Realistic and Interactive Simulation of Rivers

Peter Kipfer
Havok
peter.kipfer@havok.com

Ridiger Westermann

Computer Graphics & Visualization

Technische Universitat Miinchen

westermann@in.tum.de

sssnnn

| | . | |

bl T e |

\ \

T

X

N

o

-

» | |

R PR TS

= 3 .
ssssssssssssssssnes

Figure 1: Simulation of a river cascade: Water flowing from a rock and filling the lake below (68 fps using 3000 particles).

ABSTRACT

In this paper we present interactive techniques for phylsiced
simulation and realistic rendering of rivers using SmodtRarticle
Hydrodynamics. We describe the design and implementafi@n o
grid-less data structure to efficiently determine partidle close
proximity and to resolve particle collisions. Based on ttisa
structure, an efficient method to extract and display thel fitee
surface from elongated particle structures as they arergekin
particle based fluid simulation is presented. The proposeithoal
is far faster than the Marching Cubes approach, and it aartstan
explicit surface representation that is well suited fordening. The
surface extraction can be implemented on the GPU and ordg tak
fraction of the simulation time step. It is thus amenablest-time
scenarios like computer games and virtual reality enviremis

CR Categories: 1.3.5 [Computational Geometry and Object
Modeling]: Curve, surface, solid, and object represeotesti—
Physically based modeling; 1.3.6 [Methodology and Techagj:
Graphics data structures and data types

Keywords: physics-based simulation, river flow, particle system,
surface extraction

1 INTRODUCTION

Over the last decade, physics-based, yet interactive atrooland
rendering of natural phenomena has been an active reseaecna
computer graphics. For the simulation of fluid flow, besideseE
rian approaches using the Navier-Stokes equations, leabtised
methods like Smoothed Particle Hydrodynamics (SPH) haea be
employed successfully. SPH is a Lagrangian approach fopaem
tational fluid dynamics, where the flow is modeled as a cabeaf
particles that move under the influence of hydrodynamic aad-g
itational forces. While an Eulerian method obtains the toturel-
ative to a fixed grid, in the Lagrangian framework a simulagoid

is abandoned and the fluid flow equations are rewritten ingexin
the concentration of advected particles.

According to SPH, a scalar quantidyis interpolated at locations
T by a weighted sum of contributions from all particles:

A.
AS(r) =3 m; p—;ww— 7j.h)
]

wherej iterates over all particlesy; is the mass of particlg, 7j its
position,pj the density and\; the field quantity afj. The function
W(F,h) is called the smoothing kernel with core radius

In this work, we aim at developing interactive methods far th
simulation and rendering of water flowing over a height fiedthg
SPH. The flowing water can form rivers, or it can cluster iraticels.
The water can spring from several sources, and its direcaorbe
influenced both by terrain obstacles and external forcesMiind
and gravitation. In addition, due to effects like erosiorflooding
the water surface may appear localized or it may cover laoge ¢
tiguous parts of the terrain. The mesh-free SPH method gesvi
an effective tool for dealing with these requirements, drisliised
in this work as the computational basis for modeling the orotf
particles that simulate the flowing water.

To allow for interactive simulation and rendering of paisys-
tems consisting of many thousands of elements, specialhzeze
to be taken on the simulation data structure and on the ¢ixtnac
of the renderable water surface. Therefore, we proposeda gri
less data structure that efficiently handles neighborhagatigs in
sparse particle systems for real-time scenarios. In auiditve pro-
vide a solution for the efficient extraction of the surfacé&ahle
for the rendering of flowing water. Even though we target aspa
particle system to enable interactive simulation overdaggrains,
the water surface should be closed and it should providelistiea
look.

The paper is organized as follows: In the next section wesvevi
previous related work. Then, we give a description of theiglar
simulation system we employ. In Section 4 we show how the fluid
surface is extracted and animated. Section 5 presents scukdies
results before we conclude the paper and we give an outlook on
future work.

2 PREVIOUSWORK

Lagrangian, particle-based fluid models as introduced topzter
graphics by [5] have been extended by stable semi-Lagraragia
vection [17] and level set methods to extract the actualdtetace

of the liquid [4, 3]. The simulation of fluid-fluid interactidn mul-
tiphase fluids and bubbles has recently been studied in [15§.

References to particle sets are stored at the leaf nodes Dhéy
are updated dynamically with respect to particle motione h-

based on work by Greenwood et al. [7] and integrates the iflea o tree resolution is variable. If it is chosen such that thedsahave

using multiple fluid particle types and air particles to maéealistic
liquids.

The fluid model employed in these papers is based on the

Smoothed Particle Hydrodynamics (SPH) model [6, 13, 11JsTh
model is very flexible and can be used for simulating defotmab
solid objects [1] or even lava [18] by integrating a diffusiequa-
tion to solve for the heat transfer in the fluid. We use a vimiedf
the SPH model based on the work of Muller et al. [14] that jules
good control at interactive simulation rates.

For the special case of fluids that can be represented by htheig
field alone, fast solutions exist [9]. They visualize a smTf an
infinite virtual fluid surface. The fluid surface is expectedtover
the entire view and no interactions with solid terrain aresid-
ered. Keiser et al. [10] studied surfels for the renderintheffluid
surface, thereby integrating the visualization of fluidsl @olids
as point sampled surfaces. As we will discuss in section #tpo
splatting will not produce visually pleasing results foe tparticle
systems we target. The surfels techniques just shift tlaislem to
a finer scale and still require dense particle sets.

3 PARTICLE SYSTEM

SPH is an interpolation method for particle systems. Algiothe
flow field quantities are only defined at discrete particleitpmss,
SPH allows for the evaluation of these quantities at antyitte-
cations in space. In the SPH model, the quantities are lolisérd
in a local neighborhood of each particle using radial basiec+
tions. The complexity therefore depends on the number dicbes
instead of the number of grid cells as in Eulerian approaclies
detailed discussion of the SPH model for physics-basedlation
of fluid effects has been presented in [14].

3.1 Data Structure

To interpolate a quantity at a particular position in spasiegithe
SPH model, the set of all particles in close proximity to thisi-
tion has to be determined. For large and dynamic partick sat-
culations and memory access operations involved in thesgesu
quickly become the bottleneck in a simulation system. As & ma
ter of fact, hierarchical acceleration structures areuesgly em-
ployed.

10

Figure 2: Collision detection in 2D using staggered grids. All inter-
actions are found after linear search in both grids.

To verify the effectiveness of our new data structure to ete
mine particle proximities, we have implemented a referestaia
structure - the octree-based approach by Vermuri et al. [AGhis
approach, a full octree is utilized to efficiently resolveximity.

an edge-length ofr2 with r being the maximum particle diameter,
collision detection becomes linear in the number of pascl

For sparse particle sets, however, the cost for updatinglatee
structure becomes the limiting factor. To continually allfor the
efficient determination of non-empty leafs, in such a sderewrery
single particle movement causes the update of the entirarbley.
Therefore, although providing linear cost collision déit, the
constant factor of the algorithm is very large.

We propose a different collision detection data structhes of-
fers a considerable speedup for sparse particle systenesstiiiic-
ture has a minimal memory footprint and remains static afime
We use a simple linear list that stores the particles. A @irtag-
ular grid, that is identical to the leaf-level of the octremw is
used to associate a spatial bin with each particle. The hiicés
(ix,ly,iz) are combined to build a single unique 64 Bit identifier per
binid = |0Ji,|iy|ix|. We now sort the particle list according to this
identifier. To determine the potential collision partnefra particle,
we only need to check the left neighbor entries of the particitil
we encounter an identified < (idse f — 2) which signals that we
have left the one-neighborhood in space. If we start thesoofi
detection with the first particle entry in the sorted list, ave guar-
anteed to process each interaction exactly once. Howeseause
of the structure of the identifier, this only works for neigh in
x-direction. Figure 2 shows the situation in 2D. We thus naed
second linear list that is associated with a staggered gridsolve
neighborhood in y-direction. In order not to detect a cailifound
in the first grid a second time, for each collision resolvée, lead-
ing Bit of the identifier is set to 1 to mark particles for presing
the successive list. After processing both lists in Figure@ have
detected all possible collisions exactly once. In prireiple need
an additional list (and associated staggered grid) for spatial di-
mension that we have lost by linear searching. Our impleatiemt
of the collision system therefore uses a third list for thdirection.

1000.0

octree- -« - -+
staggered grid——

100.0

simulation steps per second

10.0 I 1 I I 1 I I I 1 I
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

number of particles

Figure 3: Performance of the octree and the staggered grid update
driving the collision resolution algorithm.

Using the staggered grid approach, we have exchanged the oc-
tree update and traversal for a simple lookup in 3 lineas.li€f
course, all three lists need to be sorted for each simulatiep.

We use the STlstd: :sort algorithm, that has a complexity of
O(nlogn). As there is a constant maximum number of particles per
spatial bin, the list traversal is line@(3n). Both complexities add
up. This clearly is more tha®(n) as proposed for the octree ap-
proach of Vemuri et al. [20], but as Figure 3 shows, for the bem

of particles we target in our system, the staggered gridcgmbr
introduces a much lower constant complexity. Especialtygiome
applications, where a rather low number of particles is rasediby

multiple restrictions, the staggered grid outperformsdb&ee by
more than an order of magnitude. Furthermore, the stagagied
is insensitive to spatial particle density and thus supihie sparse
particle systems we employ. The performance profile in Edur
has been recorded while simulating the flow within the Harskr
terrain dataset (see Figure 13) with carpet generatiorckedt off.

Figure 4: Only visible parts of the carpet are constructed (left image).
Particle-terrain collisions (red) and frozen particles (blue) are treated
special in our system (right image).

To resolve particle-particle collisions, we use a similgprach
as Miller et al. [14] and compute a combination of an elaatid
perfect inelastic collision [19]. For resolving the paltisolid col-
lisions, we need a more precise approach than Miller eeahise
the simple approach they use produces irregular motiofaetgi
especially when dealing with particles of different radiecause
we are using sparse particle systems, these motion astdaetvery
noticeable. We actually would need to compute the correw tf
first contact between a moving sphere and triangles. A fublém
mentation of this algorithm [2] however proved to be too exgiee.
We therefore use an iterative backtracking of the motioh paing
the bisection method to find a satisfactory contact posititrthis
point, the particle is bounced taking into account frictaord other
surface parameters. The particle path then is recomputdtbat
the particle travels the correct length for the given tinepgiy con-
sidering the speed before and after the collision.

We further optimize the collision resolution, by introdogi
“frozen” particles. These particles do not move at all orehawmo-
tion vector that is too small to produce a particle-solidisi@n in
the next simulation time step. They can therefore be exd ficen
the expensive particle-terrain collision test. The péetjgarticle
collision test is performed all the time. Thus the frozertusgds
reset, if the particle gains speed or is hit by another garti¢n
Figure 4, frozen particles are colored blue. Red particlggerl-
enced a terrain collision. The frozen particle optimizati® most
valuable when particles start to stack, for example wheimdila
lake or some barrier is blocking the river. The efficiency lukt
optimization depends on the local speed and viscosity oflthe
the precision of the integrator, the particle size and tefieatures.
Therefore, we found it hard to give a consistent speedupifdot
this optimization.

3.2 Simulation

We have implemented multiple integration schemes for thel SP

be the best trade-off between speed and accuracy for the semi
Lagrangian method in the velocity advection step [8] tos$ati

the Courant-Friedrichs-Lewy condition [1]. For interaetdisplay,
however, we need the particles to move at the same time imerem
and thus we use the second order Runge-Kutta scheme with fixed
time step size for our simulations.

For the simulation of water flows over large terrains we do not
enforce tight packing of the particles and we allow varyiagticle
radii. The simulation and collision detection routinescawiatically
handle this or can be easily modified. By specifying the mimm
and maximum particle radius along with the emission rate uter
can therefore easily model a natural spring source emisdian
our purposes, the surface extraction step is not straightaial.

The relatively sparse particle distribution requires &ddal work
to produce a closed surface.

4 SURFACE CONSTRUCTION

In previous SPH techniques for the simulation of fluid pheanan
either point splatting, surface extraction using the MargtCubes
algorithm [12] or ray tracing of the implicit level set suckadefined
by the particle distribution have been utilized to visualte fluid
surface.

In point splatting, the particles used to model the flow arealiy
mapped onto renderable point primitives. While highly éint,
this approach can only provide the visual impression of tasarif
the particle density is high enough. Thus, it is appropriatehe
visualization of the surface of rather compact particletdts, but it
can not easily be applied in the current scenario to visealizrs.
Rivers tend to become very elongated, and they usually soofi
only a single particle layer above the terrain and a ratharsep
particle distribution within it. Splatting therefore waliproduce
many holes in the water surface. Enlarged rendering priesti
on the other hand, do not solve the problem as they give a false
impression of the water height above the terrain. Orientdtp
sprites (surfels) do not solve the problem but shift it to affiscale.
Finally, because there is no surface connectivity assetiatth the
sprites, standard shading techniques may not be easilgtpert

The marching cubes approach reconstructs the surface geome
try from the particle distribution by sampling a distancédien a
3D grid. As a consequence, sampling artifacts may arise;hwibi
usually avoided by sampling the field at the highest rate ssng
to reconstruct all details. Then, however, the reconstngirocess
generates a highly tessellated surface, increasing caiquzl and
rendering load. As a consequence thereof, although maejesae
tion techniques exist the algorithm is considerably morgeesive
than simple point splatting. In the literature [14], a penfance
loss of about a factor of 4 is reported for the marching culges a
proach compared to point splatting. To avoid the memorytosea
that is introduced by sampling the entire simulation doméirs
typically restricted to a sub-area of the domain [4, 14, 15].

The resulting triangles can finally be rendered using gphi
hardware. Due to the highly dynamic nature of the water setfa
however, the surface has to be rebuilt in every simulatiamé
and does therefore not accommodate acceleration stratbige
OpenGL display lists or GPU vertex arrays. To avoid the tesse
tion, the distance field can directly be traced along the ohggght.
This however is numerically even more complex and can alfersu
from sampling artifacts because of the integration step. siz

The mentioned techniques all share the common problem, that
they approximate a level set surface by particle primitiBscause
the particles usually define a spherical area of influenoce,réh
sulting surface always looks too blobby and gives the ingioes
of an overly viscous fluid (see Figure 5 for a comparison to our
method). Small scale effects like surface tension and leapilc-

equations. We found the embedded Runge-Kutta 3(2) scheme totion are not reproduced appropriately. Recently, Wang .€4]

store the absolute minimum terrain height in this domaie, dtr-
rent absolute carpet height and a velocity value. Then, serirall
particles into the tree leaves by storing their absolutghten the
corresponding spatial bin usingnaax operation, and we thereby
push the carpet to the level of the topmost particle. Thecit@f
this carpet part is set to zero. This is a very simple opanadicd
has linear time complexity and zero memory footprint. Nébkg
inner nodes of the quadtree are updated by propagating tgethe
values from bottom to top in Igheight steps. Because the height
field of the terrain can be pre-processed, dynamic terraamgbs
can also be taken into account.

Figure 5: Left: traditional rendering of the implicit water surface
using ray tracing. Right: real-time display of the water surface using
our method.

described a complex system for handling those effects atalyrat

the expense of very long simulation times. For the applcatie
target, small scale effects do not contribute to the sinardatbut

we aim to produce deformed drops as well as connected water su
faces at interactive rates. For this purpose, we propos&#npet
method”: we build a surface representation that coversaatiges
and is supported by them against gravity. The carpet shauid o
have the spatial extent of the particle cloud to allow effitieen-
dering.

4.1 Carpet Construction

The carpet can be thought of as a regular mesh that coversithe e
tire domain. Two different approaches have been implendetate
efficiently construct this mesh. In the first approach, themanly

virtually exists, and it is constructed and rendered onthase po- Figure 7: The carpet provides a closed water surface even for sparse
sitions where particles are present (see left image in Eigur A particle systems (left image). The implicit classification of the
quadtree data structure is used to identify these partseeffig: guadtr)ee node allows to render the carpet border differently (right
image).
O Particles are stored in the quadtree leaves. As it will be de-
scribed below, this step is actually folded into the paetemti- We can now render the carpet efficiently by traversing the
vection step. quadtree. If we find a height value below the height of theatarat

)) an inner node, the recursion is aborted and nothing is dréfwe
0 For each node, the maximum height values are pulled up the reach a leaf node, we can be sure that it belongs to a visidl@pa
tree. These values define the virtual carpet surface. the carpet. The corresponding quad is then rendered. Adtelsy
. . the carpet velocity is accelerated by gravity and the carpsition
0 Visible parts of the carpet surface are rendered by travgrsi s gisplaced downwards accordingly. If the supportingiperhas
the tree depending on whether the height of the fluid is above |gft this part of the carpet in the upcoming frame, it willlfdbwn
the height of the terrain. until it reaches below the terrain surface. There, it wilxeluded
from the rendering step because of the quadtree traverkéhe |
supporting particle is still there, the quadtree pull inskeond step
of the algorithm will restore the correct height.

The second approach for creating the carpet constructethe r
dering geometry entirely on the GPU (see right image in FE@)r
We store the carpet vertices of the entire domain in two xexteay
buffers and update them as follows:

O Drawing into the second buffer, fetch the vertices from the
first buffer and accelerate them downwards according to-grav
ity. Store height as z-value.

0 Upload new particle positions and splat all particles ondbp

Figure 6: Our first carpet construction approach builds the surface the displaced surface with z-test turned on.

only where particles are positioned (left image). The GPU construc-

tion approach splats the particles to a depth image of the carpet O Draw the target buffer as triangle strip array and exchahge t
vertices (right image). two buffers for the next iteration step.

Let the carpet be initially flat and located below any terrain Because the first pass has set the current carpet height in the
height value. The carpet consistsrok n virtual quads. This is z-buffer, the particle splats in the second pass stack oresap
the resolution of the carpets’ surface during rendering. nale other correctly and therefore push the carpet verticessttapmost
instantiate a full quadtree on these quads. The nodes ofgbe t particle. If the supporting particle has left this part oé tbarpet

in the upcoming frame, the first pass will make it fall downilunt
it reaches below the terrain surface. When the carpet isrdiaw
the third pass, these triangles will be efficiently culledthy early
z-test.

For creating smooth particle shapes, we take advantageeof th
second pass to splat point sprites. The sprites can be eebxiuith
an arbitrary depth image. We provide several depth shapesite
additionally oriented by the splatting shader accordinght di-
rection of particle movement. This approach for constngcthe
carpet geometry therefore is implemented entirely on the Gid
thus minimizes the bus transfer to the upload of the parpioks-
tions.

4.2 Carpet Update

The carpet can be updated incrementally. The spatial date-st
ture used in the SPH model and for collision resolution aéetithe
necessary information. If we project its leaves down inngdiion,
we collapse each stack into a quad containing all particlehis
part of the terrain (see Figure 8). The projected mesh is reed u
as the dual of the virtual carpet quadtree mesh. Moving agart
“below the carpet” therefore is integrated into the pagtitivection
and collision resolution step by simply dropping the y-ctinate to
determine the correct carpet bin. Because the quadtree dud
of the spatial tree, a particle in a spatial bin will exactypport one
carpet vertex.

4.3 Carpet Optimization and Rendering

In order to construct visually pleasant carpets for largemins, one
would need to have a very large virtual quad surface and it&®<co
sponding quadtree. The storage requirements for the fallimee
would be bad as will be the traversal performance. Howewer, f
adequate collision detection as well as for a nice lookingeia
surface, a good spatial resolution is mandatory. We thezefthow
the quadtree leaves of the carpet to contain a whole set tiikpa
bins. Note that the hierarchical pull operation to build tu@dtree
is not affected by this.

i 4
)
B projected octree dual carpet side view
B (1 configuration guadtree mesh
5| L %i; B
= ing
| © °

Figure 8: Coupling of simulation space and carpet quadtree structure
and two example configurations for particle distributions within a
quadtree leaf node.

When rendering a carpet quadtree leaf built by the first coost
tion approach, we now have additional possibilities for lieal
shape of the quad. We can build a smoothed surface that nzigsmi
the local curvature to account for surface tension or idgfigio-
lated particles as single drops to simulate spray. Figurbdvs
two example configurations. They are precomputed and storzd
lookup table. Note that the produced partial surface doéserd
to be connected. Disconnected particles can even be rehdsirg
different primitives. In the lower row of Figure 8, we coulldanse
to render the isolated particle as a point sprite texturat feam.
This provides an implicit classification of the particledagives
subtle improvements of the carpet boundary (see Figured I2n

For a realistic behavior, it is only mandatory for the suefborders
that are not supported by particles to reach below the tetesel.
As we know the local absolute height and particle radius thi
easy to compute for the first construction approach withooking

it up in the terrain map. The second carpet constructioncambr
automatically accounts for this as it always draws the daspehe
entire domain. The carpet method differs from the surfefs@gch,

in that the construction of a partial surface is not tied t@agiple.

In contrast to [10], we therefore do not need to carry posfeom
surfels to particles and vice versa. The GPU carpet cortiiruc
cannot change rendering primitives when drawing the cabpett
offers a considerable performance gain. When using 20068 pa
cles, the carpet can be constructed 55 times per second tiging
GPU method as opposed to 14 times using the more flexible CPU
method.

Note that examining the particle neighborhood for one of the
configurations is not limited to the inside of a carpet queelieaf.
Because of the regular structure, neighbors can be acoggiid.

We can therefore also choose to match the configurationrpatte
using multiple quadtree leaves instead of spatial bins. cHuéce
of the configuration implicitly classifies the particles.

Figure 9: The carpet method allows to display elongated drops of
water running over a hill (left image). A GPU shader calculates the
local surface velocity and renders oriented streaks (right image).

Because a carpet vertex smoothly falls down if the suppprtin
particle moves away, rapid changes of the carpet occur dray i
particle flows into this region. This is consistent with theserved
behavior of water and leads to elongated traces of watersdfop
the particle moves sufficiently fast (see Figure 9). Thisvad us
to run the simulation more efficiently using considerabhslearti-
cles. We can also show surface waves by using a proceduxadtiygra
force component. For the analysis of the flows, we have imple-
mented a GPU shader to visualize the primary movement direct
and speed of the underlying particles using a variation efQhi-
ented Line Integral Convolution method [22].

The carpet method efficiently extracts the top flow surfaca. F
visualization of rivers this is ideal. The method reachediihits
only with phenomena like waterfalls or fountains but rensaap-
plicable in non-extreme cases. Figure 12 shows water gatiown
from a rock and filling a small lake below. The carpet provides
sually pleasant hull for the cascade. The carpet method Vewise
not volume conserving which poses a potential problem ditie
filling of the lake. However this effect is totally dominateg the
river flow motion and is not noticeable. When using the GPU-con
struction method, additional care has to be taken when dcathie
resulting carpet, as the carpet resolution and the teresolution
need not match. Very low parts of the carpet therefore caapdis
pear temporally below the terrain because of z-fighting. Straler
used for rendering the carpet can suppress this effect bpaony
carpet and terrain height and adding a small offset to theetan
relevant areas.

5 RESULTS

In the following, we present performance results for twoidgp
applications of our particle system. The experiments wenean

a machine equipped with AMD Athlon64 2.2 GHz processor and
nVIDIA GeForce 6800 GT graphics card with 256 MByte video
memory. Previous work by Milller et al. showed interactiesder-

ing of SPH models at 5 fps for 3000 particles [14]. For this bem

of particles, we obtain a speedup of 13.6 using the GPU cépet
figure 12).

The first example demonstrates the capability of the campet t
provide a convincing river simulation even on large and cemp
terrains. In Figure 11, we placed a source in the upper rightey
in the bed of the Colorado river in the Grand Canyon datase¢ T
flow reached all the way down to the lake in the lower left. Ider
to provide an interactive display, we use a rather sparstclgar
system. The carpet nevertheless faithfully fills the canydine
simulation uses up to 8000 particles but maintains a pedona
of 26 fps when all particles are released.

In the second application, the carpet is used for interactiv
sualization of a flooding simulation. In Figure 13, the danthef
small hydro-electric power plant in the foreground is assdito be
broken. Apart from the water level in the local housingss initer-
esting to see whether the flood reaches the larger city ofrierk
in the center of the simulation region and which infrastioetele-
ments get blocked. The dataset has 25 meters ground resoduil
1 meter height resolution. The challenge for the simulatiere is
that there is only a very small slope for the water to run ime t
larger valley. We therefore had to use many very small degic
and integration step sizes for a good simulation. The mopeex
sive particle-terrain collision routine we are using akéofer this.
Despite the large number of particles, the carpet methodges
an interactive visualization. It consumes less than 10%efrlame
time. The simulation uses up to 20000 particles and maistain
performance of 12.7 fps when all particles are released. g€
13 shows, the flood blocks a major road running through tHeyal
then it flows into the river in the middle of the larger vallejthout
reaching the city.

6 CONCLUSION

We have presented a grid-less acceleration structure amdaist
surface construction methods for SPH-style particle systéhat
are especially suited for the display of water flowing in razeThe

grid-less technique uses sorted lists obtained from stadggrids
to resolve neighbor queries for the particle systems westampre
than an order of magnitude faster than hierarchical odtesed ap-
proaches. The carpet structure does not require a denseeaet

to produce a closed surface like it is needed for point Sptatp-

proaches. It offers an explicit surface description that lse. con-
structed incrementally at much faster rates than using #retmng

cubes approach. Because the carpet construction is veriegffi
one can afford to visualize every simulation time step whesults
in an interactive tool for particle-based flow simulations.

Figure 10: Coupling SPH and rigid body simulation allows for adding
blocking obstacles to the river.

6.1 FutureWork

We are about to integrate rigid body simulation into our systo
allow for simulating obstacles blocking the river. The SPHdel
and the rigid bodies influence each other, so the objects imefig
10 will get washed away by the flow as soon as enough water has
accumulated behind it.

We would like to extend our system to support surfaces with
dynamic anisotropic properties to model small scale effecthe
spirit of [21]. As the carpet is only constructed in regionsene
particles are, we can easily render it into an offscreerutextis-
ing additive blending to create a dynamic “wet-map” that ban
taken into account when integrating particle positions.ekample
would be the modulation of surface friction. The carpet cage

The GPU-based carpet construction method has been ewhluate ¢an also be helpful to trigger erosion effects.

on a complex terrain where the sparse particle system emgloy
provides interactive simulation frame rates despite thgergive
particle-terrain collision resolution. In a second expant, we
used a massive particle set for accurate environmentallatioioL
The carpet method allows us to visualize both the sparsetand t
massive particle system very efficiently. Because we etna@x-
plicit surface representation, rendering effects usingJGRaders
are straight forward to apply [16].

ACKNOWLEDGMENTS

The Hersbruck dataset appears by courtesy of Bayerischeteka
vermessungsamt Miinchen. The Grand Canyon dataset is fieom t
Large Geometric Models Archive at Georgia Institute of Teah

ogy.

APPENDIX A

This is the GLSL code of the splatting shader for the GPU darpe
construction.

uniform sampler2D splatTex;
uniform vec4 remapFragPos;

void main(void)

{

// calculate splat height

float splat = texture2D(splatTex,gl_TexCoord[0].xy).x;
float depth = gl_TexCoord[1].y + splat;

// calculate object-space vertex position and

// draw to depth image

gl_FragColor.xz = (gl_FragCoord.xy-remapFragPos.xy) *
remapFragPos.zw;

gl_FragColor.y = depth;
gl_FragColor.w = 1.0;
gl_FragDepth = depth;

}

REFERENCES

[1] Mathieu Desbrun and Marie-Paule Gascuel. Smoothedcfest a
new paradigm for animating highly deformable bodies.Phoceed-
ings of the Eurographics workshop on Computer animationsanuli-
lation '96, pages 61-76, New York, NY, USA, 1996. Springer-Verlag
New York, Inc.

David H. Eberly. 3D Game Engine Design: A Practical Approach to
Real-Time Computer Graphic#organ Kaufmann, 2000.

Douglas Enright, Stephen Marschner, and Ronald Fedkhmima-
tion and rendering of complex water surfaces. SIGGRAPH '02:
Proceedings of the 29th annual conference on Computer geagimd
interactive techniquespages 736-744, New York, NY, USA, 2002.
ACM Press.

Nick Foster and Ronald Fedkiw. Practical animation gtlds. In
SIGGRAPH '01: Proceedings of the 28th annual conferencean-C
puter graphics and interactive techniqugsages 23-30, New York,
NY, USA, 2001. ACM Press.

Nick Foster and Dimitri Metaxas. Realistic animation lafuids.
Graphical Models and Image Processjrif(5):471-483, 1996.

R. Gingold and J. Monaghan. Smoothed particle hydrodyios:
Theory and application to non-spherical stavionthly Notices of the
Royal Astronomical Society81:375-398, 1977.

S. T. Greenwood and D. H. House. Better with bubbles: eoimg the
visual realism of simulated fluid. IBCA '04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animatio
pages 287-296, New York, NY, USA, 2004. ACM Press.

M. Griebel, T. Dornseifer, and T. Neunhoeffélumerische Simulation
in der Stromungsmechanikieweg Verlag, 1995.

Damien Hinsinger, Fabrice Neyret, and Marie-Paule Chrteractive
animation of ocean waves. BCA '02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animagiages
161-166, New York, NY, USA, 2002. ACM Press.

Richard Keiser, Bart Adams, Dominique Gasser, PaolpzB#hilip
Dutré, and Markus Gross. A unified lagrangian approach lid-so
fluid animation. InEurographics Symposium on Point-Based Graph-
ics (2005) pages 125-133, 2005.

M.B. Liu and G.R. Liu.Smoothed Particle Hydrodynamics: A Mesh-
free Particle Method World Scientific Publishing, 2003.

W.E. Lorensen and H.E. Cline. Marching Cubes: A High &eton
3D Surface Construction Algorithm. I@omputer Graphics (SIG-
GRAPH 87 Proceedingspages 163-169, 1987.

J. Monaghan. Smoothed particle hydrodynamisenual Reviews of
Astronomy & Astrophysi¢80:543-574, 1992.

Matthias Mdller, David Charypar, and Markus Grossrtiek-based
fluid simulation for interactive applications. BCA '03: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Compute

(2]
(3]

(4]

(5]

(6]

(7]

(8]
El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

animation pages 154-159, Aire-la-Ville, Switzerland, Switzerland
2003. Eurographics Association.

Matthias Miller, Barbara Solenthaler, Richard Keisend Markus
Gross. Particle-based fluid-fluid interaction.S@A '05: Proceedings
of the 2005 ACM SIGGRAPH/Eurographics symposium on Compute
animation pages 237-244, New York, NY, USA, 2005. ACM Press.
Simon Premoze and Michael Ashikhmin. Rendering natweters.
Computer Graphics Forun20(4):189-200, 2001.

Jos Stam. Stable fluids. BIGGRAPH '99: Proceedings of the 26th
annual conference on Computer graphics and interactivhriiegies
pages 121-128, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

Dan Stora, Pierre-Olivier Agliati, Marie-Paule CaRiabrice Neyret,
and Jean-Dominique Gascuel. Animating lava flows. Gliaphics
Interface (GI'99) Proceedingpages 203-210, June 1999.

Paul A. Tipler.Physics For Scientists and Engineers, Vol. 1: Mechan-
ics, Oscillations and Waves, Thermodynams H. Freeman, fourth
edition, 1999.

B. C. Vemuri, Y. Cao, and L. Chen. Fast collision detactialgo-
rithms with applications to particle flonComputer Graphics Forum
17(2):121-134, 6 1998.

Huamin Wang, Peter J. Mucha, and Greg Turk. Water dropsus-
faces.ACM Trans. Graph.24(3):921-929, 2005.

Rainer Wegenkittl, E. Groller, and Werner Purgatihofénimating
flow fields: Rendering of oriented line integral convolutioin CA
'97: Proceedings of the Computer Animatiqrage 15, Washington,
DC, USA, 1997. IEEE Computer Society.

Figure 11: The carpet method on large complex terrain. Even
Figure 12: The carpet method used for visualizing a cascade. The

though the particle system is sparse, the carpet provides a closed wa-
ter surface (particle size exaggerated compared to real world scale). method gives sensible results even for this extreme case. (68 fps
We use 8000 particles at 26 fps. using 3000 particles)

Figure 13: Flooding simulation after an assumed dam breach. The simulation uses 20000 particles and a 4:1 mapping of spatial nodes to the

carpet quadtree. Performance: 12.7 fps.

