resemble quadrilaterals centered at
the point position and kept perpendicular to the viewing di-
rection. As the alignment of point sprites according to the
orientation of the receiver is not supported by current GPUs,
a new method that overcomes this limitation is required.

Figure 6: Sprite rendering: The images show light patterns
generated by a few photons. The difference between screen-
aligned textured point sprites (left) and the sprite-based ray-
caster (right) is shown.

At the core of our technique we have developed a GPU ray-
tracer similar to the one proposed in [BKO03] for high-quality
point rendering. The idea is to compute for every pixel cov-
ered by a sprite the point seen under this pixel in the tan-
gent plane at the receiver point. This plane is defined by the
normal stored for every receiver point in the transfer map.
The distance of the ray-plane intersection point to the re-
ceiver point can directly be used to estimate the amount of
energy received from the photon. It also has to be considered

that only visible surface points should be illuminated. This
is accounted for by comparing the screen-space depth of the
ray-plane intersection point to the value in the first layer of
the layered depth image at the current pixel position. Only if
both values are close together does the pixel receive an in-
tensity contribution. In Figure 6 the quality of this approach
is demonstrated.

Viewplane

Figure 7: Schematic view of sprite-based ray-casting. P is
a pixel in the image plane, O denotes the viewing position
and d is the distance of the intersection point to the receiver
point. The distance is used to calculate the intensity. For a
spherical intensity splat with size s and linear attenuation
thisis s —d.

To simulate the illumination caused by a photon ray, for each
of the receiver points in the transfer map a point sprite of
constant size s is rendered. For every fragment generated
during rasterization a pixel shader computes the intensity /
as follows (based on the setup in Figure 7):

(€]

Here, D =V — C, D] =d, N and C are constant over the
sprite and can thus be computed in a vertex shader and
passed as constant parameters to the fragment stage. The
view direction V is also computed in a vertex shader by mul-
tiplying the pixels screen-space coordinate with the inverse
projection matrix. Equation 1 is easily derived from the ray-
plane intersection formula.

3.2. Rendering in Homogeneous Participating Media

Besides the fact that light illuminates surfaces, it causes an-
other fascinating effect when passing through homogeneous
participating media: Shafts of light or god-rays (see Fig-
ure 8). Adding god-rays to our approach is fairly simple as
we know for every photon ray its start position at the focal
object and the position where it terminates. Consequently
these rays can be rendered as line primitives, which are com-
bined in the frame buffer. As we assume the media to be ho-
mogeneous light intensity decreases exponentially with dis-
tance. This kind of attenuation can be computed in a pixel
shader for every fragment that is rasterized. Contributions
from multiple god-rays are accumulated in the frame buffer.

(© The Eurographics Association 2006.



Kriiger, Biirger, Westermann / Screen-Space Photon Tracing on GPUs

Figure 8: Underwater scene illuminated by sun light. Shafts
of light are caused by the refraction of light. In this scene the
light rays converge on the flukes of the dolphin and cause a
bright spot of light.

To account for the scattering of light along the god-rays they
are rendered into a separate color buffer and blurred with
a Gaussian filter. As this filter has a constant screen-space
support it emulates a filter with increasing support in object-
space, i.e. rays further away from the viewer are blurred
more than those closer to the viewer. The filtered image is
finally blended over the image of the scene. As the images
demonstrate, although only a very coarse approximation of
the real scattering of light is computed the results look very
realistic and convincing. The overhead that is introduced by
filtering the god-ray image is insignificant compared to the
other stages of caustics rendering.

4. Screen-Space Refraction Tracing

The idea of screen-space ray-tracing can also be applied
to render refractions through transparent objects as seen by
the viewer. Compared to the method suggested by Wyman
[WymO5a], this method can efficiently deal with dynamic
and concave geometry and it simulates refractions more ac-
curately. On the other hand it comes at the expense of more
complex fragment computations thus limiting the perfor-
mance that can be achieved.

Essentially there is no difference between photon tracing in
screen-space and the tracing of refracted lines of sight in
screen-space. Apart from the fact that in the latter case the
projected lines usually only cover a few pixels on the screen,
the same ideas suggested in Section 2 can be utilized. In con-
trast, however, we build the tracing of refractions on the sim-
plification that along any ray the n-th intersection point with
the refracting object is found in the (n+ 1)-th depth layer.
We thus assume that ray-object intersection are "monotonic"
with respect to these layers. In this way the number of tex-
ture access operations to be performed at every pixel under
the view-ray is equal to one. It is clear that testing against
all levels of the layered depth image causes the performance
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Figure 9: Comparison between refractions through only
one interface (left) and multiple refractions generated via
screen-space photon tracing (right).

to drop linearly in the depth complexity of the object. As
the possibility of violating this simplification increases with
the strength of the ray deflection, in such scenarios there is a
higher chance to miss interior object structures.

The algorithm starts by constructing the layered depth image
of the transmitting object. Visible object points along with
their normals are rendered into the transfer map. We then
rasterize refracted view-rays into a texture map and perform
intersection testing for every texel in this map. These rays,
just like the caustics rays, are then traced through the depth
layers until the depth along the ray is either greater than the
depth in the next layer or less than the depth in the current
layer. In either case we can assume an intersection with the
surface. The point in the interior of the object is considered
the exit point and the normal at this point is fetched from
the depth image. From this normal and the incoming ray di-
rection the refracted exit direction is computed. This infor-
mation in turn can either be used to look up an environment
map or to retrace the refracted view-rays. Figure 9 shows a
comparison between refractions through only one interface
and refractions generated by our method.

If a layered depth image of the surrounding scene exists, in-
tersections between the exiting ray and the scene can be de-
tected as well. This approach has been applied in Figure 10
to simulate caustics seen through the water surface. It should
be clear, however, that this is an approximation that can only
simulate the refraction of light from underwater objects that
are visible to the viewer in the absence of the water sur-
face. Otherwise, the refracted object points have not been
rendered and they are thus not available in the image of the
scene.

Table 1 lists timings for the rendering of refracting objects
using the proposed method. In these tests only the first exit
point has been considered for casting view-rays into the sur-
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Figure 10: A Stanford Bunny in the Cornell Box. Note how
the refraction on the water surface displaces the bunnys
ears.

Viewport resolution
triangles | 800 x 600 | 1200 x 1024
Teapot 2257 600 (870) 220 (300)
Stanford Bunny 69665 220 (270) 110 (180)
Stanford
Dragon Low 47794 280 (320) 120 (160)
Dragon High | 202520 150 (156) 95 (105)

Table 1: Timing statistic in fps for screen-space refrac-
tion tracing to allow a comparison to Wyman's approach
[WymO05a] (fps in braces) our algorithm was set to compute
only two refractions.

rounding scene. As it can be seen, on recent graphics hard-
ware the algorithm is only slightly slower than a highly opti-
mized version of the one proposed in [WymO05a]. It is, on the
other hand, worth noting that our technique does not require
any pre-processing and is thus suitable for dynamic geome-
try.

5. Results

In the following we present some results of our algorithm
and we give timings for different parts of it. All test were run
on a single processor Pentium 4 equipped with an NVIDIA
7800 GeForce FX graphics processor. In all examples the
size of the viewport was set to 800 x 600. Each caustics im-
age in this paper was generated using 256 x 256 photons. All
objects were encoded as indexed vertex arrays stored in GPU
memory to enable optimal performance of depth-peeling.

Before we give timings for the major parts of our algorithm,
we will first analyze the accuracy of the proposed method in
more detail. Therefore, we have used the described method
to trace shadow rays in screen-space. Figure 11 shows re-
sults for a single point light source and two different ob-

jects casting shadows onto a receiver. For every pixel being
covered by the receiver, a photon is traced backward to the
light source. Intersections with the objects between the re-
ceiver and the light source are resolved using layered depth
images as described. An intersection was determined if the
world space distance between the fragment of the rasterized
line and a fragment coded in the layered depth map was less
than 0.01. This tolerance was also used in all other examples
throughout this paper.

Figure 11: Shadows simulated by light ray tracing in screen-
space. The scene was rendered on a 1K x 1K viewport.

As it can be seen, even for the complex tree the shadow on
the ground is adequately sampled. Although some pixels are
erroneously classified due to numerical and sampling issues,
the shadow caused by very fine scale structures can still be
resolved at reasonable accuracy. This observation is further
evidenced by Figure 12, where the results of our approach
have been compared to ray-traced shadows. From the visual
point of view, both approaches yield very similar results that
can hardly be distinguished from each other. Note that the ar-
tifacts in the shadow of some of the thick branches can easily
be avoided by an additional in-out test considering consecu-
tive pairs of layered depth images.

Figure 12: Left: shadows on the floor are generated using
our method. Right: shadows are ray-traced in Maya.

Representative timings in milliseconds (ms) for caustics
simulation in three example scenes are listed in Table 2: (A)
In the bunny scene (Figure 10) the refraction of underwa-
ter objects at the water surface was simulated as described
in Chapter 4. (B) God-rays were added to the dolphin scene
(Figure 1). (C) In the pool scene (Figure 13) refractions as
well as reflections at the water surface were simulated. All
scenes have a depth complexity of eight.

The first column (C) shows the amount of time spent by the
GPU for caustics simulation including depth-peeling, line
rasterization, intersection testing and god-ray rendering. Of
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all these parts intersection testing consumed over 80% of the
time. In the second column (P) the time spent rendering the
point sprites is given. In the last column (A) the overall per-
formance is shown. All measurements have been repeated
for different amounts of photons traced from the light source.
Photon grids used in the pool demo are 1024x512, 512x256,
256x128, and 128x64. Additional results using 1K x 1K
photons are shown in Figure 14.

Figure 13: Refractions and reflections at a water surface.

Number of photons
512x 512 256 x 256 128 x 128
C P A C P A C|P| A
243 | 26 | 285 69 8 89 17 1 3129
232 | 17 | 555 62 6 | 103 17 | 2| 45
434 | 10 | 454 || 119 | 7 | 135 || 32 | 2 | 33

aQw >

Table 2: Timing statistics (in ms) for different scenes.

As the timings show, even very complex light pattern can be
simulated at interactive rates and convincing quality. In par-
ticular such effects as shafts of light and caustics shadowing,
for instance below the bunnies and the dolphin, and behind

(© The Eurographics Association 2006.

the diving platform, add increasing realism and diversity to
the 3D scenery. The images also show that even with a rather
small number of photons traced through the scene the caus-
tics effects look very realistic and do not exhibit intensity
speckles. This is due to the sprite-based approach that real-
istically accounts for the orientation of the receiver geometry
and the spread of photon energy.

6. Conclusion and Future Work

GPU photon tracing in screen-space enables interactive sim-
ulation and rendering of complex light patterns caused by
refracting or reflecting objects. Even though we did not yet
compare the quality of the proposed technique to that of pho-
ton mapping, our results look convincing and plausible. The
ability to trace large photon sets by rasterizing lines into tex-
ture maps in combination with a novel rendering method to
account for area energy splats enables visual simulation of
caustics effects at high frame rates. In a number of differ-
ent examples these statements have been verified. The possi-
bility to integrate caustics shadowing, one or several refrac-
tions in the interior of complex objects and intensity splats
on curved objects distinguishes the proposed GPU technique
from previous approaches.

As our method does not require any pre-processing nor an
intermediate radiance representation, it can efficiently deal
with dynamic scenery and scenery that is modified on the
GPU. In this particular respect we plan to investigate several
improvements and acceleration techniques in the future.

New functionality to create geometry in a geometry shader
on future graphics hardware [BG05] offers several possibil-
ities to significantly accelerate caustics rendering. Such a
shader might be used to create all lines being rasterized out
of one representative line on the GPU. Another interesting
research question is how to exploit such hardware for the ac-
celeration of depth-peeling, and thus for the construction of
high-resolution layered depth images. In this respect it will
also be of interest to investigate the possibility to render into
multiple render targets with own depth buffer.

Caustics rendering as proposed can be parallelized in a
straight forward way by assigning disjoint regions in screen-
space to different rendering nodes. As only the first intersec-
tion points along each photon ray have to be communicating
between these nodes, the algorithm is supposed to scale al-
most linearly in the number of nodes.
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Figure 14: Screen-space photon tracing using 1K X 1K (Dolphin) and 512 x 256 (Pool) photons.
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