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Compression and Rendering of Iso-Surfaces and Point
Sampled Geometry

Abstract In this paper we present a streaming com-
pression scheme for gigantic point sets including per-
point normals. This scheme extends on our previous
Duodecim approach [KSW05] in two different ways.
First, we show how to use this approach for the com-
pression and rendering of high-resolution iso-surfaces in
volumetric data sets. Second, we use deferred shading of
point primitives to considerably improve rendering qual-
ity. Iso-surface reconstruction is performed in a hexago-
nal close packing (HCP) grid, into which the initial data
set is resampled. Normals are resampled from the initial
domain using volumetric gradients. By incremental en-
coding, only slightly more than 3 bits per surface point
and 5 bits per surface normal are required at high fi-
delity. The compressed data stream can be decoded in
the graphics processing unit (GPU). Decoded point po-
sitions are saved in graphics memory, and they are then
used on the GPU again to render point primitives. In
this way high quality gigantic data sets can directly be
rendered from their compressed representation in local
GPU memory at interactive frame rates (see Figure 1).

1 Introduction

Despite the advances in CPU and graphics hardware
technology, for large iso-surfaces and point scans, point
based rendering applications still cannot run at accept-
able rates. As rendering capabilities continue to increase,
so do the sizes of data being visualized as well as the
resolutions of displays being used. Today, iso-surfaces of
volumetric data, numerical simulations, and laser range
scans [Lev00,LPC∗00] produce gigantic data sets, that
can result in billions of vertices, making even CPU pro-
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cessing difficult due to memory constraints. Figure 2
shows such gigantic data sets. A triangulated iso-surface
of the largest of these data set consists of about one
billion vertices and normals and requires 24 GBytes for
geometry alone. Because of the extraordinary richness
of detail in these data sets, the need for techniques able
to reveal even the finest structures is becoming increas-
ingly important. In addition to such data sets, high res-
olution display systems of over 10 Mpixels [IBM] are
nowadays available, letting the required bandwidth to
transmit primitives to the GPU grow substantially. As
these requirements will continuously increase in the fu-
ture, there is a dire need for point rendering techniques
that comprehensively address these issues.

Fig. 1 A time step of the mixing fluid simulation. In this
image two iso-surfaces (cyan and white) are rendered simul-
taneously. A Marching cubes iso-surface extraction of these
surfaces results in about 1 billion points consuming 24 GB for
the point and normal information alone not considering con-
nectivity. However the two compressed iso-surfaces rendered
here require only about 500 MB. Data set courtesy Lawrence
Livermore National Laboratory.



2 Jens Krüger et al.

Fig. 2 Two large iso-surfaces and one point scan are shown. All three data sets, including per-point normals, have been
compressed and now fit into 256 MB video memory on recent graphics cards. Images are generated by rendering the scans out
of the compressed data stream on the GPU. Up to 50 million points per second can be decoded and rendered on consumer
class graphics hardware. Data sets courtesy of Siemens Corporate Research, The Digital Michelangelo project, and Lawrence
Livermore National Laboratory.

In computer graphics, point based rendering has re-
cently gained increasing popularity due to the simple and
memory friendly nature of point rendering primitives.
Such primitives do not require consistent topological in-
formation and they considerably reduce overdraw if high
resolution models are rendered. A thorough discussion
of these issues as well as a summary of recent point ren-
dering techniques including various applications can be
found in [GPA∗,KB04].

First considered by Levoy and Whitted [LW85] and
then revived by Grossmann and Dally [GD98], rendering
systems based on point primitives have been proposed for
both the hierarchical display of large point scan models
[RL00] and high quality rendering of point sampled ge-
ometry [PZvBG00,ZPvBG01]. Due to the frequent use of
such systems in practical applications, over the last few
years there has been an ongoing improvement in this field
with respect to rendering speed and quality, i.e., by ex-
ploiting graphics hardware [RPZ02] and efficient GPU
data structures [DVS03], by using high-quality point
splats [BK03,ZRB∗04], and through the use of point hi-
erarchies [GM04] in combination with polygonal mesh
representations [CN01,CAZ01,DH02,GM05] to allow for
efficient LOD rendering.

Polygonal iso-surface extraction and rendering on the
other hand has position itself as a powerful tool for inter-
active exploration of large volumetric datasets for almost
three decades now. Approaches to handle large data sets
that have been developed since the early Marching Cubes
paper [LC87] can be categorized roughly to fit into one
of the three categories:

Acceleration with hierarchical data structures:
To speed up the rendering of iso-surfaces by consider-
ing only relevant parts of the data set, hierarchical data
structures such as the Octree [Lev90] or span space trees
[LSJ96] have been used.

View Dependent Iso-Surface Reconstruction:
These algorithms generate isosurfaces on-the-fly using
a view dependent error measure. This dramatically re-
duces the amount of data to be considered for isosurface
extraction and the amount of geometry to be rendered
[LH98].

3D Texture based iso-surface reconstruction:
In texture based iso-surface extraction instead of gener-
ation the iso-surface’s geometry explicitly a shader pro-
gram or a special GPU configuration was used to render
only parts of the volume that do belong to the surface
[WE98] normals to compute the lighting where generated
on the fly by a accessing an additional gradient volume.

Although all of these methods have undergone nu-
merous improvements in the past 10 to 20 years interac-
tive rendering of gigantic data sets of our target size still
remains a huge challenge. This is simply due to the sheer
amount of data that would have to be processed out of
core not only during preprocessing but during rendering
as well for most of these algorithms.

In the same way today’s point rendering systems are
facing the problem of continually increasing point sets.
To keep up with this progress, several issues have to be
considered: For large point scans the CPU might not
be equipped with sufficient system memory. If the CPU
works on a compressed data set, it might not be pow-
erful enough to decode point positions and attributes at
sufficient rates. If, on the other hand, a streaming repre-
sentation is available that enables out-of-core rendering,
disk access will most likely limit the overall performance.
Even if the CPU could provide point rendering primitives
at sufficient rate, the bandwidth of the communication
channel connecting the CPU with the GPU might be too
low as to allow for the transfer of point positions and at-
tributes a fixed number of times per second. Finally, the
GPU itself might not be able to render the points within
the requested time interval.
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Up to now, only a few approaches have focussed on
these issues explicitly. A popular technique is to quantize
point positions with respect to a Cartesian grid hierar-
chy, either by absolute position encoding or relative to
a parent node in this hierarchy [RL00,SK01,BWK02].
Although these approaches can significantly reduce the
required number of bits to encode point positions, a sim-
ilar compression ratio has not yet been shown for nor-
mals. Ochotta and Saupe [OS04] locally parameterized
point sets as a hight field and resampled the point sam-
pled surface on a regular grid. This method achieves high
compression ratio by using wavelet transforms to encode
the resulting height fields, but it introduces additional
smoothing artifacts and produces a non-uniform sam-
pling of the surface. A progressive compression scheme
for point sets including per-point attributes based on
multiresolution predictive encoding was presented by
Waschbüsch et al. [WWL∗04]. This scheme yields effec-
tive compression rates, but it suffers from both the high
complexity of the matching process to find similar points
and the rather costly decoding process, which recursively
traverses binary trees to calculate initial point positions.

In this paper we present a streaming compression
and rendering system for gigantic point sets that com-
prehensively accounts for the aforementioned require-
ments. This work extends our previous Duodecim ap-
proach [KSW05]. In contrast to previous compression
schemes for point sets, point coordinates can be decoded
on the GPU. Our scheme has the following particular
properties:

– Memory efficiency: We present an effective com-
pression scheme for large iso-surfaces and point scans
based on an optimal sampling of these data sets.

– Decoding efficiency: The compressed stream pro-
vides random access to encoded points and at-
tributes, and it can be decoded using a few simple
arithmetic and logical operations.

– Bandwidth efficiency: Due to its simplicity, de-
coding can be performed on the GPU. To render the
point set only the compressed data stream has to be
transmitted.

– Rendering Efficiency: On the GPU, decoded point
positions and normals are used in turn to render the
point scan, which results in a significant performance
gain compared to previous approaches.

– Variable Rendering Quality: While the straight
forward point rendering mode gives the user max-
imum rendering performance he can also choose a
high quality mode in which our system uses deferred
shading similar to Botsch et al. [BHZK05] to generate
higher quality images.

2 The DuoDecim Engine

To enable the aforementioned compression properties,
we introduce closest sphere packing (CSP) grids as a

new and effective spatial data structure for point clus-
tering. From closest sphere packing theory [CSB87] we
know, that an optimal sampling in the spatial domain
corresponds to the tightest arrangement of spheres in
frequency domain. This can be derived from the obser-
vation that the spectrum of the sampled signal contains
the replicas of the primary spectrum, centered at the
points of the dual (or reciprocal) of the sampling grid.
Optimal sampling of the signal is achieved if there are
no overlappings between the replicas.

The closest sphere packing (CSP) grids we employ
are composed of Trapezo Rhombic Dodecahdra (TRD)
- the dual of the Johnson Solid 27 [Joh66]. A TRD is
a space filling twelve (twelve=duodecim (latin)) sided
polyhedron, which constitutes a base element for a clos-
est sphere packing of 3D space. CSP grids consisting of
TRDs in particular (HCP), have no second order neigh-
bors, i.e. no cells share only an edge. If such a grid is
sliced orthogonal to the y-axis, the resulting 2D grid is
composed of regular hexagonal cells. In this 2D grid, all
neighbors share an edge and the distance between adja-
cent cell centers is constant. These properties are illus-
trated in figure 7. Note that besides the CSP grid we use,
there exists the Face Centered Cubic (FCC) grid com-
posed of the Rhombic Dodecahedron [Mat04,NM02]. Al-
though both grids are closed sphere packing grids, HCP
grids have some beneficial properties compared to FCC
grids. Most importantly, the dual grid of FCC, the Body
Centered Cubic grid (BCC), which is used for sampling,
is not composed of a single cell type. Therefore the vol-
ume of the different sampling cells is distributed non-
uniformly. This increases the maximum sampling error
compared to HCP grids, although the same number of
cells is required to closely pack 3D space. To our best
knowledge, the HCP grid has never been employed in
computer graphics applications so far.

We take advantage of HCP grids to establish an
adjacency relation between points. Therefore, a binary
spatial data structure consisting of TRDs is generated,
where a cell is full if it contains a point, and it is empty
otherwise. The adjacency relation is exploited to incre-
mentally encode runs of connected full cells in slices of
the grid. This stage is very similar to the process de-
scribed in [MH01] for the encoding of iso-surfaces in volu-
metric data sets. In contrast, however, we turn the prob-
lem of determining optimal runs into a graph theoretical
one, which is posed as a search problem to find the min-
imum number of paths of a specified length that cover
an arbitrary graph.

In addition to incremental encoding of point coor-
dinates, the same compression scheme can be applied to
per-point attributes like normals or colors. Because these
attributes show only a slight variation along the selected
point runs, high fidelity at low bit rate can be achieved
by differential encoding. To support view frustum and
back face culling, run-specific attributes like cone of nor-
mals and bounding boxes are computed.
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The compressed point set can be decoded on the
CPU, and point primitives can be sent to the GPU for
rendering. Alternatively, the compressed stream can be
decoded on the GPU. In this case, runs of equal length
are stored in 2D texture maps and can then be de-
coded incrementally. Decoded point positions are first
saved in graphics memory, and they are then used on the
GPU again to render point primitives. This is realized
using recent functionality like vertex texture fetches in
the Shader Model 3.0 [Mic04] or Render to Vertexbuffer
functionality [ATI04]. For the rendering of large point
sets that do not fit into graphics memory, the presented
point rendering system can either avoid bus transfer at
all, or it can reduce bandwidth requirements substan-
tially if the meshes are so large that even in compressed
format they do not fit in graphics memory.
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Fig. 3 The Duodecim Engine consists of two modules First
the offline encoding part. This module takes either a volumet-
ric or point data sets and compresses it into the DuoDecim
format. The second online module produces either fast low
quality or - with about half the frame rate - high quality
images.

Since the input data is rarely already quantized into
our HCP representation in general we need to convert it.
Therefore we first apply resampling to volumetric data
and grid clustering to points clouds (see Figure 3).

2.1 Iso-Surface Preprocessing

To improve image quality, processing speed, and com-
pression ratio we do not extract the iso-surface in the
original data volume but convert the volume into our
our HCP representation. After the conversion we per-
form the iso-surface extraction in HCP space and com-
press this data. This guarantees optimal run connectivity
and requires no further data transformation if the user
changes the isovalue.

Compared to other grids, the HCP grid leads to an
optimal sampling density, and in particular compared to
Cartesian grids it yields a significantly smaller sampling
error if a region in 3D space is partitioned using the same
number of cells. In Cartesian grids with a grid spacing
of h the maximum distance – and thus the upper bound

for the sampling error – between a cell center and any
other point inside a cell is

√
3/2h. For a HCP grid, on

the other hand, it is only
√

3/(2 ·
√

2)h.
Since optimal resampling to the HCP grid requires a

spherical, bandwidth limited interpolation kernel [NM02],
we use a spherical Lanczos kernel of radius ρ:

Lρ(r) =

{

sinc(r · π/ρ) if r ≤ ρ

0 otherwise

Note that the kernel still has to be properly nor-
malized. In the case of rectilinear grids, we keep up to
2ρ+1 slices in memory and perform the convolution with
Lρ(r) in the spatial domain. For unstructured grids this
involves a cell search, which is implemented efficiently
using standard binary space partitioning approaches.
Changing the radius ρ offers the user a speed/quality
tradeoff.

The conversion form the input grid domain results
in a HCP grid with a single data value for every grid
vertex. To compress a user defined iso-surface from this
representation the system selects the HCP cells with a
sign change i.e. for all cells the values at the vertices are
compared to the iso-value and any grid cell that has both
vertex values above and below this user defined iso-value
is selected.

Since the optimal HCP grid size is known a priori for
iso-surface preprocessing, we can skip the costly grid size
optimization and proceed directly to run generation 3.

2.2 Point Scan Preprocessing

To exploit geometric coherence in unstructured point
sets, an adjacency relation between points is established
first. We employ a regular spatial data structure com-
posed of TRDs, into which the original point set is sam-
pled. Every TRD that contains at least one point is
marked with 1, while any other cell is marked with 0.

In the sampling process, the cell spacing of the HCP
grid has to be determined such that as many cells as
possible contain only one original point. On the other
hand, by using ever smaller cells, connectivity between
filled cells will be lost. This reduces efficiency of the in-
cremental encoding step. Due to this reason, sampling
point scans is implemented as an optimization problem
that takes in account both constraints.

2.2.1 Sampling

To sample a point set, we start with an initial resolution
of the HCP grid. In the current implementation this res-
olution is equal to the sample spacing of the scanning
device. If this spacing is not known, an arbitrary initial
guess can be specified. During the sampling process, we
count for every cell how many points are sampled into
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this cell. Let us call this value the hit rate. Now the ini-
tial resolution of the HCP grid is iteratively refined until
the hit rate drops below a given threshold.

For the sake of simplicity we explain the algorithm
for the 2D hexagonal slices, the extension to 3D HCP
grids is canonical. A constant time sampling strategy
can be derived from the following observation. Consid-
ering the odd and even rows separately generates two
cartesian grids. The vertex in question is sampled into
these two grids. This generates two cells that correspond
to two hexagonal cell candidates. To choose from these
cells the distance from the vertex to the two cell centers
is computed and the cell with the smallest is the correct
hexagon (see Figure 4). In 3D four cell candidates are
generated and four distances are compared to find the
smallest value. Hence, sampling into the HCP reduces to
a fixed number of modulo operations and distance cal-
culations.

Fig. 4 This figure illustrates the sampling of points into
hexagonal grids using two staggered Cartesian grids.

As the point sets and thus the grids we are concerned
with are very large and can usually not be stored in
main memory, the entire sampling process is performed
out-of-core. Point subsets are sequentially sampled into
the grid. For the laser scans, filled grid cells are then
sorted on disk with respect to increasing cell index along
the x-, z-, and y-axis. For volumetric data, this step is
not necessary, since the volume can be resampled in an
appropriate order. The sorted list can then be traversed
sequentially to determine duplicate samples in one cell,
and to compute the average hit rate.

This sorting step allows us to perform all following
operations on a highly compact data window. This is
in contrast to streaming approaches for triangle meshes,
where topology in general prevents such a sorting. Thus,
we can amortize the costly out-of-core sorting over all
consequent operations in the pipeline.

At the end, the point set is implicitly given by a set
of TRDs – or more precisely by the coordinates of their
centers – that contain at least one point of this set. Thus
if more than one input point falls into a cell only one

representative (i.e. the cell center) for all of these points
is stored.

2.3 Run Generation

The HCP grid provides a structure to generate contigu-
ous runs of filled cells. This step is the transition from
pure clustering to coherence based compression. The goal
is to determine runs that are as long as possible, and
to incrementally encode the cells in these runs. Starting
with the grid index of the first cell in such a run, follow-
ing cells can be encoded by storing the face they share
with the predecessor. In this work, we restrict ourselves
to the generation of runs within slices orthogonal to the
grid y-axis. Because in such a slice every element only
has 6 faces and a path never leaves through a face it
just entered, adjacency information can be encoded in
log

2
5 ≈ 2.3 bits.

Run generation proceeds layer by layer, reading all
cells in the current layer from disk. By connecting these
cells, an undirected graph is constructed. Run generation
now operates on this graph, which makes the algorithm
independent of the underlying grid structure. Ideally, the
algorithm finds the minimum number of edge runs of
given length SL that cover the entire graph and do not
contain any edge twice. Since the solution to this problem
is NP-hard, we present a linear-time 2-approximation,
i.e., one that contains every cell at most twice. Note that
this 2-approximation property is a very conservative up-
per bound. In all meshes we processed, the runs never
contained more than 5 percent of all points more than
once.

Fig. 5 The Round-Trip Generation

At first, for every connected subgraph a single run is
generated, so-called long-runs, which are then cut into
pieces of length SL. Starting with an arbitrary node in
the graph, as long as this node has exactly one neigh-
bor that has not yet been visited, the current node is
appended to the long-run and the neighbor becomes the
current node. If there are no such neighbors, the run
is terminated. Otherwise, for every neighbor that is en-
countered a new long-run including the current node as
start element is generated. For every new run but the
longest one we now produce a round-trip, i.e. a run that
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returns to its starting point. If all new runs, with the
longest of these runs considered last, are appended to
the current run, a contiguous path is generated that tra-
verses every branch but the longest forth and back. What
remains to be done is to eliminate redundant pieces, i.e.
round-trips that begin a run and parts that appear in an-
other short-run. Figure 5 illustrates this algorithm. For
the algorithm we never need to consider more than three
neighbors. Figure 6 shows that if more than three neigh-
bors are filled, these additional neighbors are traversed
by the child calls already and do not need to be traversed
by the parent anymore.

Fig. 6 The images show a cell with four neighbors. Note that
independent of the choice of the first child to be traversed,
all neighbors are handled before the recursion returns to the
parent node. For more than four neighbors this procedure is
alike.

Due to the construction of runs, in every long-run an
index can appear at most three times. However, for an
index that appears more than twice there always exist
at least one index that appears only once. This property
can be proved by the means of complete induction over
all T junctions. If a child run at a T junction was chosen
to be serialized, it must have been the shorter run of the
cell. Therefore the cells of the longer child are not dupli-
cated. This always duplicates less then half of the cells
while only the T junction itself could be tripled. Con-
sequently, the algorithm computes a 2-approximation of
the optimal solution.

This procedure generates for every connected sub-
graph of one slice a single run. These long-runs are cut
into pieces of given length SL; so-called short-runs. While
this cutting takes place several optimizations are per-
formed to further reduce the number of redundant cells.
One of these optimization is to skip the way back of a
previously serialized child run.

By restricting the maximum run length, the number
of generated runs is increased at the same time decreas-
ing the variation of their lengths. This kind of construc-
tion accommodates perfectly to GPU rendering in that
SIMD streaming computations on such architectures can
be exploited. If multiple processing units, i.e. fragment
units, decode a number of runs in parallel, it is desir-
able for every run to contain exactly the same number
of encoded points.

To generate a LOD hierarchy of the point set, sam-
pling and run generation is repeated with decreasing res-
olution of the HCP grid. Starting with the optimal reso-

lution, at every hierarchy level the resolution is reduced
by a factor of two. Because the resolution at every coarser
level is now fixed, grid size optimization of runs does not
have to be carried out.

2.4 Optimization

In case our input data is a point scan we do not necessar-
ily know the optimal grid size in advance. Therefore we
employ an optimization algorithm on the grid resolution
for sampling and run generation, we consider the average
length of short-runs in addition to the average hit rate.
The first value measures how many points are lost due
to the sampling process. The second value is a measure
of the compression efficiency. A perfect sampling would
result in an average hit rate of 1 and an average length
of short-runs equal to SL. Making the grid cells smaller
results in a lower hit rate but reduces the average run
length. To find the optimal cell size we first start with
an initial size, which is 1.5 times the average distance
of points in the point set, computed on a small set of
representatives. If the average hit rate is above a limit,
usually 1.6, the cell size is reduced according to ratio
between the maximum hit rate and the current hit rate.

The sampling process is repeated with the new grid
resolution, until the hit rate is below the maximum hit
rate. Then, the run generation process is started. If the
average length of short-runs is below a given threshold,
usually 70% of the maximum length, we first try to close
disconnected runs by inserting new cells. If this does not
bring the average run length above 70%, the grid cell
size is enlarged, sampling is repeated, and new runs are
generated. The process terminates and outputs all cur-
rent runs if the average run length is reached. Note that
the 70% value is an arbitrary starting value for the algo-
rithm based on our experience with different scans, even
with other starting values the algorithm will still find an
optimal value but it will possibly take longer to converge.

To close disconnected runs, we search for filled cells in
the 2-ring neighborhood (see figure 7) of those cells that
are contained in runs shorter than 50% of the maximum
length. We do not try to connect longer runs because
this could result in runs that are so long that they are
cut into short runs later. If such a cell is found and both
cells belong to different runs, the cell in between is set
to connect the two runs. As the examples below demon-
strate, this process adds far less than 10% of the initial
cells on all models we tested.

2.5 Encoding

The proposed scheme generates a large set of runs less
or equal to a given length. To every run, three 16 Bit
values are associated: the first two values are used to
encode the start cell of each run within the current slice.
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Fig. 7 Geometric properties of a hexagonal 2D slice of the
HCP with the one and two-ring neighborhood

Positions in slices of a resolution of up to 216 × 216 can
thus be encoded. The third 16 Bit value is used as index
into a codebook that contains quantized normals. The
computation of this index as well as the codebook is
described below.

2.5.1 Point Encoding

In a run, every point but the first one is encoded rela-
tive to its predecessor using 2.3 bits to encode a step to
one of the 5 still unused adjacent neighbors. In our cur-
rent implementation however, we use 3 bits per vertex
to keep the decoding process as simple as possible, and
thus to enable the GPU to efficiently decode point runs.
If decoding is to be performed on the CPU, memory re-
quirements can be reduced about 25% by using all bits
in the data stream. On disk, we further reduce storage
requirements by using an entropy coder. This exploits
the fact that runs in flat regions produce uniform bit
patterns. Using ZIP compression reduces the file size by
about another 33% on average.

2.5.2 Normal Encoding

Normals are either given for the original point set, or
they are computed prior to the compression stage, e.g.,
by computing normals on a given triangulation or by
moving least squares [ABCO∗01] or, in the case of vol-
umetric data sets, normals are generated during the re-
sampling process.

As adjacent normals in a run only show a slight vari-
ation, they can be encoded incrementally. This assump-
tion may lead to a higher local error across sharp features

where the normals are not continuous, however this er-
ror vanishes rapidly along the run and after the next
run restart. Every normal but the first one is expressed
in spherical coordinates relative to its predecessor. Let
θ and φ be the azimuth and the longitude coordinates,
respectively, of the current normal. To avoid suboptimal
compression at the poles we compute both the negative
and the positive angles and use the one that leads to a
smaller delta. If the difference to the following normal in
spherical coordinates is ∆θ, ∆φ, then the new normal in
Euclidean space coordinates is given by:

x = cos(θ + ∆θ) · sin(φ + ∆φ)

y = sin(θ + ∆θ) · sin(φ + ∆φ)

z = cos(φ + ∆φ)

As this computation requires trigonometric functions to
be evaluated, we employ trigonometric relations

sin(α + β) = sin(α)cos(β) + cos(α)sin(β)

cos(α + β) = cos(α)cos(β) − sin(α)sin(β)

to express Euclidean space coordinates in terms of pre-
computed sine and cosine values. More precisely, given
sin(∆θ), cos(∆θ), sin(∆φ) and cos(∆φ), as well as the
respective values for the previous normal, Euclidean co-
ordinates for the current normal can be decoded using
simple arithmetic.

During run generation, we collect all normal incre-
ments in spherical coordinates that occur in the entire
data set. These increments are then clustered using vec-
tor quantization [AG92]. The two angular increments in
the codebook are stored as four sine and cosine values
for each entry. To avoid accumulation of quantization
errors, each normal of a run is encoded relatively to its
reconstructed predecessor. In the current work, 16 bits
are used to quantize the start normal of every run, and
5 bits are used to quantize normal increments.

2.6 Rendering

To render the compressed point set, the encoded data is
traversed slice by slice. For each run, the start position
is decoded from the associated grid coordinate, and the
start normal is fetched from the quantization codebook.
All other point coordinates can then be decoded incre-
mentally from the relative offsets that are stored with
respect to the underlying grid structure. Only for the in-
cremental decoding of normals an additional lookup into
the delta normal codebook is required. This process con-
secutively generates pairs of coordinates and normals,
which are written to a vertex and a normal array. Via
graphics APIs like OpenGL or DirectX, these arrays can
then be issued for rendering.

If decoding is carried out on the CPU, the vertex
and the normal array have to be sent to the GPU, mak-
ing bus bandwidth a major bottleneck. To overcome this
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limitation, encoded runs are sent to the GPU in com-
pressed form. Due to the simplicity of the decoding pro-
cess, runs can be directly decoded on the GPU using par-
allel streaming computations. Reconstructed point posi-
tions are rendered directly without any read back to ap-
plication memory. In this scenario, the CPU is only used
to control which runs are sent to the GPU, i.e. to accom-
modate view frustum and backface culling (see below).

The GPU decoder exploits functionality on recent
graphics cards. On such cards, it is now possible to access
texture maps in the vertex units [Mic04] and to render
into special texture surfaces that can be interpreted as
textures and vertex buffers alternatively [ATI04]. Our
rendering system exploits both functionalities on both
graphic APIs, DirectX and OpenGL. This leads to four
different render backends from which the user can choose

To prepare compressed point runs for GPU process-
ing, they are stored in 2D texture maps. For each run,
its start position and normal is stored in a 16 bit RGB
texture map. Consecutive points in a run are encoded
in 8 bit luminance textures, using the first 3 bits to
store adjacency information and the remaining 5 bits
to store quantized delta normals. These normals are de-
coded from a quantization codebook. The principal lay-
out of all data structures on the GPU is illustrated in
figure 8.

In consecutive rendering passes, the GPU first de-
codes per-point normals and renders these normals into
an intermediate memory object, i.e. a normal map. Then,
point positions are decoded, the normal map is read to
enable lighting computations, and positions as well as
computed colors are rendered into a second memory ob-
jects. This object is then bound as a vertex array and can
thus be rendered without any read-back to the CPU. In
the following pass, both intermediate memory objects
are read to obtain previous point positions and normals
required for incremental decoding. Then, GPU decod-
ing proceeds as described. Thus the rendering all runs
consisting of n takes n rendering passes.

Fig. 8 This image illustrates the encoding of runs into tex-
ture maps on the GPU.

2.6.1 Deferred Shading

In maximum performance rendering mode the DuoDecim
engine uses the decoded points and normals to computes
phong illuminations in the vertex shader. Although this
approach is very fast it results in a per splat constant
color shading. Especially in closeups when the splat size
becomes larger this causes disturbing artifacts (see Fig-
ure. 9 left).

Fig. 9 Comparison of per splat (left) and per pixel phong
illumination (right). The upper images show a close up of
David’s mouth while the lower to image show an extreme
zoom into the fluid mix data set

To eliminate this problem a per-pixel lighting is re-
quired. As elaborated in Botsch et al. [BHZK05] deferred
shading promises the best performance on current GPUs.
To compute this per pixel lighting we accumulate the
splat normals of the visible surface in the frame buffer.
In the fragment stage the engine weights the normal of
every fragment with its distance to the splat center. Since
this accumulation requires alpha blending we can not use
the z-test and have to do a depth pass first to determine
the visible splats. Furthermore current GPUs do not sup-
port full 32bit floating point blending therefore we write
the normals into a 16bit floating point target. After we
have completed the generation of the normal image we
compute the illumination per image pixel (see Figure 10).

Since we need to render the points twice and do not
assume to have enough GPU space for decoding the en-
tire data set, we have to decode every point twice and
execute the following multipass algorithm:
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Fig. 10 The three passes needed for our deferred shading
approach. The first pass generates a depth image. The sec-
ond generates the point properties - the image shows only
the normals. During this second pass the depth values from
the first pass are used for a depth equal test. In the third
image-based pass the results from the second pass are used
to illuminate the final image.

Depth Pass: For every visible section of the data
set decode the point position and write the depth val-
ues into a single component floating point render target.
During this pass the z-test is enabled, thus leaving only
the front most depth values in the render target.

Property Pass: For every visible section of the data
set decode the point position and point normals and
write the normals into the three component float 16 tar-
get. In the pixel shader the the depth value of every
fragment is compared to the depth value in the z-texture
from pass 1. If this test indicates that the fragment lies
more than epsilon behind the textures depth value the
fragment is discarded. For all other fragments the trans-
parency is set in accordance to their distance from the
splat center. If other per splat values such as color or
texture coordinates are present they can be written into
multiple rendering targets in this pass. And do not re-
quire additional passes. During this pass the depth test
is disabled and blending is set to add the values in the
framebuffer to the incoming values.

Illumination Pass: In the final pass a single quad
covering the entire viewport is rendered. This quad gen-
erates a fragment for every pixel on screen. In the pixel
shader for every fragment the accumulated normals are
read from the texture generated in the second pass. This
normal is renormalized and used for illumination. If other
properties where generated in the second pass as well
they are now read too and contribute to the final color.
In this pixel shader any illumination scheme can be used
such as simple phong illumination, toon-shading, or edge
enhancement shaders etc. During this pass no fragment
tests or blending parameters are enabled.

This deferred rendering scheme reduces the rendering
performance by a factor of two since every point needs to
be decoded and data needs to written to floating point
targets. On the other hand as can be seen in Figure 9
the smoother shading dramatically improves the image
quality.

2.6.2 Culling and LOD

To render the compressed representation, the CPU de-
termines the runs to be rendered, and it sends the tex-
tures containing these runs to the GPU. To keep bus
transfer and GPU processing minimal, two different ac-
celeration techniques have been integrated into our ap-
proach: First, runs are clustered, i.e. stored in the same
texture, according to their cone of normals. This is the
primary sorting criterion. Second, within one cone runs
are grouped according to their spatial position, i.e. every
texture is split into a set of smaller textures for which
axis aligned bounding boxes are computed. This is the
secondary sorting criterion. At run time, the CPU deter-
mines the partitions to be displayed based on the current
viewing direction and the size and orientation of the view
frustum. Only potentially visible partitions are send to
the GPU, where they are finally decoded and rendered.

The CPU also determines the most appropriate LOD,
i.e. grid resolution, to be rendered. We always select the
resolution such that grid cells are always projected into
an area smaller the size of one pixel under the current
viewing parameters. An example of a hierarchical LOD
representation with accompanied bounding box hierar-
chy is shown in Figure 11.

Fig. 11 The upper row shows closeups of David’s head ren-
dered at 4 different LOD levels. The lower row shows the
corresponding image of the David statue as it would be ren-
dered. The bounding boxes enclose parts of the mesh that are
tested for frustum culling.

3 Results

The efficiency and effectiveness of the proposed point
based rendering system were verified using the large
scans from the Digital Michelangelo Project as well as a
couple of iso-surfaces from volumetric data sets (see Fig-
ures 12, 13, 17). Above all, the richness in detail should
be noted, which is faithfully reproduced at high fidelity
using our approach. Table 1 shows comprehensive re-
sults for the largest meshes of the Digital Michelangelo



10 Jens Krüger et al.

Project archive as well as for the iso-surfaces. Many of
these data sets are excellent examples of surfaces where
mesh simplification would not yield a dramatically re-
duced file size, in particular the fluid data set has the
property that any given isovalue results in hundreds of
millions of triangles.

Fig. 12 Another time step of the mixing fluid simulation. In
this image again two iso-surfaces (cyan and white) )are ren-
dered simultaneously. Note the fine scale detail visible on the
bottom, where the mixing fluids form thousands of vortices.

Our target architecture is a P4 2.8 GHz CPU equipped
with 1GB RAM. We timed our engine with an ATI
Radeon X800 XT as well as an NVIDIA Geforce 6800
Ultra both with 256MB. The Radeon card used the ren-
der to vertex buffer functionality while on the Geforce
the vertex texture fetch was used. Both systems achieved
about the same performance while only with the Geforce
the high quality rendering was possible due to the lack
of floating point blending on the Radeon X800 card.

Fig. 13 The David and Atlas statues from the Digital
Michelangelo Project.

In all point scan examples, run optimization resulted
in a hit rate below 1.7 and a run efficiency above 70%
of a maximum length of 25. As can be seen in Table 1,
even for the atlas mesh the algorithm returns the result
in less than 10 hours. Due to the hit rate larger than 1,
the original point sets were reduced by a factor of 1.3 to
1.6.

In particular for the point scans it is obviously clear,
that the point clustering approach as described intro-
duces sampling errors. For the presented high resolu-
tion examples, these errors are 0.11mm and 0.14mm.
The scanners used for the Digital Michelangelo Project

have a minimum sample spacing of 0.25mm x 0.25mm x
0.1mm in a plane perpendicular to the laser [Cyb99]. In
the worst case, two sample points are as much as

√

2 × 0.252 + 0.12mm ≈ 0.367mm

apart, which is the minimum size of features that can be
faithfully reconstructed by the scanning process. Because
in all our examples the sampling spacing is significantly
higher than the sampling error introduced by our com-
pression method, features present in the original data
sets will not be destroyed. If the scanning device has
sampled the data above the Nyquist rate of the original
signal, our sampling is well above this rate, too, resulting
in equal visual quality of the original and the compressed
point set (see Figure 14).

Fig. 14 Comparison of the original Atlas point scan
[LPC∗00] including normals (6 GB) to the point scan that
was compressed by our method (231 MB). Note how the fine
scale detail is preserved.

Table 1 also shows the excellent compression ratio
our method achieves for real-world data sets exhibiting
fine scale details. When using ZIP compression, the fluid
interface iso-surface takes about 120 MB of space and
while a single iso-surface in the Wholebody data set only
occupies around 5 MB. The DuoDecim encoded VRIP
versions of all of the Digital Michelangelo statues avail-
able on the web requires about 380MB and can thus be
stored twice on an ordinary CD. Plain encoded without
ZIP compression, it is still small enough to be stored in
core of our target architecture. Due to the slice based en-
coding scheme for point sets, which is at the core of our
technique, it is also well suited for streaming processing
and progressive transmission of the data [IL04].

While the iso-surfaces and the point scans are con-
siderably compressed, they can still be decoded very ef-
ficiently due to the simplicity of the decoding scheme. In
the table we give timings for GPU decoding and render-
ing. To measure these timings, all acceleration techniques
were all switched off, therefore these timings are consid-
erably slower compared to the display times in practice.
If decoding is carried out on the CPU, we observe a loss
in performance of about a factor of 13.
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Model Atlas St. Matthew David

scan resolution 0.25 mm 0.25 mm 1.00 mm
# Points 254904158 186865425 28184522

# Samples 158877859 121718168 17190274
hit rate 1.60 1.53 1.64

run efficiency 72% 74% 72%
max sampling error 0.11 mm 0.14 mm 0.48 mm

ply file size 9.94 GB 7.29 GB 1.1 GB
DD compressed size 231 MB 182 MB 28.5 MB
zip compressed file 172 MB 140 MB 21 MB
DD encoding time 9.5 hrs 6 hrs 57 min.

decode & render time 3.91 sec. 2.85 sec. 0.39 sec.

Model Wholebody Fluid

volume resolution 512 x 512 x 3172 2048 x 2048 x 1920
volume size 1.6 GB (short) 7 GB (byte)

triangulated mesh size 1.5 GB 24 GB
run efficiency 89% 81%

DD compressed size 20 MB 210 MB
zip compressed file 11 MB 120 MB
DD encoding time 1.7 hrs. 8.2 hrs

decode & render time 0.23 sec. 3.5 sec.

Table 1 Timing and memory statistics for the proposed
point based rendering system. Timings where made on the
ATI X800 XT card using DirectX.

Fig. 15 Zoom in on the Michelangelo’s St. Matthew Statue,
note the fine scale details even in the lower rightmost closeup.

On the GPU, the point rendering system achieves a
throughput of about 50 million points per second. This
rate includes the decoding of compressed point runs as
well as the rendering of decoded points and normals. It
is worth noting, that we decode and render about 160M
distinct points and normals in roughly 3 seconds on the
GPU. Figures 15 and 16 show some more examples that
demonstrate the need for a point based rendering sys-
tem able to handle such an amount of primitives. In all
images, the point splat size is automatically set accord-
ing to the screen space projection of the underlying grid
cells.

4 Runtime & Memory Requirements

4.1 Iso-Surface Extraction

The runtime for iso-surface extraction heavily depends
on the input grid type. For structured grids, we assume
a HCP grid of resolution N := v3. Clearly, interpolation
and resampling is in O(N), as long as the filter size is con-
stant. Since we stream the data set, we only need to store

Fig. 16 Two iso-surfaces of a CT scan of a human male.
The two surfaces consist of about 30 million points. The Iso-
surface was compressed from about 1 GB to only 21 MB
by our method. Data set courtesy of Siemens Corporate Re-
search, Inc. Princeton

2ρ+1 slices at a time, where each slice contains O(N2/3)
voxels. In the case of unstructured grids we usually have
to perform a logarithmic cell search during interpola-
tion, and hence the runtime is in O(N log N). Memory
requirements are still in O(N2/3).

In case the iso-surface should be changed after re-
sampling, we store the entire HCP grid on disk to avoid
repeated resampling.

4.2 Laser Range Scans Point Clustering

First, points are inserted into the HCP grid, which re-
quires linear runtime. However, range scans are first
sorted, which clearly is in runtime of O(N log N). As
it can be safely assumed that the surface of the object
is dominated by 2-manifold topology, the ratio of filled
voxels is v2:v3, where N := v2 denotes the number of in-
put points. Because we only hash filled voxels of one slice
at a time, memory requirements are as low as O(

√
N).

It is worth noting that many objects have a distinct
major axis, and consequently slicing along this axis re-
duces memory requirements considerably.

4.3 Run Generation

So far a single slice of the data sets presented in this pa-
per always fitted into core memory. Runs are then gen-
erated using our linear-time 2-approximation. However,
if in the future data sets should be so large that a single
slice will not fit into memory any more, we can still brick
the data and process each brick independently. This does
not affect the runtime of O(N) for the entire conversion.

4.4 Quantization

To quantize the positions in the run, we can traverse
each run linearly. For the normals we first generate a
codebook using vector quantization, which, if carefully
implemented, is in O(log(k) · p), where k is the number
of entries in the codebook and p is the number of vectors.
However, since it is sufficient for large models to pick a
small, representative subset p of constant size, obtaining
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a normal codebook is negligible in the entire process.
Memory requirements are O(k+p). Once the codebook is
obtained, we assign each normal the closest entry. Since
k in O(1), this is in O(N).

5 Conclusion

In this paper, we have presented an effective compres-
sion scheme for large iso-surfaces in any kind of volumet-
ric data and for gigantic points scans. Our compression
scheme is based on close sphere packing grids. Such grids
provide a structure for optimal point clustering, and they
establish a spatial relation between points that can be
exploited for compression purposes. As our results have
shown, the compression scheme achieves an extraordi-
nary compression ratio at very high fidelity. Due to the
simplicity of the decoding scheme, point coordinates and
normals can be reconstructed on the GPU. As the GPU
can also render the decoded primitives without any read-
back to the CPU, bandwidth requirements are substan-
tially reduced.

In the future, we will extend the rendering en-
gine about more elaborate space partitioning strategies,
which allow for improved culling if the user zooms into
the data set or if only a small portion of the data is
rendered.
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