
Realistic and Interactive Simulation of Rivers

Peter Kipfer

Havok

peter.kipfer@havok.com

Rüdiger Westermann

Computer Graphics & Visualization

Technische Universität München

westermann@in.tum.de

Figure 1: Simulation of a river cascade: Water flowing from a rock and filling the lake below (68 fps using 3000 particles).

ABSTRACT

In this paper we present interactive techniques for physics-based
simulation and realistic rendering of rivers using Smoothed Particle
Hydrodynamics. We describe the design and implementation of a
grid-less data structure to efficiently determine particles in close
proximity and to resolve particle collisions. Based on thisdata
structure, an efficient method to extract and display the fluid free
surface from elongated particle structures as they are generated in
particle based fluid simulation is presented. The proposed method
is far faster than the Marching Cubes approach, and it constructs an
explicit surface representation that is well suited for rendering. The
surface extraction can be implemented on the GPU and only takes a
fraction of the simulation time step. It is thus amenable to real-time
scenarios like computer games and virtual reality environments.

CR Categories: I.3.5 [Computational Geometry and Object
Modeling]: Curve, surface, solid, and object representations—
Physically based modeling; I.3.6 [Methodology and Techniques]:
Graphics data structures and data types

Keywords: physics-based simulation, river flow, particle system,
surface extraction

1 INTRODUCTION

Over the last decade, physics-based, yet interactive simulation and
rendering of natural phenomena has been an active research area in
computer graphics. For the simulation of fluid flow, besides Eule-
rian approaches using the Navier-Stokes equations, particle-based
methods like Smoothed Particle Hydrodynamics (SPH) have been
employed successfully. SPH is a Lagrangian approach for compu-
tational fluid dynamics, where the flow is modeled as a collection of
particles that move under the influence of hydrodynamic and grav-
itational forces. While an Eulerian method obtains the solution rel-
ative to a fixed grid, in the Lagrangian framework a simulation grid
is abandoned and the fluid flow equations are rewritten in terms of
the concentration of advected particles.

According to SPH, a scalar quantityA is interpolated at locations
~r by a weighted sum of contributions from all particles:

AS(~r) = ∑
j

mj
A j

ρ j
W(~r −~r j ,h)

where j iterates over all particles,mj is the mass of particlej ,~r j its
position,ρ j the density andA j the field quantity at~r j . The function
W(~r,h) is called the smoothing kernel with core radiush.

In this work, we aim at developing interactive methods for the
simulation and rendering of water flowing over a height field using
SPH. The flowing water can form rivers, or it can cluster into lakes.
The water can spring from several sources, and its directioncan be
influenced both by terrain obstacles and external forces like wind
and gravitation. In addition, due to effects like erosion orflooding
the water surface may appear localized or it may cover large con-
tiguous parts of the terrain. The mesh-free SPH method provides
an effective tool for dealing with these requirements, and it is used
in this work as the computational basis for modeling the motion of
particles that simulate the flowing water.

To allow for interactive simulation and rendering of particle sys-
tems consisting of many thousands of elements, special carehas
to be taken on the simulation data structure and on the extraction
of the renderable water surface. Therefore, we propose a grid-
less data structure that efficiently handles neighborhood queries in
sparse particle systems for real-time scenarios. In addition, we pro-
vide a solution for the efficient extraction of the surface suitable
for the rendering of flowing water. Even though we target a sparse
particle system to enable interactive simulation over large terrains,
the water surface should be closed and it should provide a realistic
look.

The paper is organized as follows: In the next section we review
previous related work. Then, we give a description of the particle
simulation system we employ. In Section 4 we show how the fluid
surface is extracted and animated. Section 5 presents and discusses
results before we conclude the paper and we give an outlook on
future work.

2 PREVIOUS WORK

Lagrangian, particle-based fluid models as introduced to computer
graphics by [5] have been extended by stable semi-Lagrangian ad-
vection [17] and level set methods to extract the actual freesurface

of the liquid [4, 3]. The simulation of fluid-fluid interaction in mul-
tiphase fluids and bubbles has recently been studied in [15].It is
based on work by Greenwood et al. [7] and integrates the idea of
using multiple fluid particle types and air particles to model realistic
liquids.

The fluid model employed in these papers is based on the
Smoothed Particle Hydrodynamics (SPH) model [6, 13, 11]. This
model is very flexible and can be used for simulating deformable
solid objects [1] or even lava [18] by integrating a diffusion equa-
tion to solve for the heat transfer in the fluid. We use a variation of
the SPH model based on the work of Müller et al. [14] that provides
good control at interactive simulation rates.

For the special case of fluids that can be represented by a height
field alone, fast solutions exist [9]. They visualize a section of an
infinite virtual fluid surface. The fluid surface is expected to cover
the entire view and no interactions with solid terrain are consid-
ered. Keiser et al. [10] studied surfels for the rendering ofthe fluid
surface, thereby integrating the visualization of fluids and solids
as point sampled surfaces. As we will discuss in section 4, point
splatting will not produce visually pleasing results for the particle
systems we target. The surfels techniques just shift this problem to
a finer scale and still require dense particle sets.

3 PARTICLE SYSTEM

SPH is an interpolation method for particle systems. Although the
flow field quantities are only defined at discrete particle positions,
SPH allows for the evaluation of these quantities at arbitrary lo-
cations in space. In the SPH model, the quantities are distributed
in a local neighborhood of each particle using radial basis func-
tions. The complexity therefore depends on the number of particles
instead of the number of grid cells as in Eulerian approaches. A
detailed discussion of the SPH model for physics-based simulation
of fluid effects has been presented in [14].

3.1 Data Structure

To interpolate a quantity at a particular position in space using the
SPH model, the set of all particles in close proximity to thisposi-
tion has to be determined. For large and dynamic particle sets, cal-
culations and memory access operations involved in these queries
quickly become the bottleneck in a simulation system. As a mat-
ter of fact, hierarchical acceleration structures are frequently em-
ployed.

1 2 3 4 5 6 7 8 9

10
1 2 3 4 5 6 7 8 9

10

Figure 2: Collision detection in 2D using staggered grids. All inter-
actions are found after linear search in both grids.

To verify the effectiveness of our new data structure to deter-
mine particle proximities, we have implemented a referencedata
structure - the octree-based approach by Vermuri et al. [20]. In this
approach, a full octree is utilized to efficiently resolve proximity.

References to particle sets are stored at the leaf nodes only. They
are updated dynamically with respect to particle motion. The oc-
tree resolution is variable. If it is chosen such that the leaves have
an edge-length of 2r, with r being the maximum particle diameter,
collision detection becomes linear in the number of particles.

For sparse particle sets, however, the cost for updating thedata
structure becomes the limiting factor. To continually allow for the
efficient determination of non-empty leafs, in such a scenario every
single particle movement causes the update of the entire hierarchy.
Therefore, although providing linear cost collision detection, the
constant factor of the algorithm is very large.

We propose a different collision detection data structure that of-
fers a considerable speedup for sparse particle systems. The struc-
ture has a minimal memory footprint and remains static at runtime:
We use a simple linear list that stores the particles. A virtual reg-
ular grid, that is identical to the leaf-level of the octree,now is
used to associate a spatial bin with each particle. The bin indices
(ix, iy, iz) are combined to build a single unique 64 Bit identifier per
bin id = |0|iz|iy|ix|. We now sort the particle list according to this
identifier. To determine the potential collision partners of a particle,
we only need to check the left neighbor entries of the particle until
we encounter an identifierid ≤ (idsel f −2) which signals that we
have left the one-neighborhood in space. If we start the collision
detection with the first particle entry in the sorted list, weare guar-
anteed to process each interaction exactly once. However, because
of the structure of the identifier, this only works for neighbors in
x-direction. Figure 2 shows the situation in 2D. We thus needa
second linear list that is associated with a staggered grid to resolve
neighborhood in y-direction. In order not to detect a collision found
in the first grid a second time, for each collision resolved, the lead-
ing Bit of the identifier is set to 1 to mark particles for processing
the successive list. After processing both lists in Figure 2, we have
detected all possible collisions exactly once. In principle, we need
an additional list (and associated staggered grid) for eachspatial di-
mension that we have lost by linear searching. Our implementation
of the collision system therefore uses a third list for the z-direction.

10.0

100.0

1000.0

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

si
m

u
la

tio
n

st
ep

s
p

er
se

co
n

d

number of particles

octree
staggered grid

Figure 3: Performance of the octree and the staggered grid update
driving the collision resolution algorithm.

Using the staggered grid approach, we have exchanged the oc-
tree update and traversal for a simple lookup in 3 linear lists. Of
course, all three lists need to be sorted for each simulationstep.
We use the STLstd::sort algorithm, that has a complexity of
O(nlogn). As there is a constant maximum number of particles per
spatial bin, the list traversal is linearO(3n). Both complexities add
up. This clearly is more thanO(n) as proposed for the octree ap-
proach of Vemuri et al. [20], but as Figure 3 shows, for the number
of particles we target in our system, the staggered grid approach
introduces a much lower constant complexity. Especially for game
applications, where a rather low number of particles is mandated by

multiple restrictions, the staggered grid outperforms theoctree by
more than an order of magnitude. Furthermore, the staggeredgrid
is insensitive to spatial particle density and thus supports the sparse
particle systems we employ. The performance profile in Figure 3
has been recorded while simulating the flow within the Hersbruck
terrain dataset (see Figure 13) with carpet generation switched off.

Figure 4: Only visible parts of the carpet are constructed (left image).
Particle-terrain collisions (red) and frozen particles (blue) are treated
special in our system (right image).

To resolve particle-particle collisions, we use a similar approach
as Müller et al. [14] and compute a combination of an elasticand
perfect inelastic collision [19]. For resolving the particle-solid col-
lisions, we need a more precise approach than Müller et al. because
the simple approach they use produces irregular motion artifacts,
especially when dealing with particles of different radii.Because
we are using sparse particle systems, these motion artifacts are very
noticeable. We actually would need to compute the correct time of
first contact between a moving sphere and triangles. A full imple-
mentation of this algorithm [2] however proved to be too expensive.
We therefore use an iterative backtracking of the motion path using
the bisection method to find a satisfactory contact position. At this
point, the particle is bounced taking into account frictionand other
surface parameters. The particle path then is recomputed such that
the particle travels the correct length for the given time step by con-
sidering the speed before and after the collision.

We further optimize the collision resolution, by introducing
“frozen” particles. These particles do not move at all or have a mo-
tion vector that is too small to produce a particle-solid collision in
the next simulation time step. They can therefore be excluded from
the expensive particle-terrain collision test. The particle-particle
collision test is performed all the time. Thus the frozen status is
reset, if the particle gains speed or is hit by another particle. In
Figure 4, frozen particles are colored blue. Red particles experi-
enced a terrain collision. The frozen particle optimization is most
valuable when particles start to stack, for example when filling a
lake or some barrier is blocking the river. The efficiency of this
optimization depends on the local speed and viscosity of theflow,
the precision of the integrator, the particle size and terrain features.
Therefore, we found it hard to give a consistent speedup factor for
this optimization.

3.2 Simulation

We have implemented multiple integration schemes for the SPH
equations. We found the embedded Runge-Kutta 3(2) scheme to

be the best trade-off between speed and accuracy for the semi-
Lagrangian method in the velocity advection step [8] to satisfy
the Courant-Friedrichs-Lewy condition [1]. For interactive display,
however, we need the particles to move at the same time increment
and thus we use the second order Runge-Kutta scheme with fixed
time step size for our simulations.

For the simulation of water flows over large terrains we do not
enforce tight packing of the particles and we allow varying particle
radii. The simulation and collision detection routines automatically
handle this or can be easily modified. By specifying the minimum
and maximum particle radius along with the emission rate, the user
can therefore easily model a natural spring source emission. For
our purposes, the surface extraction step is not straight forward.
The relatively sparse particle distribution requires additional work
to produce a closed surface.

4 SURFACE CONSTRUCTION

In previous SPH techniques for the simulation of fluid phenomena
either point splatting, surface extraction using the Marching Cubes
algorithm [12] or ray tracing of the implicit level set surface defined
by the particle distribution have been utilized to visualize the fluid
surface.

In point splatting, the particles used to model the flow are directly
mapped onto renderable point primitives. While highly efficient,
this approach can only provide the visual impression of a surface if
the particle density is high enough. Thus, it is appropriatefor the
visualization of the surface of rather compact particle clusters, but it
can not easily be applied in the current scenario to visualize rivers.
Rivers tend to become very elongated, and they usually consist of
only a single particle layer above the terrain and a rather sparse
particle distribution within it. Splatting therefore would produce
many holes in the water surface. Enlarged rendering primitives,
on the other hand, do not solve the problem as they give a false
impression of the water height above the terrain. Oriented point
sprites (surfels) do not solve the problem but shift it to a finer scale.
Finally, because there is no surface connectivity associated with the
sprites, standard shading techniques may not be easily portable.

The marching cubes approach reconstructs the surface geome-
try from the particle distribution by sampling a distance field on a
3D grid. As a consequence, sampling artifacts may arise, which is
usually avoided by sampling the field at the highest rate necessary
to reconstruct all details. Then, however, the reconstruction process
generates a highly tessellated surface, increasing computational and
rendering load. As a consequence thereof, although many accelera-
tion techniques exist the algorithm is considerably more expensive
than simple point splatting. In the literature [14], a performance
loss of about a factor of 4 is reported for the marching cubes ap-
proach compared to point splatting. To avoid the memory overhead
that is introduced by sampling the entire simulation domain, it is
typically restricted to a sub-area of the domain [4, 14, 15].

The resulting triangles can finally be rendered using graphics
hardware. Due to the highly dynamic nature of the water surface,
however, the surface has to be rebuilt in every simulation frame
and does therefore not accommodate acceleration strategies like
OpenGL display lists or GPU vertex arrays. To avoid the tessella-
tion, the distance field can directly be traced along the raysof sight.
This however is numerically even more complex and can also suffer
from sampling artifacts because of the integration step size.

The mentioned techniques all share the common problem, that
they approximate a level set surface by particle primitives. Because
the particles usually define a spherical area of influence, the re-
sulting surface always looks too blobby and gives the impression
of an overly viscous fluid (see Figure 5 for a comparison to our
method). Small scale effects like surface tension and capillary ac-
tion are not reproduced appropriately. Recently, Wang et al. [21]

Figure 5: Left: traditional rendering of the implicit water surface
using ray tracing. Right: real-time display of the water surface using
our method.

described a complex system for handling those effects accurately at
the expense of very long simulation times. For the application we
target, small scale effects do not contribute to the simulation, but
we aim to produce deformed drops as well as connected water sur-
faces at interactive rates. For this purpose, we propose the“carpet
method”: we build a surface representation that covers all particles
and is supported by them against gravity. The carpet should only
have the spatial extent of the particle cloud to allow efficient ren-
dering.

4.1 Carpet Construction

The carpet can be thought of as a regular mesh that covers the en-
tire domain. Two different approaches have been implemented to
efficiently construct this mesh. In the first approach, the mesh only
virtually exists, and it is constructed and rendered only atthose po-
sitions where particles are present (see left image in Figure 6). A
quadtree data structure is used to identify these parts efficiently:

① Particles are stored in the quadtree leaves. As it will be de-
scribed below, this step is actually folded into the particle ad-
vection step.

② For each node, the maximum height values are pulled up the
tree. These values define the virtual carpet surface.

③ Visible parts of the carpet surface are rendered by traversing
the tree depending on whether the height of the fluid is above
the height of the terrain.

Figure 6: Our first carpet construction approach builds the surface
only where particles are positioned (left image). The GPU construc-
tion approach splats the particles to a depth image of the carpet
vertices (right image).

Let the carpet be initially flat and located below any terrain
height value. The carpet consists ofn× n virtual quads. This is
the resolution of the carpets’ surface during rendering. Wenow
instantiate a full quadtree on these quads. The nodes of the tree

store the absolute minimum terrain height in this domain, the cur-
rent absolute carpet height and a velocity value. Then, we insert all
particles into the tree leaves by storing their absolute height in the
corresponding spatial bin using amax operation, and we thereby
push the carpet to the level of the topmost particle. The velocity of
this carpet part is set to zero. This is a very simple operation and
has linear time complexity and zero memory footprint. Next,the
inner nodes of the quadtree are updated by propagating the height
values from bottom to top in log(height) steps. Because the height
field of the terrain can be pre-processed, dynamic terrain changes
can also be taken into account.

Figure 7: The carpet provides a closed water surface even for sparse
particle systems (left image). The implicit classification of the
quadtree node allows to render the carpet border differently (right
image).

We can now render the carpet efficiently by traversing the
quadtree. If we find a height value below the height of the terrain at
an inner node, the recursion is aborted and nothing is drawn.If we
reach a leaf node, we can be sure that it belongs to a visible part of
the carpet. The corresponding quad is then rendered. Afterwards,
the carpet velocity is accelerated by gravity and the carpetposition
is displaced downwards accordingly. If the supporting particle has
left this part of the carpet in the upcoming frame, it will fall down
until it reaches below the terrain surface. There, it will beexcluded
from the rendering step because of the quadtree traversal. If the
supporting particle is still there, the quadtree pull in thesecond step
of the algorithm will restore the correct height.

The second approach for creating the carpet constructs the ren-
dering geometry entirely on the GPU (see right image in Figure 6).
We store the carpet vertices of the entire domain in two vertex array
buffers and update them as follows:

① Drawing into the second buffer, fetch the vertices from the
first buffer and accelerate them downwards according to grav-
ity. Store height as z-value.

② Upload new particle positions and splat all particles on topof
the displaced surface with z-test turned on.

③ Draw the target buffer as triangle strip array and exchange the
two buffers for the next iteration step.

Because the first pass has set the current carpet height in the
z-buffer, the particle splats in the second pass stack on topeach
other correctly and therefore push the carpet vertices to the topmost
particle. If the supporting particle has left this part of the carpet

in the upcoming frame, the first pass will make it fall down until
it reaches below the terrain surface. When the carpet is drawn in
the third pass, these triangles will be efficiently culled bythe early
z-test.

For creating smooth particle shapes, we take advantage of the
second pass to splat point sprites. The sprites can be textured with
an arbitrary depth image. We provide several depth shapes that are
additionally oriented by the splatting shader according tothe di-
rection of particle movement. This approach for constructing the
carpet geometry therefore is implemented entirely on the GPU and
thus minimizes the bus transfer to the upload of the particleposi-
tions.

4.2 Carpet Update

The carpet can be updated incrementally. The spatial data struc-
ture used in the SPH model and for collision resolution delivers the
necessary information. If we project its leaves down in y-direction,
we collapse each stack into a quad containing all particles in this
part of the terrain (see Figure 8). The projected mesh is now used
as the dual of the virtual carpet quadtree mesh. Moving a particle
“below the carpet” therefore is integrated into the particle advection
and collision resolution step by simply dropping the y-coordinate to
determine the correct carpet bin. Because the quadtree is the dual
of the spatial tree, a particle in a spatial bin will exactly support one
carpet vertex.

4.3 Carpet Optimization and Rendering

In order to construct visually pleasant carpets for larger terrains, one
would need to have a very large virtual quad surface and its corre-
sponding quadtree. The storage requirements for the full quadtree
would be bad as will be the traversal performance. However, for
adequate collision detection as well as for a nice looking carpet
surface, a good spatial resolution is mandatory. We therefore allow
the quadtree leaves of the carpet to contain a whole set of spatial
bins. Note that the hierarchical pull operation to build thequadtree
is not affected by this.

pr
oj

ec
t d

ow
n

projected octree
configuration

dual carpet
quadtree mesh

side view

Figure 8: Coupling of simulation space and carpet quadtree structure
and two example configurations for particle distributions within a
quadtree leaf node.

When rendering a carpet quadtree leaf built by the first construc-
tion approach, we now have additional possibilities for thelocal
shape of the quad. We can build a smoothed surface that minimizes
the local curvature to account for surface tension or identify iso-
lated particles as single drops to simulate spray. Figure 8 shows
two example configurations. They are precomputed and storedin a
lookup table. Note that the produced partial surface does not need
to be connected. Disconnected particles can even be rendered using
different primitives. In the lower row of Figure 8, we could choose
to render the isolated particle as a point sprite textured with foam.
This provides an implicit classification of the particles and gives
subtle improvements of the carpet boundary (see Figures 7 and 12).

For a realistic behavior, it is only mandatory for the surface borders
that are not supported by particles to reach below the terrain level.
As we know the local absolute height and particle radius, this is
easy to compute for the first construction approach without looking
it up in the terrain map. The second carpet construction approach
automatically accounts for this as it always draws the carpet on the
entire domain. The carpet method differs from the surfels approach,
in that the construction of a partial surface is not tied to a particle.
In contrast to [10], we therefore do not need to carry pointers from
surfels to particles and vice versa. The GPU carpet construction
cannot change rendering primitives when drawing the carpet, but it
offers a considerable performance gain. When using 20000 parti-
cles, the carpet can be constructed 55 times per second usingthe
GPU method as opposed to 14 times using the more flexible CPU
method.

Note that examining the particle neighborhood for one of the
configurations is not limited to the inside of a carpet quadtree leaf.
Because of the regular structure, neighbors can be accessedquickly.
We can therefore also choose to match the configuration patterns
using multiple quadtree leaves instead of spatial bins. Thechoice
of the configuration implicitly classifies the particles.

Figure 9: The carpet method allows to display elongated drops of
water running over a hill (left image). A GPU shader calculates the
local surface velocity and renders oriented streaks (right image).

Because a carpet vertex smoothly falls down if the supporting
particle moves away, rapid changes of the carpet occur only if a
particle flows into this region. This is consistent with the observed
behavior of water and leads to elongated traces of water drops if
the particle moves sufficiently fast (see Figure 9). This allows us
to run the simulation more efficiently using considerably less parti-
cles. We can also show surface waves by using a procedural gravity
force component. For the analysis of the flows, we have imple-
mented a GPU shader to visualize the primary movement direction
and speed of the underlying particles using a variation of the Ori-
ented Line Integral Convolution method [22].

The carpet method efficiently extracts the top flow surface. For
visualization of rivers this is ideal. The method reaches its limits
only with phenomena like waterfalls or fountains but remains ap-
plicable in non-extreme cases. Figure 12 shows water falling down
from a rock and filling a small lake below. The carpet providesa vi-
sually pleasant hull for the cascade. The carpet method however is
not volume conserving which poses a potential problem during the
filling of the lake. However this effect is totally dominatedby the
river flow motion and is not noticeable. When using the GPU con-
struction method, additional care has to be taken when drawing the
resulting carpet, as the carpet resolution and the terrain resolution
need not match. Very low parts of the carpet therefore can disap-
pear temporally below the terrain because of z-fighting. Theshader
used for rendering the carpet can suppress this effect by comparing
carpet and terrain height and adding a small offset to the carpet in
relevant areas.

5 RESULTS

In the following, we present performance results for two typical
applications of our particle system. The experiments were run on
a machine equipped with AMD Athlon64 2.2 GHz processor and
nVIDIA GeForce 6800 GT graphics card with 256 MByte video
memory. Previous work by Müller et al. showed interactive render-
ing of SPH models at 5 fps for 3000 particles [14]. For this number
of particles, we obtain a speedup of 13.6 using the GPU carpet(see
figure 12).

The first example demonstrates the capability of the carpet to
provide a convincing river simulation even on large and complex
terrains. In Figure 11, we placed a source in the upper right corner
in the bed of the Colorado river in the Grand Canyon dataset. The
flow reached all the way down to the lake in the lower left. In order
to provide an interactive display, we use a rather sparse particle
system. The carpet nevertheless faithfully fills the canyon. The
simulation uses up to 8000 particles but maintains a performance
of 26 fps when all particles are released.

In the second application, the carpet is used for interactive vi-
sualization of a flooding simulation. In Figure 13, the dam ofthe
small hydro-electric power plant in the foreground is assumed to be
broken. Apart from the water level in the local housings, it is inter-
esting to see whether the flood reaches the larger city of Hersbruck
in the center of the simulation region and which infrastructure ele-
ments get blocked. The dataset has 25 meters ground resolution and
1 meter height resolution. The challenge for the simulationhere is
that there is only a very small slope for the water to run into the
larger valley. We therefore had to use many very small particles
and integration step sizes for a good simulation. The more expen-
sive particle-terrain collision routine we are using allows for this.
Despite the large number of particles, the carpet method provides
an interactive visualization. It consumes less than 10% of the frame
time. The simulation uses up to 20000 particles and maintains a
performance of 12.7 fps when all particles are released. As Figure
13 shows, the flood blocks a major road running through the valley,
then it flows into the river in the middle of the larger valley without
reaching the city.

6 CONCLUSION

We have presented a grid-less acceleration structure and two fast
surface construction methods for SPH-style particle systems that
are especially suited for the display of water flowing in rivers. The
grid-less technique uses sorted lists obtained from staggered grids
to resolve neighbor queries for the particle systems we target more
than an order of magnitude faster than hierarchical octree-based ap-
proaches. The carpet structure does not require a dense particle set
to produce a closed surface like it is needed for point splatting ap-
proaches. It offers an explicit surface description that can be con-
structed incrementally at much faster rates than using the marching
cubes approach. Because the carpet construction is very efficient,
one can afford to visualize every simulation time step whichresults
in an interactive tool for particle-based flow simulations.

The GPU-based carpet construction method has been evaluated
on a complex terrain where the sparse particle system employed
provides interactive simulation frame rates despite the expensive
particle-terrain collision resolution. In a second experiment, we
used a massive particle set for accurate environmental simulation.
The carpet method allows us to visualize both the sparse and the
massive particle system very efficiently. Because we extract an ex-
plicit surface representation, rendering effects using GPU shaders
are straight forward to apply [16].

Figure 10: Coupling SPH and rigid body simulation allows for adding
blocking obstacles to the river.

6.1 Future Work

We are about to integrate rigid body simulation into our system to
allow for simulating obstacles blocking the river. The SPH model
and the rigid bodies influence each other, so the objects in figure
10 will get washed away by the flow as soon as enough water has
accumulated behind it.

We would like to extend our system to support surfaces with
dynamic anisotropic properties to model small scale effects in the
spirit of [21]. As the carpet is only constructed in regions where
particles are, we can easily render it into an offscreen texture us-
ing additive blending to create a dynamic “wet-map” that canbe
taken into account when integrating particle positions. Anexample
would be the modulation of surface friction. The carpet coverage
can also be helpful to trigger erosion effects.

ACKNOWLEDGMENTS

The Hersbruck dataset appears by courtesy of Bayerisches Landes-
vermessungsamt München. The Grand Canyon dataset is from the
Large Geometric Models Archive at Georgia Institute of Technol-
ogy.

APPENDIX A

This is the GLSL code of the splatting shader for the GPU carpet
construction.

uniform sampler2D splatTex;

uniform vec4 remapFragPos;

void main(void)

{

// calculate splat height

float splat = texture2D(splatTex,gl_TexCoord[0].xy).x;

float depth = gl_TexCoord[1].y + splat;

// calculate object-space vertex position and

// draw to depth image

gl_FragColor.xz = (gl_FragCoord.xy-remapFragPos.xy) *

remapFragPos.zw;

gl_FragColor.y = depth;

gl_FragColor.w = 1.0;

gl_FragDepth = depth;

}

REFERENCES

[1] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: a
new paradigm for animating highly deformable bodies. InProceed-
ings of the Eurographics workshop on Computer animation andsimu-
lation ’96, pages 61–76, New York, NY, USA, 1996. Springer-Verlag
New York, Inc.

[2] David H. Eberly. 3D Game Engine Design: A Practical Approach to
Real-Time Computer Graphics. Morgan Kaufmann, 2000.

[3] Douglas Enright, Stephen Marschner, and Ronald Fedkiw.Anima-
tion and rendering of complex water surfaces. InSIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, pages 736–744, New York, NY, USA, 2002.
ACM Press.

[4] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In
SIGGRAPH ’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages 23–30, New York,
NY, USA, 2001. ACM Press.

[5] Nick Foster and Dimitri Metaxas. Realistic animation ofliquids.
Graphical Models and Image Processing, 58(5):471–483, 1996.

[6] R. Gingold and J. Monaghan. Smoothed particle hydrodynamics:
Theory and application to non-spherical stars.Monthly Notices of the
Royal Astronomical Society, 181:375–398, 1977.

[7] S. T. Greenwood and D. H. House. Better with bubbles: enhancing the
visual realism of simulated fluid. InSCA ’04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 287–296, New York, NY, USA, 2004. ACM Press.

[8] M. Griebel, T. Dornseifer, and T. Neunhoeffer.Numerische Simulation
in der Strömungsmechanik. Vieweg Verlag, 1995.

[9] Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. Interactive
animation of ocean waves. InSCA ’02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages
161–166, New York, NY, USA, 2002. ACM Press.

[10] Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip
Dutré, and Markus Gross. A unified lagrangian approach to solid-
fluid animation. InEurographics Symposium on Point-Based Graph-
ics (2005), pages 125–133, 2005.

[11] M.B. Liu and G.R. Liu.Smoothed Particle Hydrodynamics: A Mesh-
free Particle Method. World Scientific Publishing, 2003.

[12] W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. InComputer Graphics (SIG-
GRAPH 87 Proceedings), pages 163–169, 1987.

[13] J. Monaghan. Smoothed particle hydrodynamics.Annual Reviews of
Astronomy & Astrophysics, 30:543–574, 1992.

[14] Matthias Müller, David Charypar, and Markus Gross. Particle-based
fluid simulation for interactive applications. InSCA ’03: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pages 154–159, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[15] Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus
Gross. Particle-based fluid-fluid interaction. InSCA ’05: Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 237–244, New York, NY, USA, 2005. ACM Press.

[16] Simon Premoze and Michael Ashikhmin. Rendering natural waters.
Computer Graphics Forum, 20(4):189–200, 2001.

[17] Jos Stam. Stable fluids. InSIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques,
pages 121–128, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[18] Dan Stora, Pierre-Olivier Agliati, Marie-Paule Cani,Fabrice Neyret,
and Jean-Dominique Gascuel. Animating lava flows. InGraphics
Interface (GI’99) Proceedings, pages 203–210, June 1999.

[19] Paul A. Tipler.Physics For Scientists and Engineers, Vol. 1: Mechan-
ics, Oscillations and Waves, Thermodynamics. W. H. Freeman, fourth
edition, 1999.

[20] B. C. Vemuri, Y. Cao, and L. Chen. Fast collision detection algo-
rithms with applications to particle flow.Computer Graphics Forum,
17(2):121–134, 6 1998.

[21] Huamin Wang, Peter J. Mucha, and Greg Turk. Water drops on sur-
faces.ACM Trans. Graph., 24(3):921–929, 2005.

[22] Rainer Wegenkittl, E. Gröller, and Werner Purgathofer. Animating
flow fields: Rendering of oriented line integral convolution. In CA
’97: Proceedings of the Computer Animation, page 15, Washington,
DC, USA, 1997. IEEE Computer Society.

Figure 11: The carpet method on large complex terrain. Even
though the particle system is sparse, the carpet provides a closed wa-
ter surface (particle size exaggerated compared to real world scale).
We use 8000 particles at 26 fps.

Figure 12: The carpet method used for visualizing a cascade. The
method gives sensible results even for this extreme case. (68 fps
using 3000 particles)

Figure 13: Flooding simulation after an assumed dam breach. The simulation uses 20000 particles and a 4:1 mapping of spatial nodes to the
carpet quadtree. Performance: 12.7 fps.

