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Figure 1. By computing the alpha matte as the probability that a random walker first reaches a foreground pixel, a simple, fast
algorithm is presented that is capable of producing qualityresults, even when applied to low-contrast images or objects with
difficult or weak boundaries.

ABSTRACT
Interactive, efficient, methods of foreground extraction and
alpha-matting are of increasing practical importance for
digital image editing. Although several new approaches
to this problem have recently been developed, many chal-
lenges remain. We propose a new technique based on ran-
dom walks that has the following advantages: First, by
leveraging a recent technique from manifold learning the-
ory, we effectively use RGB values to set boundaries for
the random walker, even in fuzzy or low-contrast images.
Second, the algorithm is straightforward to implement, re-
quires specification of only a single free parameter (set the
same for all images), and performs the segmentation and
alpha-matting in a single step. Third, the user may locally
fine tune the results by interactively manipulating the fore-
ground/background maps. Finally, the algorithm has an in-
herit parallelism that leads to a particularly efficient im-
plementation via the graphics processing unit (GPU). Our
method processes a 1024× 1024 image at the interactive
speed of 0.5 seconds and, most importantly, produces high-
quality results. We show that our algorithm can generate
good segmentation and matting results at an interactive rate
with minimal user interaction.
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1 Introduction

Interactive foreground extraction and alpha-matting of dig-
ital images remains a challenging problem. The difficulty
of this problem is a result of a simultaneous attempt to min-
imize user time/interaction, properly handle color, regular-
ize the ill-posedness of the alpha-matting model, provide an
efficient algorithm that is feasible to implement and, above
all, produce visually pleasing results for arbitrary images.

Recently, the computer vision community has developed
several algorithms that produce high-quality results for the
“hard” (i.e., binary) image segmentation problem. Al-
though some algorithms, such as the graph cuts approach
of Boykov and Jolly [1], produce quality results for hard
segmentation tasks on grayscale images, extra care must
be taken to extend those techniques to produce an alpha
matte on color images [2]. In contrast, the random walker
object extraction algorithm presented in [3] directly offers
the alpha matting. In this work, we make three extensions
to the algorithm presented in [3] to allow for application
in the interactive alpha-matting of digital images: 1) A
novel utilization of color information, 2) Use of random
walker probabilities as the alpha matte, and 3) Details for
an implementation on the graphics processor unit (GPU).
We show that the random walker algorithm has a straight-
forward, interactive-speed, implementation, requires speci-
fication of only a single free parameter (set consistently for
all images), performs the segmentation and alpha-matting
in a single step, finds an exact global energy minimum
and produces high-quality, visually pleasing, results, even
in the presence of low-contrast boundaries and noise. We
note also that this technique has straightforward extension



(a) Original (b) Trimap (c) Poisson matting (d) GrabCut (e) Random Walker

Figure 2. A comparison of matting algorithms on two images. a) Original images. b) Trimap, with foreground set to white,
background set to black and unknown set to gray. c) Poisson matting is derived with the assumption that the foreground and
background intensities are widely separated, which is violated by the llama image but more correct for the flower image. d)
GrabCut performs well, but the alpha matting resembles a steep (one-pixel) blur around the boundary. e) Random walker
matting. Note that Poisson matting, GrabCut and Random walker were all initialized with a trimap and no additional user-
interaction was supplied.

to 3D (e.g., video) or higher dimensional editing problems,
although we will limit the remainder of the paper to discus-
sion of the 2D case.

The basic idea of the random walker algorithm is this —
Given a user-supplied trimap of the pixels,P = {Pf ,Pb,Pu},
indicating “foreground”, “background” and “unknown” re-
gions, we set theα value at each pixel inPu as the proba-
bility that a random walker starting from this location will
reach a pixel inPf before striking a pixel inPb, when bi-
ased to avoid crossing the foreground boundary. Despite
the fact that these probabilities may seem prohibitively ex-
pensive to compute, it is known [4] that they may be calcu-
lated exactly by solving a single system of linear equations.
Although a sparse set of linear equations may be efficiently
solved with a variety of conventional techniques, several
aspects of the problem formulation allow for a particularly
efficient solution via a graphics processor unit.

Several properties of the solution to this random walker
problem, as demonstrated in [3], make it attractive for use
as the alpha-matte. First, it was shown that such an ap-
proach will cause the distribution of probabilities (i.e., the
matte) to respect low-contrast or even missing boundaries.
Second, the computed alpha-matte will vary smoothly, ex-
cept for clear transitions over an object boundary. Finally,
[3] showed that such an algorithm has provable robustness
to noise. Furthermore, the algorithm takes just one free
parameter (which is fixed for all results in this paper), is
straightforward to implement, efficient and produces visu-
ally pleasing results.

The alpha matting model may be stated as

I = αF +(1−α)B, (1)

whereα varies between[0,1] and represents the blending
coefficient between the foreground object,F , and the back-
ground object,B. The α value has been variously inter-
preted as aprobability [5] that the pixel belongs to the fore-
ground object, a partial differential equationsolution [6], or
as aninterpolation [2] between the known foreground and
background objects. With the present approach, we take
all three viewpoints by formulatingα as a probability and
showing its mathematical equivalence to a partial differen-
tial equation, the solution of which has also been used as
an interpolation operator.

The paper is organized as follows: After having stated our
approach to alpha-matting, we proceed in Section 2 to re-
view previous approaches to this problem. Section 3 for-
malizes the algorithm and Section 4 discusses a particularly
efficient implementation on commodity graphics hardware.
More results follow in Section 5 with the conclusion and
future directions.

2 Related Work

A vast literature is devoted to the problems of foreground
extraction and alpha-matting. We therefore limit our review
to highly successful, ubiquitous and/or mathematically re-
lated techniques.



Foreground extraction viaIntelligent Scissors (a.k.a.,
magnetic lasso, live wire) [7] is accomplished by user
clicks on the foreground boundary. The algorithm finds the
object boundary between user clicks by finding the shortest
path (via Dijkstra’s algorithm) on a weighted graph, with
nodes given by pixels and weights set to encourage paths
along the foreground boundary. This algorithm performs
reasonably well on smooth objects with moderate to high
contrast, but requires an excessive number of user clicks for
low-contrast images or objects with rough boundary. Fur-
thermore, the intelligent scissors algorithm offers a hard
segmentation boundary, requiring an additional algorithm
to estimate the alpha-matting.

Given a user specified trimap of foreground, background
and unknown pixels, theBayesian Matting algorithm [5],
optimizes theα, foreground and background values in (1).
First, the color samples forF andB are clustered, and each
cluster is fit with an oriented Gaussian distribution. Then,
a maximum-likelihood criterion is used to estimate the op-
timal α values for each pair of foreground and background
clusters. This algorithm can generate good matting but only
when the foreground and background color distributions
are sufficiently well separated and the unknown region is
not too large [2]. In addition, the algorithm will perform
poorly on a complex scene where two foreground clusters
are spatially proximal and also mixed in color space. This
algorithm also lacks the ability to refine the solution to im-
prove the results to the user’s satisfaction.

Given a trimap,Poisson matting [6] makes a smoothness
assumption on the foreground and background pixels in or-
der to approximate the alpha value as the solution to the
Poisson equation given by

∇2α = ∇ ·

(

∇I
F −B

)

, (2)

with Dirichlet boundary conditions on the fore-
ground/background pixels of

α j =

{

1 if I j ∈ Pf ,

0 if I j ∈ Pb,
(3)

for pixel I j. For economy of notation, we will employ a sin-
gle subscript to denote a pixel instead ofI(x,y). Although
impressive results are shown by Sunet al. [6], the images
typically have smooth foregrounds and backgrounds (in ac-
cordance with the assumptions) and require, at least locally,
that the foreground/background intensities are widely sep-
arated. In fact, (2) is degenerate if the estimates ofF and
B are equal at any point in the unknown region, as ac-
knowledged by the authors. Furthermore, if the solution
to (2) (global Poisson matting) fails to produce a satisfac-
tory matting, a costly user interaction is required to boost
the matting in failed regions (local Poisson matting), which
is reported by the authors to require on the order of ten min-
utes for images of resolution 600×400. Finally, both the

global and local methods of Poisson matting iterate the al-
gorithm, and therefore require both a convergence criterion
and are guaranteed only to settle into a local minimum.

TheGrabCut method introduced by Rotheret al [2] builds
upon the powerful graph cut technique [1] from the com-
puter vision literature to develop a method of interactive
foreground extraction and alpha-matting of color images.
Given a trimap or a bimap (i.e., only Pb andPu), the algo-
rithm builds a Gaussian mixture model (GMM) of the RGB
image and iteratively alternates between graph cuts and up-
dating the model parameters until a convergence criterion
is satisfied. Since graph cuts gives only a binary segmenta-
tion, theα values are then estimated by performing a sec-
ond minimization to find an appropriate rate of interpola-
tion of theα values in a narrow band around the binary seg-
mentation. GrabCuts is efficient, runs at an interactive rate
and, for some images, requires no more user interaction
than dragging a rectangle over the desired object. However,
this algorithm alternates between estimating the segmenta-
tion and the GMM parameters, yielding a solution that is
not guaranteed to be a global minimum of the target energy
functional. Furthermore, the alpha-matting procedure re-
sults in what may be described qualitatively as a corona of
variable-rate blur around the binary segmentation. Addi-
tionally, the approach is quite complex, requiring a conver-
gence criterion for the energy model and the specification
of seven free parameters to describe the weighting of en-
ergy terms, inter-pixel affinities, the number of Gaussians
in the GMM, and four more free parameters to describe the
energy model for alpha-estimation.

Since GrabCuts and (global) Poisson matting were con-
vincingly shown to outperform the other methods re-
viewed, we compare our algorithm to these two techniques
in Figure 2 with detailed views shown in Figure 3. Al-
though GrabCuts allows for a less-informative bimap in-
put, all three algorithms were initialized with a trimap in
order to provide a fair comparison. Note the trouble with
the Poisson matting technique for the low-contrast llama
image due to the singularity of (2). Although GrabCuts
provides a clean output for both images, the alpha-matting
has the appearance of an isotropically blurred binary seg-
mentation found by the iterated graph cuts optimization.

3 Random Walks in Color Space

There are two aspects of the random walks approach de-
scribed in this work: Using image information to guide the
trajectory of the random walker and the analytical compu-
tation of the random walker probabilities. We formulate
the algorithm on a discrete space (i.e., a graph), where each
pixel corresponds to a node and edges are placed between a
pixel and its four neighbors in the cardinal directions. Be-
fore proceeding, we will fix our notation.

A graph [8] consists of a pairG = (V,E) with vertices



(a) Poisson (b) GrabCut (c) Random Walker

Figure 3. Detail of the alpha-matting provided by the Pois-
son, GrabCuts and Random Walker algorithms on the two
images of Figure 2.

(nodes) v ∈V andedges e ∈ E ⊆V ×V . An edge,e, span-
ning two vertices,vi andv j, is denoted byei j. A weighted
graph assigns a value to each edge called aweight, which
will be nonnegative and real for the present purposes. The
weight of an edge,ei j, is denoted bywi j . Thedegree of
a vertex isdi = ∑wi j for all edgesei j incident onvi. A
weight between pixelsvi andv j induces a probability that
a random walker atvi transitions tov j aspi j =

wi j
di

.

3.1 Manifold learning

In order for the image structure to guide the random walker,
a weight must be assigned between neighboring pixels that
indicates an affinity for these nodes to be coupled (i.e., to
share the sameα). A typical (e.g., [2, 1]) function for map-
ping pixel values to edge weights is

wi j = exp

(

||zi − z j||
2

σ2

)

, (4)

wherezi is a vector representing the RGB color at pixeli
andσ is a free parameter. The value ofσ is the only free
parameter in the algorithm, and its value is set for all results
in this paper asσ = 1

30. We assume that the image has been
normalized such that 0≤ ||zi − z j||

2 ≤ 1.

Although Rotheret al. [2] employ a Euclidean norm in (4),
such a measure is notoriously unreliable for describing per-
ceptual and object boundaries in RGB color space. Since
the purpose of (4) is to distinguish an object boundary as
best as possible, we propose to use the recently developed
Locality Preserving Projections (LPP) technique of He and
Niyogi [9] to define aconjugate norm. Recall that a con-
jugate norm of a vector,zi, with respect to a matrix,A, de-
noted|| · ||A, is given by the inner product

〈zi,Azi〉 = zT
i Azi. (5)

Examples of conjugate norms are the Euclidean distance
(with A equal to the identity matrix) and the Mahalanobis
distance (withA equal to the covariance matrix).

He and Niyogi [9] show that LPP compares favorably to
a principle components analysis in several respects. Ad-
vantages of LPP are linearity, generalization beyond the
“training” points and robustness to outliers. The derivation
of LPP assumes that the points are connected in a graph.
However, in the context of image processing, especially
graph-based techniques, a graph is defined naturally based
upon the spatial location of the neighboring pixels (e.g., as
a 4-connected lattice).

The projections defined by the LPP algorithm are given by
the solution to the following generalized eigenvector prob-
lem

ZLZT x = λ ZDZT x, (6)

whereZ is the 3×N matrix with eachzi vector as a column,
D is the diagonal matrix defined byDii = di andL is the
graph Laplacian matrix given by

Lviv j =











dvi if i = j,

−wi j if vi andv j are adjacent nodes,

0 otherwise,

(7)

whereLviv j is used to indicate that the matrixL is indexed
by pixelsvi andv j. Denote the solution to the generalized
eigenvector problem of (6) byQ, where each eigenvector
is a row of Q. We note that computation of (6) is very
inexpensive, since the generalized eigenproblem must only
be solved for a matrix of size 3×3, regardless of the image
size.

Therefore, the solution to (6) is both extremely inexpen-
sive and parameter-free. The conjugate norm we propose
in computing the weights of (4) is therefore|| · ||QT Q, i.e.,

wi j = exp

(

(zi − z j)
T QT Q(zi − z j)

σ2

)

. (8)

Figure 4 displays the three projected channels (i.e., Qz) that
the discrimination is based on, instead of the original RGB
channels for the color image.

3.2 Random Walks

It has been known since Kakutani’s seminal work [10] that
the solution to the random walker problem described above
is exactly the solution to the (inhomogeneous) Dirichlet
problem from potential theory, given Dirichlet boundary
conditions as given in (3). On a graph, this solution may
be interpreted as computing the steady-state potentials of
an electric circuit where the branch conductances are anal-
ogous to the edge weights (i.e., wi j = 0 represents infinite
resistance) [4]. These probabilities are an exact, steady-
state, global minimum to the Dirichlet energy functional
E(α) = αT Lα, subject to the boundary conditions.

Specifically,L may be decomposed into blocks correspond-
ing to the unknown pixels,Pu, and the known pixelsPk =



Figure 4. Decomposition of a color image (left) into LPP channels (bottom row) instead of RGB channels (top row). Note how
each object takes a roughly uniform color in each of the LPP channels, compared with the RGB images. Consider also that
slow gradients in the image (e.g., sky and water) are squashed in LPP-space, but preserved in RGB images. Therefore, by using
the conjugate norm defined in (8), we bias our random walkers to avoid crossing boundaries inLPP space.

Pf ∪Pb as

L =

[

Lk R
RT Lu

]

. (9)

Given a vector,m, encoding the boundary conditions of (3),
it is shown in [3] that the desired probabilities (i.e., alpha-
matte) are the solution to

Luα = −Rm, (10)

which is just a sparse, symmetric, positive-definite, system
with |Pu| number of equations and the number of nonzero
entries less than 5|Pu|, where| · | denotes cardinality. How-
ever, due to the symmetry ofLu and the fact that the di-
agonal information is redundant (i.e., it is the sum of the
off-diagonal entries), storage is only required for 2|Pu| val-
ues. SinceLu is guaranteed to be nonsingular for a con-
nected graph [8], the solution,α, is guaranteed to exist
and be unique. Unlike the solution to (2) from the Pois-
son matting technique, the solution to (10) is guaranteed
to lie in the range[0,1] by the combinatorial analogue of
the maximum/minimum principle for continuous harmonic
functions. We note that this technique could be easily ex-
tended to findingα values for more than two regions (i.e.,
foreground and background) by solving an additional sys-
tem of equations (10) for each additional “label” with new
boundary conditions (see [3] for details). Finally, we note
the similarity of this technique for alpha matting to the suc-
cessful colorization strategy of Levinet al. [11], albeit with
a different interpretation of the equations and method for
setting edge weights.

4 Implementation

The random walker alpha-matting algorithm may be sum-
marized as follows. Given a user-supplied trimap

1. Solve the 3×3 generalized eigenvector problem in (6)
for the eigenvectors,Q.

2. Calculate the edge weights from the LPP-projected
RGB values,i.e., (8).

3. Solve the system of equations in (10) for theα values.

If a user is dissatisfied with the solution, the trimap may
be updated by user-clicks specifying additional foreground
or background points. The figures in this paper show
the results of the one-shot solution without further user-
interaction.

The first and second steps of the algorithm are trivial to
compute. The main computational burden of the random
walker algorithm lies in the solution to the system of linear
equations. Although many simple, efficient, methods ex-
ist to solve a symmetric, positive definite, system of equa-
tions, the architecture of the processing unit of commod-
ity graphics hardware (GPU) provides a particularly effi-
cient platform for solution, achieving a running speed of
0.5 seconds on a 1024× 1024 image using an ATI X800
XT graphics card. The following section gives additional
details of this implementation. However, we stress that a
GPU implementation is not required for efficiency. Even
a very simple implementation in MATLAB runs the entire
algorithm in less than 4 seconds for a 600×400 resolution
image.

4.1 GPU implementation

Although it is now well-established that the parallelism of
the GPU is powerful for solving systems of linear equa-
tions that arise from certain partial differential equations
(e.g., [12],[13]), there are several aspects of the present al-
gorithm that make it particularly suited to a GPU imple-
mentation: 1) Since most of the image pixels have fixed



Figure 5. The sparsity structure of the Laplacian matrix
for a 2D image has a particularly efficient representation
via the GPU, since each of the four secondary diagonals
may be stored in the RGBA values of a texture. Since the
main diagonal is the negative row sum of the secondary
diagonals, no storage is necessary for these values.

α (i.e., |Pf ∪ Pb| >> |Pu|), the GPU provides a natural
method for ignoring these pixels via Z-buffer early termi-
nation (effectively performing the block decomposition of
(9)), 2) The current solution may be updated at each iter-
ation as a visualization to the user, as seen in the supple-
mental video, 3) Two RGBA channels may be employed
to simultaneously solve forα and 1−α (since reversing
the boundary conditions modifies only the right hand side
of (10)), using the solution from whichever system con-
verges first, and 4) For other applications where the image
is modeled as a composition of more than two labels (i.e.,
foreground/background), these additional labels may also
be computed simultaneously by using the additional RGBA
channels.

We solve the system of equations (10) on the GPU using
the (Jacobi) preconditioned conjugate gradients method.
The implementation of a conjugate gradients method re-
quires only two non-trivial operations: a sparse-matrix vec-
tor multiply and a vector inner product. The sparse-matrix
vector multiply is described below and the vector inner
product is described by Bolzet al. [12] and Krügeret al.
[13].

The structure of the Laplacian matrix, described in (7) is
well-suited for a texture representation. Figure 5 shows that
this matrix has five diagonal bands for a 2D image. The
secondary bands contain the edge weights to neighboring
pixels (nodes in the graph) and the main diagonal band is
the sum of the four secondary bands. Therefore, we need
only keep the values on the four secondary diagonals in a
four-channel 2D floating texture. Furthermore, using this
representation, the Laplacian matrix and theα vector are
both kept in 2D textures with size equal to the number of
pixels in the image. Therefore, only one rendering pass is
needed to calculate a matrix-vector multiply, using a simple
shader program:

float4 psMultiplyMatrixVector(PosTex5 v) :

COLOR {

// sample Laplacian matrix
float4 L = tex2D(sam0, v.TexCoordsC);

// sample vector
float4 vecc = tex2D(sam1,
v.TexCoordsC); // center
float4 vecu = tex2D(sam1,
v.TexCoordsU); // upper neighbor
float4 vecl = tex2D(sam1,
v.TexCoordsL); // left neighbor
float4 vecr = tex2D(sam1,
v.TexCoordsR); // right neighbor
float4 vecd = tex2D(sam1,
v.TexCoordsD); // lower neighbor

// main diagonal is the sum of secondary diagonals: dot(L,1)
float diag = dot(L,1);

// multiply matrix by vector
return diag*vecc - L.x*vecu - L.y*vecl
- L.z*vecr -

L.w*vecd;

}

Our implementation of this algorithm using DirectX 9.0c
on ATI X800 XT takes 0.5s for a 1024×1024 image pro-
ducing high quality segmentation and matting (see Figure
6).

5 Conclusion

We have presented a new approach to alpha-matting that is
easy to implement, achieves a global minimum, has a sin-
gle free parameter that does not require adjustment and has
an efficient solution that provides quality results for low-
contrast images or objects with weak or difficult bound-
aries. Figure 6 demonstrates the results of applying the
algorithm to a few images containing objects with mod-
erately difficult (i.e., low-contrast, weak) boundaries.

We note that, since eachα is the (weighted) average of
its neighboringα values, there will be no local max-
ima/minima in the alpha distribution. From a practical
standpoint, this means that producing a matte for an object
of complex topology requires a trimap of complex topol-
ogy. One approach to overcoming this issue would be to
add a regional term in the energy functional to the Dirich-
let energy (for which (10) provides a minimum) in a similar
manner to Boykov and Jolly [1] or Rotheret al. [2]. The
cost of such an approach would be to require another free
parameter (to weight the energy terms) and decrease the
present simplicity of the algorithm. In general, we feel that
GrabCuts and the present approach produce results of com-
parable quality. However, the present approach is faster,
simpler, and has many fewer free parameters, but at the
tradeoff of slightly more user-interaction (i.e., supplying a
trimap instead of a bimap).



Figure 6. Additional results for a variety of images. Top row: Original images. Middle row: Computed alpha matte. Bottom
row: Resulting object cut out. All images were processed with the same value of the free parameter (see text) and required
roughly 0.5 seconds to process.

Future work might include additional focus on setting
weights, incorporating an intensity prior and applicationto
video editing.
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