
Random Walks for Interactive Organ

Segmentation in Two and Three Dimensions:

Implementation and Validation

Leo Grady1, Thomas Schiwietz1, Shmuel Aharon1, and Rüdiger Westermann2

1 Department of Imaging and Visualization
Siemens Corporate Research

755 College Rd. East
Princeton, NJ, USA

2 Technische Universität München
Lehrstuhl für Informatik 15

Boltzmannstrasse 3
85748 Garching, Germany

Abstract. A new approach to interactive segmentation based on ran-
dom walks was recently introduced that shows promise for allowing
physicians more flexibility to segment arbitrary objects in an image.
This report has two goals: To introduce a novel computational method
for applying the random walker algorithm in 2D/3D using the Graphics
Processing Unit (GPU) and to provide quantitative validation studies
of this algorithm relative to different targets, imaging modalities and
interaction strategies.

1 Introduction

A general-purpose, automatic, segmentation engine for medical images is ex-
tremely challenging due to the drastic changes in image data as a result of
pathology and changes in radiologist preference. Therefore, efforts have contin-
ued toward providing interactive tools that allow a physician to quickly obtain an
image/volume segmentation meeting their specific goals and criteria. Recently,
a promising new interactive approach was introduced that uses random walks
to define segmentation boundaries given user-placed seeds indicating K objects
[1] (for arbitrary K). It was shown in [1] that this random walks algorithm is
robust to weak boundaries and image noise. With the theory developed in [1],
the current work introduces a faster, GPU-based, method of computation and
offers a quantitative validation of the segmentations produced by this method.

The major computational hurdle of the random walker algorithm in [1] is the
solution to a sparse system of equations for which a generic conjugate-gradients
approach is employed. Although achieving reasonable speeds for moderately
sized images (four seconds for a 256×256 2D image), the size of modern medical
volumes requires a more efficient implementation to achieve an interactive speed.
Therefore, we introduce a GPU-based implementation that offers over an order
of magnitude speed increase for the processing of 2D and 3D datasets.



Validation of a general-purpose, interactive segmentation tool is difficult.
Since this tool will provide an arbitrary segmentation with enough user interac-
tion (i.e., if the user seeds every pixel), the main concerns are: 1) How sensitive
are the results to exact seed placement? 2) How sensitive are the results to
the quantity of seeds placed? 3) How much time, both user and computer, is
required to perform a segmentation? 4) What is the subjective quality of the
segmentations across different imaging modalities and different segmentation
targets? These are the four questions that we address in the validation section.

The major interactive techniques for general-purpose organ segmentation are
graph cuts, intelligent scissors and level sets. Graph cuts [2] treat the image as
a graph where each pixel is associated with a node and a lattice edge structure
is imposed, weighted to reflect intensity changes. Although performing well in
many situations, there are a few concerns associated with this technique. For
example, if a small number of seeds are used, the algorithm will often return the
smallest cut as the cut that minimally separates the seeds from the rest of the
image. Therefore, a user often has to continue placing seeds in order to overcome
this “small cut” problem. Additionally, the K-way graph cuts problem is NP-
Hard, requiring use of a heuristic to obtain a solution. The intelligent scissors
algorithm [3] again views the image as a graph and employs Dijsktra’s algorithm
to compute the shortest path between user-defined points, treating this path
as the object boundary. Unfortunately, a low-contrast or noisy boundary may
require the specification of many points and the algorithm is inapplicable to 3D
boundaries. Although the family of active contours and level sets is large [4] a user
is generally asked to place a contour near the desired boundary and the algorithm
evolves the boundary to a local energy minimum. The main problems with level
set methods are difficulty of implementation (often requiring specification of
several free parameters) and difficulty in fixing an incorrect solution, especially
if the desired contour does not correspond to a local energy minimum.

This paper is organized as follows: In Section 2 we review the random walker
algorithm and Section 3 details our novel GPU implementation in 2D/3D. Sec-
tion 4 provides the results of our validation studies with respect to the questions
raised above. Section 5 follows with a conclusion.

2 Random Walks for Image Segmentation

In this section we review the random walker image segmentation algorithm in-
troduced in [1]. In the case of two labels, we determine the label for a non-seed
pixel by asking: Given a random walker starting at this pixel, what is the prob-
ability that the random walker will reach a foreground seed before it reaches
a background seed? If this probability is above one-half, then we assign this
pixel to the foreground and if it is below one-half, we assign this pixel to the
background. If more than two labels are used, the pixel is assigned the label for
which a random walker is most likely to reach first. In [1], a Gaussian weight-
ing function was used to represent the image structure as random walker biases
(i.e., edge weights). This function has a single free parameter (representing the



only free parameter in the algorithm), β, that was set to β = 1500 for all 2D
experiments and β = 4000 for all 3D experiments.

The equivalence between the random walker problem and the Dirichlet prob-
lem from potential theory was exploited in [1] to transform the computation of
the random walker probabilities into the solution to system of linear equations.
Although the system is sparse, symmetric and positive definite, allowing applica-
tion of fast solvers like conjugate gradients, interactive speeds were not achieved
for high-resolution images in [1]. For this reason, we present in the next section
a GPU-based method that the solves the linear system (i.e., calculates the ran-
dom walker probabilities) at interactive speeds for higher-resolution images and
volumes.

3 GPU implementation

Commodity graphics cards have been successfully used in recent years to en-
hance the speed of computation for image segmentation algorithms [5, 6]. The
computation of the random walker algorithm fits perfectly with the GPU in
three respects: 1) All necessary linear algebra operators are computed extremely
fast due to the inherit parallelism of the GPU and efficient caching, 2) Since a
GPU processes four channels (RGBA), each channel may be used to represent
a set of probabilities, allowing four labels to be solved simultaneously, 3) The
segmentation may be continuously updated on the screen for the benefit of the
user. An additional benefit of simultaneously solving the system of equations for
multiple labels is that one may stop the computation when three of the four la-
bels have converged and simply subtract the converged probabilities from unity
to obtain the probabilities for the unconverged label.

Either a 2D or 3D dataset may be processed using the GPU. However, the
limited size of the on-board memory of today’s GPUs (256MB) constrains us to
images with a resolution of 1024×1024 or volumes of resolution 128×128×128.
The implementation of a conjugate gradients method requires only two non-
trivial operations: a sparse-matrix vector multiply and a vector inner product.
The sparse-matrix vector multiply is described below and the vector inner prod-
uct is described by Bolz et al. [7] and Krüger et al. [8]. Each row of the 2D-
Laplacian matrix represents one pixel and the four values on the sub-diagonals
indicate the weights of that pixel to each of its neighbors. Since the diagonal con-
tains redundant information (i.e., the diagonal entry equals the negative sum of
the off-diagonals), we can represent the Laplacian matrix as a 2D, four-channels,
texture with size equal to the number of pixels in the image. The matrix-vector
multiplication is therefore executed by multiplying the four channels of a given
pixel (row) by the values of the four neighboring pixels of the vector. The diag-
onal value of the matrix is retrieved by summing and negating the four channel
values. This value is then multiplied by the corresponding vector pixel. The five
multiplication values are then summed together to provide the current output
vector element results.



0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

0%

1%

2%

3%

4%

5%

0% 1% 2% 3% 4% 5% 6% 7% 8%

Shift

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

Fig. 1. Sensitivity analysis of segmentation to random shifts of seed placement in direc-
tion and magnitude over 1,000 trials. Left: Original 2D datasets from each of the four
major imaging modalities and a 3D (CT) dataset. Middle: Foreground and background
seeds are given by the gray markers. The white line represents the initial segmenta-
tion boundary (in 2D datasets). Right: Experimental results. The x-axis represents the
ratio of the shift measured in pixels to the horiztonal image resolution. The y-axis
represents the ratio of the pixels that switched label to the number of pixels originally
labeled foreground. The plotted line represents the mean, with error bar indicating one
standard error of the mean.



The Laplacian matrix for a 3D lattice has six sub-diagonals. However, due to
matrix symmetry, one need only store three out of six sub-diagonals. The other
three sub-diagonals can be retrieved by sampling neighboring matrix entries. In
2D and 3D a matrix-vector operation requires one rendering pass only. In 3D
we put all slices of a volume in one 2D flat texture side-by-side. Operations on
a flat texture have proven to be much faster than on a stack of slices (textures)
[9].

4 Validation

The original exposition of the random walker technique demonstrated that the
algorithm is capable of finding weak (i.e., low-contrast or no-contrast) bound-
aries, behaving robustly to noise and giving good quality results. However, since a
user may achieve an arbitrary segmentation with the placement of enough seeds,
a strict error measure is practically meaningless. An ideal interactive segmenta-
tion algorithm would not require an excess of seeds or require user precision to
carefully choose the seed locations. An additional criterion is obviously speed of
computation and user time. Therefore, in this section we provide a quantitative
validation of the algorithm by studying the following questions: 1) How sensitive
are the results to exact seed placement? 2) How sensitive are the results to the
quantity of seeds placed? 3) How much time, both user and computer, is required
to perform a segmentation? We examine the first two questions with a 2D exam-
ple from each of the major imaging modalities of MR, CT, PET and Ultrasound
as well as a 3D (CT) volume. The third question is addressed by applying the
algorithm to a range of targets in images of differing image modalities. For sim-
plicity, all of these experiments were conducted on a lattice with a 4-connected
topology using a two-label scenario. However, these results should extend to the
multilabel setting since the probabilities for each label are computed by effec-
tively viewing the label as the foreground opposed to the background of all of
the other labels.

Obviously, the segmentation obtained with the random walker algorithm will
depend on the location of the seeds. If this were not true, no seeds would need
to be placed. However, a small difference in the placement of the seeds within
the same object should not result in a significant change in the computed seg-
mentation. Ideally, the user should be free from a requirement that the seeds
are drawn very carefully or placed in prescribed locations. We performed five
experiments in seed placement using a 2D example from each of the four imag-
ing modalities described above and a 3D (CT) dataset. For each of these seed
placements, the locations of the foreground seeds were shifted (as a group) in
a random direction with random magnitude. Although no range of magnitudes
was pre-established, we rejected any perturbation that would have moved fore-
ground seeds into the background. After the seed placements were perturbed,
the segmentation was recomputed and the change in pixel labeling was reported
as the ratio of pixels that switched labels to the number of pixels originally la-



0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%

Seed Reduction

S
eg

m
en

ta
ti

o
n

 C
h

an
g

e

MR
US
CT
PET
CT 3D

Fig. 2. Sensitivity analysis of segmentation to the numbers of seeds used. For each
image in 1, we initially filled the inside of the initial segmentation with foreground seeds
and the outside with background seeds. Then, we performed morphological erosion
until the seeds were entirely removed and tracked the change in segmentation after
each erosion step. The x-axis indicates the percentage of seeds remaining (with respect
to the initial seeding) and the y-axis represents the ratio of the number of seeds that
changed label to the total number of foreground seeds. Since this experiment was
deterministic, the resulting value is simply reported after each erosion operation. Seed
reductions of 50% or more are seen to produce only minor changes in the resulting
segmentation. Note that the 100% value is not actually reported — the experiment
was terminated when erosion would have removed the final seed.

beled as foreground. The original images, initial segmentations and experimental
results of the perturbation studies are shown in Figure 1.

As one might expect, a greater magnitude shift produces a greater change in
the segmentation. However, the algorithm does appear to be stable in the tradi-
tional sense that a small change in input (i.e., seed placement) produces a small
change in output (i.e., the segmentation). In fact, perturbations within the orig-
inal object all produced changes in the segmentation under 5%. However, image
content does influence the segmentation response to seed perturbation, as may
be seen by comparing the plots in Figure 1. For example, the low-contrast bound-
ary of the cerebellum in this particular MR image results in a greater sensitivity
to seed location than the more straightforward cardiac PET image, although all
segmentations remain within 5% of the original. Therefore, we conclude that a
user need not be very accurate in placing seeds, since a small deviation will not
be expected to make a large difference in the results.

A second important question is: How many seeds does a user need to place
in order to achieve the desired segmentation? If many seeds are required, the al-
gorithm has little to offer over a purely manual segmentation. As above, we have
used a foreground/background scenario for simplicity. We used following design
in examining this question quantitatively: We start with the initial segmenta-
tions of Figure 1, filling the object with foreground seeds and the background
with background seeds. Then, we shrink the two seed groups by applying a
morphological erosion operation to each group and track the change in the seg-



(a) Brain tumour (b) Brain (c) Cerebellum

(d) Lung tumour (e) Lung with tumour (f) Left atrium

Fig. 3. User and computer time for image segmentations. User time indicates the esti-
mated time taken to place seeds. Computer time is given with both a CPU and GPU
implementation. a) User: 2s, CPU: 10s, GPU: 0.7s, b) User: 2s, CPU: 6s, GPU: 1.5s,
c) User: 2s, CPU: 83s, GPU: 0.3s, d) User: 3s, CPU: 3s, GPU: 0.9s, e) User: 5s, CPU:
23s, GPU: 1.3s, f) User: 4s, CPU: 3s, GPU: 0.8s.

mentation as the number of seeds are reduced. Figure 2 illustrates the change in
segmentation as the number of seeds are reduced. As desired, small reductions in
the numbers of seeds preserve the object boundaries almost exactly. In fact, it is
only after the number of seeds has dropped dramatically, to less than 50% of the
original, that the effects of reduced seeds are noticeable. Therefore, we conclude
that only a fraction of the seeds necessary to specify a manual segmentation are
required to produce a nearly identical segmentation.

The time required by a user to obtain a desired segmentation (with editing) is
more crucial than the computation time. Figure 3 shows the results of segmenting
several different targets in different imaging modalities. The caption details the
total user time required to place the seeds (including edits) and the computation
time on the CPU and GPU. The experiments were performed on a Pentium 4
with 2.8 GHz and a ATI Radeon X800 XT graphics card. User time ranged from
2–5s, CPU computation time from 3–83s and GPU time from 0.3–1.5s. As a
comparison, we note that segmenting the 3D volume of Figure 1 required 35s
for the CPU, 1s for the GPU and 5s of user time to place seeds.



5 Conclusion

Anatomical differences between patients and the patient pathology often prevent
a fully automatic algorithm from producing high-quality segmentations without
user interaction. The random walker method presented in [1] has proven a useful
tool for general-purpose, interactive segmentation.

Since a diligent user could achieve an arbitrary segmentation by placing
enough seeds, it is important to validate this technique using metrics that mea-
sure the speed and ease of use for a naive user. Our experiments above examined
how sensitive the segmentation is to seed placement and how many seeds are
needed to obtain a quality segmentation. Furthermore, we have presented a sim-
ple method for reducing the computation time of the random walker algorithm
by over an order of magnitude on commodity graphics hardware and measured
the total time required for a user to obtain a desired segmentation. Our exper-
iments support the statement that the random walker algorithm allows a user
to quickly obtain a desired segmentation without concern for placing an excess
of seeds, placing them very carefully or in a prescribed pattern. Ultimately, we
believe that these qualities will lead to the widespread use of the random walker
segmentation algorithm in varied applications.

References

1. Grady, L., Funka-Lea, G.: Multi-label image segmentation for medical applications
based on graph-theoretic electrical potentials. In Šonka, M., Kakadiaris, I.A., Kybic,
J., eds.: ECCV 2004 Workshops CVAMIA and MMBIA. LNCS3117, Prague, Czech
Republic, Springer (2004) 230–245

2. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In: International Conference on Computer
Vision. Volume I. (2001) 105–112

3. Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors.
Graphical Models in Image Processing 60 (1998) 349–384

4. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Mono-
graph on Applied and Computational Mathematics. Cambridge University Press
(1999)

5. Lefohn, A.E., Cates, J.E., Whitaker, R.T.: Interactive, GPU-based level sets for 3D
segmentation. In: Medical Image Computing and Computer Assisted Intervention
(MICCAI). (2003) 564–572

6. Sherbondy, A., Houston, M., Napel, S.: Fast volume segmentation with simultaneous
visualization using programmable graphics hardware. In: IEEE Visualization 2003,
Seattle, WA, IEEE (2003) 171–176

7. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid. In: ACM Transactions on Graphics. Volume 22
of SIGGRAPH. (2003) 917–924

8. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation
of numerical algorithms. In: ACM Transactions on Graphics. Volume 22 of SIG-
GRAPH. (2003) 908–916

9. Harris, M.J.: Real-time cloud simulation and rendering. Technical Report TR03-
040, University of North Carolina (2003)


