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Figure 1: Our rendering technique for tetrahedral grids can handle large and deformable objects and it supports recent and future graphics
hardware. The examples show tetrahedral grids consisting of 3.8 (left) and 5.1 (right) millions of deforming elements. On current GPUs our
technique renders each of these images in less than 1.1 seconds onto a 5122 viewport.

Abstract

Recent advances in algorithms and graphics hardware have
opened the possibility to render tetrahedral grids at inter-
active rates on commodity PCs. This paper extends on this
work in that it presents a direct volume rendering method
for such grids which supports both current and upcoming
graphics hardware architectures, large and deformable grids,
as well as different rendering options. At the core of our
method is the idea to perform the sampling of tetrahedral
elements along the view rays entirely in local barycentric co-
ordinates. Then, sampling requires minimum GPU memory
and texture access operations, and it maps efficiently onto
a feed-forward pipeline of multiple stages performing com-
putation and geometry construction. We propose to spawn
rendered elements from one single vertex. This makes the
method amenable to upcoming Direct3D 10 graphics hard-
ware which allows to create geometry on the GPU. By only
modifying the algorithm slightly it can be used to render per-
pixel iso-surfaces and to perform tetrahedral cell projection.
As our method neither requires any pre-processing nor an
intermediate grid representation it can efficiently deal with
dynamic and large 3D meshes.
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1 Introduction and Motivation

Although recent advances in graphics hardware have opened
the possibility to efficiently render tetrahedral grids on com-
modity PCs, interactive rendering of large and deformable
grids is still one of the main challenges in scientific visual-
ization. Such grids are more and more frequently encoun-
tered in a number of different applications ranging from plas-
tic and reconstructive surgery, virtual training simulators to
fluid and solid mechanics.

The weakness of GPU-based volume rendering techniques for
tetrahedral grids is, that these techniques do not effectively
exploit the potential of recent GPUs. The reason therefore
lies in the re-sampling process for tetrahedral elements. This
process requires at every sample point the geometry of the
element it is contained in. The geometry is used to com-
pute the points position in the local coordinate space of the
element. Most generally, an element matrix built from the
elements vertex coordinates is used for this purpose.

For every element this matrix only has to be computed once
and can then be used to re-sample the data at every sam-
ple point in its interior. To do so, a container storing the
matrices of all elements has to be created on the GPU. It
is clear that this approach significantly increases the mem-
ory requirements. Moreover, because the re-sampling is per-
formed in the fragment stage, every fragment needs to be
assigned the unique identifier of the element it is contained
in to address the respective matrix. In scan-conversion al-
gorithms this can only be done by issuing these identifiers
as additional per-vertex attributes in the rendering of the
tetrahedral elements. Unfortunately, because every vertex
is shared by many elements in general, a shared vertex list
can no longer be used to represent the grid geometry on the
GPU. This causes an additional increase in memory.



To avoid the memory overhead induced by pre-
computations, element matrices can be calculated in
turn for every sample point. But then the same compu-
tations, including multiple memory access operations to
fetch the respective coordinates, have to be performed
for all sample points in the interior of a single element,
thereby wasting a significant portion of the GPUs compute
power. As before, identifiers are required to access vertex
coordinates, and thus a shared vertex array cannot be used.

1.1 Contribution

In this paper we present a GPU pipeline for the rendering of
tetrahedral grids that avoids the aforementioned drawbacks.
This pipeline is scalable with respect to both large data sets
as well as future graphics hardware. The proposed method
has the following properties:

• Per-element calculations are performed only once.

• Tetrahedral vertices and attributes can be shared in
vertex and attribute arrays.

• Besides the shared vertex and attribute arrays no ad-
ditional memory is required on the GPU.

• Re-sampling of (deforming) tetrahedral elements is per-
formed using a minimal memory footprint.

1.2 System Overview

To achieve our goal we propose a generic and scalable GPU
rendering pipeline for tetrahedral elements. This pipeline is
illustrated in Figure 2. It consists of multiple stages perform-
ing element assembly, primitive construction, rasterization
and per-fragment operations.

Figure 2: Overview of the GPU rendering pipeline.

To render a tetrahedral element the pipeline is fed with one
single vertex, which carries all information necessary to as-
semble the element geometry on the GPU. This stage is de-
scribed in Section 3.1. Assembled geometry is then passed
to the construction stage where a renderable representation
is built.

The construction stage is explicitly designed to account for
the functionality on upcoming graphics hardware. With Di-
rect3D 10 compliant hardware and geometry shaders [1] it
will be possible to create additional geometry on the graphics
subsystem. In particular, triangle strips or fans composed
of several vertices, each of which can be assigned individ-
ual per-vertex attributes, can be spawned from one single
vertex. As the geometry shader itself can perform arith-
metic and texture access operations, these attributes can be
computed in account of the application specific needs. By
using the aforementioned functionality the renderable rep-
resentation can be constructed in turn without sacrificing
the feed-forward nature of the proposed rendering pipeline.
Section 3.2 gives in-depth details on this stage.

As hardware-assisted geometry shaders are not yet avail-
able on current GPUs we have implemented the proposed
pipeline using the DirectX9 SDK. This SDK provides a soft-
ware emulation of the entire Direct3D 10 pipeline, and it is
available under the recent Microsoft Vista beta version. Un-
fortunately, neither does this emulation provide meaningful
performance measures nor does it allow to estimate relative
timings between the pipeline stages. Nevertheless, the im-
plementation using this software emulation clearly demon-
strates that the proposed pipeline concept can effectively be
mapped onto upcoming GPUs in the very near future.

To verify the efficiency of the intended method we propose
an emulation of the primitive construction step using the
render-to-vertexbuffer functionality. The specific implemen-
tation will be discussed in Section 6. Although this emu-
lation requires additional rendering passes it still results in
frame rates superior to those that can be achieved by the
fastest methods known so far.

The renderable representation is then sent to the GPU ras-
terizer. On the fragment level a number of different ren-
dering techniques can be performed for each tetrahedron,
including a ray-based approach, iso-surface rendering and
cell projection. The discussion in the remainder of this pa-
per will be focused on the first approach, and we will briefly
describe the other rendering variants in Sections 4 and 5.

The ray-based approach operates similar to ray-casting by
sampling the data along the view rays. In contrast, however,
it does not compute for each ray the set of elements consec-
utively hit along that ray, but it lets the rasterizer compute
for each element the set of rays intersecting that element.
The interpolation of the scalar field at the sample points in
the interior of each element is then performed in the frag-
ment stage, and the results are finally blended into the color
buffer.

The approach as described requires the tetrahedral elements
to be sampled in correct visibility order. To avoid the ex-
plicit computation of this ordering we first partition the eye
coordinate space into spherical shells around the point of
view. Figure 3 illustrates this partitioning strategy.

Figure 3: Ray-based tetrahedra sampling.

These shells are consecutively processed in front-to-back or-
der, simultaneously keeping the list of elements overlap-
ping the current shell. Intra-shell visibility ordering is then
achieved by re-sampling the elements onto spherical slices
positioned at equidistant intervals in each shell (see right
of Figure 3). In Section 3.3 we will show how to efficiently
perform the re-sampling using multiple render targets.

To minimize the number of arithmetic and memory access
operations the re-sampling procedure is entirely performed
in barycentric coordinate space of each element. This ap-



proach has some important properties: First, barycentric
coordinates of sample points can directly be used to in-
terpolate the scalar values given at grid vertices. Second,
barycentric coordinates can efficiently be used to determine
whether a point lies inside or outside an element. Third, by
transforming both the point of view and the view rays into
the barycentric coordinate space of an element, barycentric
coordinates of sample points along the rays can be computed
with a minimum number of arithmetic operations. Fourth,
barycentric coordinates of vertices as well as barycentric co-
ordinates of the view rays through the vertices can be issued
as per-vertex attributes, which then get interpolated across
the element faces during rasterization.

1.3 Related Work

Object-space rendering techniques for tetrahedral grids ac-
complish the rendering by projecting each element onto the
view plane to approximate the visual stimulus of viewing the
element. Two principal methods have been shown to be very
effective in performing this task: slicing and cell projection.

Slicing approaches can be distinguished in the way the com-
putation of the sectional polygons is performed. This can
either be done explicitly on the CPU [29, 33], or implic-
itly on a per-pixel basis by taking advantage of dedicated
graphics hardware providing efficient vertex and fragment
computations [22, 26, 28].

Tetrahedral cell projection [17], on the other hand, relies
on explicitly computing the projection of each element onto
the view plane. Different extensions to the cell-projection
algorithm have been proposed in order to achieve better ac-
curacy [21, 31] and to enable post-shading using arbitrary
transfer functions [16]. GPU-based approaches for cell pro-
jection have been suggested, too [23, 25, 32].

The most difficult problem in tetrahedral cell projection is
to determine the correct visibility order of elements. The
most efficient way is PowerSort [3, 8], which exploits the
fact that for tetrahedral meshes exhibiting a Delaunay prop-
erty the correct order can be found by sorting the tangential
distances to circumscribing spheres using any customized al-
gorithm. As grids in practical applications are usually not
Delaunay meshes this approach might lead to incorrect re-
sults and does not allow resolving topological cycles in the
data.

A different alternative is the sweep-plane approach [7, 18, 19,
27]. In this approach the coherence within cutting planes in
object space is exploited in order to determine the visibil-
ity ordering of the available primitives. In addition, much
work has been spent on accelerating the visibility ordering
of unstructured elements. The MPVO method [30], and
later extended variants of it [4, 20], were designed to take
into account topological information for visibility ordering.
Techniques using convexification to make concave meshes
amenable to MPVO sorting have been proposed in [15]. Re-
cently a method to overcome the topological sorting of un-
structured grids has been presented [2]. By using an initial
sorter on the CPU a small set of GPU-buffers can be used
to determine the visibility order on a per-fragment basis.
Based on the early work on GPU ray-casting [13] a ray-
based approach for the rendering of tetrahedral grids has
been proposed in [24].

Besides the direct volume rendering of tetrahedral grids

there has also been an ongoing effort to employ GPUs for
iso-surface extraction in such grids [5]. The calculation of
the iso-surface inside the tetrahedral elements was carried
out in the vertex units of programmable graphics hardware
[12, 14]. Significant accelerations were later achieved by em-
ploying parallel computations and memory access operations
in the fragment units of recent GPUs in combination with
new functionality to render constructed geometry without
any read-back to the CPU [9, 10].

2 Data Representation and Transfer

The tetrahedral grid is maintained in the most compact rep-
resentation: a shared vertex array that contains all vertex co-
ordinates and an index array consisting of one 4-component
entry per element. Each component represents an index into
the vertex array. While the index array only resides in CPU
memory, the vertex array is stored on the CPU, and as a 2D
floating point texture on the GPU. Additional per-vertex
attributes like scalar or color values are only hold on the
GPU.

By assigning to each vertex a 3D texture coordinate it is also
possible to bind a 3D texture map to the tetrahedral grid.
By one additional texture indirection the scalar or color val-
ues can then be sampled via interpolated texture coordinates
from a 3D texture map. This strategy is in particular use-
ful for the efficient rendering of deforming Cartesian grids.
By deforming the geometry of a tetrahedral grid but keep-
ing the 3D texture coordinates fix, the deformed object can
be rendered at much higher resolution compared to just lin-
ear interpolation of the scalar field given at the displaced
tetrahedra vertices.

To render a tetrahedral grid the CPU computes for each
spherical shell the set of elements (active elements) over-
lapping this shell. Each time a shell is to be rendered the
CPU uploads this active element list, represented as a 4-
component index array. This list is then passed through the
proposed rendering pipeline.

3 Tetrahedral Grid Rendering

In this section we describe the rendering pipeline for tetra-
hedral grids, which is essentially a sampling of the attribute
field at discrete points along the view rays through the grid.
The sampling process effectively comes down to determin-
ing for each sampling point the tetrahedron that contains
this point as well as the points position in local barycentric
coordinates of this tetrahedron. Due to this observation we
decided to rigorously perform the rendering of each element
in local barycentric space, thus minimizing the number of
required element and fragment operations. Figure 4 shows
a conceptual overview of the entire rendering pipeline for
tetrahedral grids. For the sake of clarity, pseudo-code nota-
tion is given in Appendix A.

3.1 Element Assembly

For every shell to be rendered the active element list contains
one vertex per element, each of which stores four references
into the vertex texture. In the element assembly stage these



Figure 4: Data stream overview

indices are resolved by interpreting them as texture coordi-
nates. Via four texture access operations the four vertices
are obtained, and they are then transformed into eye coordi-
nate space. Both the four indices as well as the transformed
vertices are passed to the primitive construction stage.

3.2 Primitive Construction

The primitive construction stage generates all the informa-
tion that is used in the upcoming stages but only needs to be
computed once per element. First, for every element the ma-
trix required to transform eye coordinates into local barycen-
tric coordinates is computed. The vertices, given in homo-
geneous eye coordinates, are denoted by vi, i ∈ {0, 1, 2, 3}.
The transformation matrix can then be computed as

B =
(

v0 v1 v2 v3

)−1

.

Next, for every element the eye position veye = (0, 0, 0, 1)T

is transformed into its barycentric coordinate space: beye =
B veye. It is important to note that only the last column
of B is required thus significantly reducing the number of
arithmetic operations to be performed. The barycentric co-
ordinates of each of the vertices vi are given by the canonical
unit vectors ei. Finally, the directions of all four view rays
passing through the element vertices are transformed into
barycentric coordinates via bi = ei − beye. As the mapping
from eye coordinate space to barycentric coordinate space is
affine, these directions can later be interpolated across the
element faces. In addition, the length of the view vector,
li = ||vi − veye||2, is computed for every vertex in the prim-
itive construction stage. It is used in the fragment stage to
normalize the barycentric ray directions bi.

Once the aforementioned per-element computations have
been performed, each tetrahedron is rendered as a triangle
strip consisting of four triangles. These strips are composed
of the six element vertices, which are first transformed to
normalized device coordinates. To each of these vertices
the respective bi, the barycentric eye position beye and the
length of the view vector li are assigned as additional per-
vertex attributes, i.e. texture coordinates. Moreover, four
per-element indices into the GPU attribute array are as-
signed to each vertex. These indices are later used in the
fragment stage to access the scalar field or the 3D texture
coordinates used to bind a texture map.

The rasterizer generates one fragment for every view ray
passing through a tetrahedron, and it interpolates the given
per-vertex attributes. To reduce the number of generated
fragments only front-faces are rendered using API built-in
culling functionality.

3.3 Fragment Stage

When rendering the primitives composed of attributed ver-
tices as described, the rasterizer interpolates the bi and li
and generates for every fragment a local barycentric ray di-
rection b as well as its length l in eye coordinates. By using
the barycentric coordinates of the eye position beye, the view
ray in local barycentric space can be computed for every
fragment as (t denotes the ray parameter)

b

l
· t + beye, t > 0.

This ray is sampled on a spherical slice with distance zs from
the eye point. The barycentric coordinate of the sample
point is obtained by setting t as the depth of the actual
spherical slice, zs.

It is now clear that a fragment has all the information to
determine the barycentric coordinates of multiple sample
points along the ray passing through it. If an equidistant
sampling step size ∆zs along the view rays is assumed, the
coordinates of every point are determined as

bk =
b

l
· (zs + k · ∆zs) + beye, k ∈ {0, 1, . . . , n − 1}. (1)

where n is the number of samples. The fragment program
obtains the depth zs of the first sample point and the sample
spacing ∆zs as constant parameters.

A fragment can trivially decide whether a sample point is in-
side or outside the tetrahedron by comparing the minimum
of all components of bk with zero. A minimum greater or
equal to zero indicates an interior point. In this case the
sample point is valid and thus has a contribution to the ac-
cumulated color along the ray. Otherwise, the sample point
is invalid and has to be discarded.

The barycentric coordinates are directly used to interpolate
per-vertex attributes. This can be scalar values that are
first looked up from the attribute texture via the issued per-
vertex indices, or it can be a 3D texture coordinate that is
then used to fetch a scalar value from a texture map. Finally,
each fragment has determined one scalar value for each of
its n samples.

Once the scalar field has been re-sampled onto a number of
sample points along the view-rays these values can in prin-
ciple be directly composited in the fragment program. Un-
fortunately, as the elements within one spherical cell have
not been rendered in correct visibility order this would lead
to visible artifacts. On the other hand we can write four
scalar values at once into a RGBA render target. Moreover,
recent graphics APIs allow for the simultaneous rendering
into multiple render targets. This means that up to four
times the number of render targets spherical slices can be
re-sampled by one single fragment. Sampled values are ren-
dered into the respective component and render target using
a max blend function. If a sample point is outside the el-
ement, a zero value is written into the texture component
and the sample is ignored. As no two tetrahedra can contain
the same sample point along either ray, erroneous results are
avoided.

The number of samples that can be processed efficiently at
once is restricted by the output bandwidth of the fragment
program. Because up to 128 bits can be rendered simulta-
neously on recent GPUs, up to 16 slices can be processed



at once if 8 bit scalar values are assumed. This implies that
every spherical shell is as thick as to contain exactly 16 slices
with regard to the current sampling step size. In account of
this number, four additional texture render targets have to
be used to keep intermediate sampling results. Without uti-
lizing the multiple render target extension, still four samples
can be processed at once.

3.4 Blending Stage

In the final stage up to four texture render targets are
blended into the frame buffer. In each of its four compo-
nents these textures contain the sampled scalar values on
one spherical slice of the shell. The blending stage now per-
forms the following two steps in front-to-back order. First,
scalar values are mapped to color values via a user-defined
transfer function. Second, a simple fragment program per-
forms the blending of the color values via alpha-compositing
and finally outputs the results to the frame buffer.

4 Iso-Surface Rendering

To avoid explicit construction of geometry on the GPU, per-
pixel iso-surface rendering can be integrated into our pro-
posed rendering pipeline easily. Instead of sampling all the
values along the view-rays only the intersection points be-
tween these rays and the iso-surface are determined on a
per-fragment basis. Thereby, the primitive assembly and el-
ement construction stage remain unchanged, and only the
fragment stage needs minor modifications.

Given an iso-value siso, the view-ray passing through a frag-
ment intersects the iso-surface at depth

tiso =
siso −

∑

4

i=0
si · (beye)i

∑

4

i=0
si · (b)i

This formula is derived from the condition that the scalar
value along the ray (given in local barycentric coordinates)
should equal the iso-value. It is worth noting that tiso is
undefined if the denominator is zero. In this case the in-
terpolated scalar values along the ray are constant, and we
can either choose any valid value for tiso if the scalar value
is equal to siso or the ray has no intersection with the iso-
surface.

The computed barycentric coordinate b · tiso + beye of the
intersection point is tested against the tetrahedron as de-
scribed above. Only if the point is in the interior of the
element an output fragment is generated. Otherwise the
fragment is discarded.

In this particular rendering mode the data representation
stage has to be modified slightly. Instead of building an
active element list for every shell, only one list that con-
tains all elements being intersected by the iso-surface is built.
These tetrahedra can then be rendered in one single pass, or
in multiple passes if more elements are intersected by the
surface than can be stored in a single texture map. The
blending stage becomes obsolete and can be replaced by the
standard depth test to keep the front-most fragments in the
frame buffer. A fragments’ depth value is set to the depth
of the intersection point in the fragment program. Finally,
it should have become clear from the above description that

per-element gradients can be computed in the primitive con-
struction stage as well. Gradients are assigned as additional
per-vertex attributes to the fragment stage for lighting cal-
culations.

5 Cell Projection

Tetrahedral cell projection is among the fastest rendering
techniques for unstructured grids as every element is only
rendered ones. However, it requires a correct visibility order-
ing of the elements, and it can be time consuming to achieve
such an ordering in general. To demonstrate tetrahedral cell
projection we employ the tangential distance or power sort
[8] on the CPU to determine an approximate ordering.

Tetrahedral cell projection can be achieved by a slight mod-
ification of the fragment stage. Given the fragments’ depth
zin, the barycentric coordinates of this fragment can be com-
puted as

bin = b/l · zin + beye. (2)

The intersection with each of the faces of the correspond-
ing tetrahedron can be calculated by using the ray equation
bout = b/l · t + beye in barycentric coordinates. To compute
bout, four candidate parameters tl, l ∈ {0, 1, 2, 3} are ob-
tained by alternately setting the components of bout to zero.
As the ray parameter t = zin corresponds to the entry point
of the ray, the value of t at the exit points is determined by

zexit = min{tl : tl > zin}.

The barycentric coordinate of the exit point can then be
derived according to equation (2).

From the barycentric coordinates of the entry and exit point
the length of the ray segment being inside the tetrahedron
can be calculated. This information is required to compute
a correct attenuation value for every fragment [17]. The
barycentric coordinates are used to obtain scalar values at
the entry and exit point, which are then integrated along the
ray.

6 Implementation

As current graphics hardware does not support geometry
shaders to construct geometry on the GPU, the primitive
assembly stage and the primitive construction stage are sim-
ulated via multiple rendering passes.

Once the CPU has uploaded the index texture to the GPU
(see Section 2), a quad covering four times as many frag-
ments as active elements is rendered. Every fragment reads
the respective index and performs one dependent texture
fetch to get the corresponding vertex coordinate. The 4th
component of each vertex is used to store the element index.
This index is used in the final fragment stage to fetch the
barycentric transformation matrix. The vertex coordinates
are written to a texture render target, which is either copied
into a vertex array (on NVIDIA cards) or directly used as a
vertex array (on ATI cards). In this pass, the transformation
of vertices into eye coordinates can already be performed.

In a second pass, each active tetrahedron reads its four ver-
tices as described and computes the last row of the barycen-
tric transformation matrix, beye, which is stored in a RGBA



float texture. Due to the fact that only one index per tetra-
hedron can be stored, we also built a RGBA texture that
stores for every active element the four attached scalar val-
ues in one single texel. If 3D texture coordinates are required
they are stored analogously in three RGBA textures.

We then use an additional index array to render the tetra-
hedral faces. We either use 7 indices per tetrahedron to
render a triangle strip followed by a primitive restart mark
(on NVIDIA cards only) or we use 12 indices to render the
tetrahedral faces separately. Note that the index array does
not change and can be kept in local GPU memory.

Finally, the fragment stage has to be modified such that ev-
ery fragment now fetches beye and performs all operations
required to sample the element along the view-rays in lo-
cal barycentric space. Although this increases the number
of arithmetic and memory access operations considerably,
we will show later that the implementation already achieves
impressive frame rates on recent graphics hardware.

7 Results

In the following we present some results of our algorithm,
and we give timings for different parts of it. All test were run
on a single processor Pentium 4 equipped with an NVIDIA
7900 GTX graphics processor. The size of the viewport was
set to 512 × 512.

We have tested the tetrahedral rendering pipeline for both
static and deformable meshes. For the simulation of physics-
based deformations we have employed the Multigrid frame-
work proposed in [6]. The GPU render engine receives com-
puted displacements and updates the geometry of a volumet-
ric body accordingly. While the simulation engine consecu-
tively displaces the underlying finite element grid, the render
engine subsequently changes the geometry of the volumetric
render object. It is worth noting, on the other hand, that all
timings presented in this paper exclude the amount of time
required by the simulation engine. In all our examples the
time required to send updated vertices to the GPU is below
3% of the overall rendering time.

The proposed technique for direct volume rendering of un-
structured grids is demonstrated in Figures 5 to 7. Table
1 shows performance rates on our target architecture im-
plementing the rendering pipeline described in Section 6.
Timing statistics for alternative rendering modes are given
in Table 2. Volume rendered imagery using cell projection
and iso-surface rendering is shown in Figures 8 and 9.

The first four rows of Table 1 show the number of tetrahe-
dral mesh elements, the number of sample points per ray,
the number of samples per shell and the total number of
elements being rendered. As elements are likely to overlap
more than one shell, this number is approximately 2 times
higher than the mesh element count. Next, GPU memory
requirements (excluding 3D texture maps) are shown. The
memory required by the vertex, scalar and blend textures
is listed. Additional memory that is due to the emulation
of the construction stage on current GPUs is summarized in
the next row.

As can be seen, the proposed rendering pipeline exploits the
limited GPU memory very effectively. On the other hand,
even if the mesh does not fit into local GPU memory the
method can still be used very efficiently. One possibility

is to partition the grid, and thus the vertex and attribute
textures, into equally sized blocks. These blocks can then be
rendered in multiple passes, which only requires a separate
active element list for each partition and shell.

The upcoming rows in Table 1 give detailed timings of the
different rendering modes. All timings are given in millisec-
onds. Starting with the time required by the CPU to cal-
culate the active element sets and to transfer all required
data to the GPU, timings for GPU primitive assembly and
construction as well as per-fragment computations are given.

scene horse bluntfin engine vmhead

# Tetrahedra 50k 190k 1600k 3800k

# Samples / ray 300 400 500 600

# Samples / shell 4 8 8 8

# Tets rendered 133k 434k 3438k 6618k

vertices/scalars [MB] 0.27 1.1 17 17

blend textures [MB] 1 2 2 2

intermediate [MB] 3.3 13 13 13

GPU memory [MB] 4.6 16.1 32 32

CPU [ms] 4 12 101 244

GPU Geometry [ms] 11 12 65 135

GPU Fragments [ms] 43 85 445 732

Total time [ms] 58 109 611 1111

Table 1: Element, memory and timing statistics for various data sets.

scene horse bluntfin engine vmhead

Iso-Value 0.5 0.2 0.5 0.27

Iso-Surface [ms] 4.6 5.7 51 124

Cell Projection [ms] 19 54 341 1176

Table 2: Timing statistics for different rendering modes.

From the timing statistics the following can be perceived:
Although the current implementation introduces a signifi-
cant overhead in terms of arithmetic and memory access op-
erations and requires additional memory on the GPU, per-
formance rates similar to the fastest techniques so far can be
achieved. A maximum throughput of 1.8M tetrahedra/sec
has been reported recently by Cahallan et. al. [2] on an ATI
Radeon 9800. In comparison our pipeline already achieves a
peak rate that is over a factor of three higher. In particular
it can be seen that one of the drawbacks of slice-based tech-
niques, i.e. multiple rendering of elements, can significantly
be reduced due to the simultaneous evaluation of multiple
sample points. It is clear, however, that in case of elements

Figure 5: Close-up view of the bluntfin data set.



Figure 6: Direct volume rendering of the deformable visible human
data set. The tetrahedral mesh consists of 3.6 million elements, and
it is textured with a 5122

× 302 3D texture map.

Figure 7: These images show direct volume rendering of a tetrahedral
mesh consisting of 1600k elements. A 3D texture of size 2562

× 110
storing the engine data set is bound to the mesh.

Figure 8: Our method can efficiently be applied to visualize internal
states of deforming volumetric bodies. In the example, the internal
stress of the model under gravity is visualized in red using the cell
projection method.

that overlap only a very few slices some of these evaluations
might be wasted. For this reason we have chosen data de-
pendent numbers of slices as shown in Table 1.

The examples given in Figures 6 and 7 show the visualiza-
tion of deformable tetrahedral grids to which a 3D texture
map is bound. Every vertex stores coordinates into a 3D
texture map, which are interpolated in the fragment stage.
Interpolated coordinates are finally used to fetch the data
from the texture map.

Figure 9: Iso-surface rendering of the deformed visible male data set.
The tetrahedral mesh was adaptively refined to recover the skin and
bone structures, and it consists of 5.1 million elements. Per-vertex
scalar values were re-sampled from the original 3D data set. To
smooth-shade the iso-surface, per-vertex gradients are first accumu-
lated in every frame on the GPU, and they are finally interpolated in
the fragment stage via barycentric coordinates.

8 Conclusion

In this paper we have described a generic and scalable ren-
dering pipeline for tetrahedral grids. The pipeline is de-
signed to facilitate its use on recent and upcoming graphics
hardware and to accommodate the rendering of large and
deformable grids. In particular we have shown, that our con-
cept supports upcoming features on programmable graphics
hardware and thus has the potential to achieve significant
performance gains in the very near future.

The rendering pipeline we propose is ray-based in that it per-
forms the sampling of tetrahedral elements along the view
rays. It maps on a feed-forward pipeline that is spawned
by one single vertex. Per-element calculations have to be
performed only once, and the rasterizer is efficiently utilized
to minimize per-fragment operations. As the sampling is
entirely performed in local barycentric coordinates of each
element it requires minimum arithmetic and texture access
operations on the GPU. By enabling the evaluation of mul-
tiple samples per element, we can significantly reduce the
number of rendered elements, because the number of ele-
ments that overlap more than one shell decreases. As no
pre-processing of the grid data is required, it is perfectly
suited for the rendering of deformable meshes. Additional
rendering modes like iso-surface rendering and cell projec-
tion can be integrated into this pipeline in a straight forward
way.

Besides the verification of our current results on future Di-
rect3D 10 graphics hardware we will investigate the integra-
tion of acceleration techniques for volume ray-casting into
the current approach. In particular, early-ray-termination
as proposed for texture-based volume ray-casting [11] seems
to be a promising acceleration strategy that perfectly fits
into our dedicated rendering pipeline.
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A Pseudo-code snippets for ray-based GPU tetra-
hedron rendering

elementAssembly (index)

for i = 0, . . . , 3

vi = texture (vertexTex, indexi);

vi = Modelview ∗ vi;

return (index, v0, v1, v2, v3);

primitiveConstruction (index, v0, v1, v2, v3)

B = inverse ((v0, v1, v2, v3));

beye = B ∗ (0, 0, 0, 1)T ;

for i = 0, . . . , 3

li = length (vi − (0, 0, 0, 1)T );

bi = ei − beye;

vi = Projection ∗ vi;

Rasterize strip
(

v0

b0
l0

)

,

(

v1

b1
l1

)

,

(

v2

b2
l2

)

,

(

v3

b3
l3

)

,

(

v0

b0
l0

)

,

(

v1

b1
l1

)

return (index, beye);

fragmentStage(interpol. v, interpol. b, interpol. l,

index, beye, const zs, const ∆zs)

for i = 0, . . . , 3

s[i] = texture (scalarsTex, indexi);

for k = 0, . . . , n

bc = beye + b/l ∗ (zs + k ∗ ∆zs);

if min (bc[0], bc[1], bc[2], bc[3]) < 0

out[k] = 0;

else

out[k] = dot (s, bc);

return (out);


