
Interactive Simulation and Rendering
of Heterogeneous Deformable Bodies

Joachim Georgii, Rüdiger Westermann

Computer Graphics & Visualization Group
Technische Universität München

Email: {georgii, westermann}@in.tum.de

Abstract

In this paper, we present an interactive method
for physics-based simulation and rendering of de-
formable bodies exhibiting heterogeneous material
properties. To fully exploit the capabilities of con-
sumer class computer systems, a CPU simulation
engine is run in parallel with a GPU render engine.
On the simulation side, we have developed a numer-
ical multigrid solver for the governing equations of
motion of deformable bodies. This solver allows for
the combination of implicit solution methods and
varying material parameters into an unconditionally
stable simulation support system. The deformable
model is rendered using a high-resolution surface
mesh, which is subsequently updated on the GPU
to exploit parallelism and memory bandwidth. Ren-
dering of the deformed mesh can thus be performed
without any additional bus-transfer. The interactive
system is open to a variety of different applications
ranging from surgery simulation, medical imaging
and solid mechanics to computer animation and vir-
tual sculpting.

1 Introduction and Contribution

Interactive and realistic deformation and rendering
of volumetric objects is still difficult to achieve due
to a number of reasons: First, no existing technique
is able to realistically simulate the dynamic behav-
ior of reasonably sized bodies at interactive rates.
Second, volumetric objects as they appear in reality
are usually composed of highly heterogeneous ma-
terial exhibiting real and varying elasticity or den-
sity. Such objects require stable simulation systems,
and the performance of the solver should ideally not
depend on the material stiffness.

In this paper, we describe a system that compre-
hensively addresses the aforementioned issues. The

proposed system consists of a CPU simulation en-
gine that is run in parallel with a GPU (graphics
processing unit) render engine. We present a multi-
grid solver for the simulation of the dynamic be-
havior of an elastic solid under external forces. Al-
though the beneficial properties of multigrid meth-
ods are well known [1, 11], to the very best of our
knowledge such methods have not yet been consid-
ered in computer graphics for the interactive simu-
lation of deformable bodies. Our proposed solver
is by far faster than previous approaches and it gen-
erates numerically stable results. The implicit na-
ture of this method makes it amenable to the simula-
tion of real-world objects, which can show an elas-
tic modulus with a dynamic range of several orders
of magnitude. In the real world, these parameters
considerably affect the dynamic behavior of volu-
metric objects, which makes them important in a
number of applications ranging from surgery sim-
ulation and image registration to solid mechanics.
Besides physical realism, such parameters also pro-
vide a plausible means for controlling the dynamic
behavior of deforming bodies (see Figure 8).

It is worth noting, that the proposed CPU multigrid
scheme is even faster than optimized GPU simula-
tion techniques [3, 22], yet providing significantly
higher numerical accuracy and stability. Moreover,
much larger models can be handled using our ap-
proach, due to limited video memory on current
GPUs. As an additional advantage over pure GPU
approaches, the simulation system we present in
this work produces highly balanced load on the
CPU and the GPU. Thus, the engine is even more
superior to such approaches if rendering is consid-
ered.

To render the deforming volumetric body we have
developed a render engine for triangular meshes
that continually change their shape. This engine is
entirely implemented on the GPU, and it only re-

VMV 2005 Erlangen, Germany, November 16–18, 2005

quires the transfer of per-node displacements of the
coarser finite element mesh from the CPU. The inte-
gration of the simulation and the render engine into
a simulation support system enables the instanta-
neous visualization of physics-based deformations
due to external forces.

1.1 Related Work

Physics-based deformation techniques for volumet-
ric bodies have a long tradition in computer ani-
mation and medical imaging [9, 19]. Less accu-
rate finite difference and mass-spring models have
been considered as well as more elaborate and phys-
ically accurate finite element techniques [2]. As we
want to consider realistic and varying stiffness, ex-
plicit [7, 24] or mixed explicit/implicit [16] time
integration schemes for finite elements don’t seem
to be suited, due to the Courant condition that sig-
nificantly limits the largest possible time step for
very stiff materials. Unconditionally stable implicit
solvers usually employ conjugate gradient meth-
ods [18, 8] or matrix pre-inversion [5]. These ap-
proaches, however, do not scale linearly and there-
fore they are limited in the number of elements
they can handle interactively. Along a different
avenue, multiresolution techniques have been em-
ployed to accelerate the simulation of deformable
objects based on adaptive refinements [6, 7, 12, 13].
Even though an explicit multigrid scheme for sur-
faces was presented [23], it can not be used in our
case due to the Courant condition. The specification
of arbitrary material properties is still a challenge to
many of these techniques, due to both stability and
performance reasons.

2 System Overview

The simulation support system consists of two par-
allel processes. The simulation engine is imple-
mented on the CPU and computes the displacement
of an elastic solid under external forces. The ren-
der engine is realized on the GPU. It receives com-
puted displacements and updates the geometry of
an associated surface model accordingly. While the
simulation engine consecutively displaces the un-
derlying finite element grid, i.e., the simulation ge-
ometry, the render engine subsequently changes the

geometry of the render object, i.e., the render ge-
ometry. It is attached to the simulation geometry
via a weighting function. Without loss of general-
ity, tetrahedral grids serve for the simulation geom-
etry and triangular meshes serve for the render ge-
ometry. A clear conceptual separation between the
simulation geometry and the render geometry en-
ables the flexible variation of the geometries used,
i.e. regular grids, point sets, or volumetric render
grids.

The system is parallelized using posix threads to in-
stantiate a separate simulation and rendering thread.
This is necessary because the execution of ren-
dering commands on the GPU may block the ap-
plication process, whereas only the calling thread
is blocked in a multi-threaded environment. The
spawning process allocates memory that is shared
by both threads to write and to read computed
displacements. Both threads are synchronized via
conditional variables, which allow synchronization
based upon the actual value of data. Even more, by
exploiting hyper-threading architectures, idle times
of the threads can be reduced noticeably.

The particular system design has several other prop-
erties that accommodate its use in the confined area:

• By decoupling the resolution of the simulation ge-
ometry from the resolution of the render object, one
can flexibly trade simulation or rendering quality for
speed.

• The use of two separate grids, of which the render
grid is attached to the simulation grid via barycen-
tric weights, enables approximate deformation of
objects that are made of far more elements than the
simulation engine can handle.

• After an initial delay of one simulation frame the
system operates in full pipeline mode. Optimally,
this allows the system to double its performance
compared to an implementation on a single process-
ing unit.

• To update the render geometry, only the displaced
simulation vertices have to be transferred. Band-
width requirements can thus be reduced.

• The parallel approach allows the exploitation of par-
allelism and memory bandwidth in the fragment
units of recent GPUs to update and to display the
render geometry.

Running the proposed system involves a number of
preprocesses as well as model driven computations
at run-time. In the following we will describe the
different modules the system is comprised of from
a high-level view.

666

2.1 Precomputation

Starting with an initial object representation, a tetra-
hedral hierarchy is generated that constitutes the
basis for the multigrid method. If such a hierar-
chy is already given, it can be used directly. Ded-
icated data structures to render the deformed high-
resolution render surface are created and initialized
on the GPU.

1. Construct a 3D finite element mesh, either by using a trian-
gle mesh and a tetrahedral mesh generation package such as
NETGEN [21], or by using an adaptive subdivision scheme
for tetrahedral grids [10].

2. Assign material properties such as stiffness and densityto
finite elements depending on material characteristics, us-
ing pre-computed transfer functions [14] or segmentation
results.

3. Where deformations are not allowed, fix boundary vertices
of the finite element model.

4. Generate a finite element mesh hierarchy including geomet-
ric correspondences between meshes.

Generate a triangle mesh hierarchy, e.g. by using a mesh
decimation package, and generate a finite element mesh for
each hierarchy level as described. Alternatively, use differ-
ent levels generated by the tetrahedral subdivision scheme.

5. Construct a triangular render geometry. This can be the
surface of the finest resolution finite element mesh, a sim-
plified or detailed version of this mesh, or a completely dif-
ferent mesh.

6. Bind the render mesh vertices to vertices of the finite ele-
ment mesh.

7. Store vertices of the highest resolution finite element model
into a 2D texture map. Upload both the 2D texture and the
render geometry including per-vertex indices and associ-
ated weights into that texture to the GPU.

2.2 Runtime Computations

At runtime, the following steps are performed by
the simulation support system:

1. Based on external forces, compute the displacement of fi-
nite element vertices using the multigrid method.

2. Store the displacement vectors (at object boundaries only)
in a 2D texture map and upload this texture to the GPU.

3. Displace the render surface on the GPU and render this sur-
face.

3 Simulation

The motion of a deforming volumetric object can
be simulated by a displacement field in an elastic
solid. Given such a solid in the reference config-
urationΩ, the deformed solid is modeled using a

displacement functionu(x), u : R
3 → R

3. This
function describes the displacement vector at every
point x ∈ Ω, yielding the deformed configuration
x + u(x).

3.1 Linear Elasticity Theory

Driven by external forces, the dynamic behavior of
the deformed solid is governed by the Lagrangian
equation of motion

Mü + Cu̇ + Ku = f (1)

whereM , C, andK are respectively known as the
systems mass, damping and stiffness matrices.u

consists of the linearized displacement vectors of all
vertices andf contains the force vectors applied to
these vertices.

If a finite element method is used to model the sys-
tem, system matrices are built by assembling all el-
ement matrices. Since each element in the finite el-
ement discretization only has a very small number
of neighbors, this system is very sparse. We are
using tetrahedral elements with linear nodal basis
functions. Displacements are expanded in a basis
of shape functionsΦ as

u(x) = Φ(x)ue
,

where ue = (uT
1 , . . . , uT

4)T contains the single
node displacements.

Instead of simple mass lumping, we compute a con-
sistent mass matrixMe as

M
e =

Z

Ωe

ρΦT (x)Φ(x)dx,

whereρ is the element density. Assembling these
components leads to a real symmetric matrix. We
use either simple proportional dampingC = αM

or Rayleigh dampingC = αM + βK.

The stiffness matrixK accounts for the internal en-
ergy associated with the displacement field, and it
is thus dependent on the elastic energy stored in the
solid and on the work done by body forces and trac-
tions applied through the displacement fieldu. In
linear elasticity the strain tensorE describes the lin-
ear relation between deformation and displacement:

Eij =
1

2

„

∂ui

∂xj

+
∂uj

∂xi

«

(2)

666

In an isotropic and fully elastic body, stress (Σ) and
strain tensors are coupled through Hooke’s law

Σ = λ

3
X

i=1

Eii

!

· I33 + 2µ E , (3)

with the Lamé coefficientsλ andµ [4].

Given the nodal basis functions as well as strain and
stress tensors, the potential energyV of every ele-
ment can be computed, from which the first vari-
ation of the equilibrium equation∂V

∂uk

= 0 is de-
rived. The resulting single element equations are
finally assembled into a system of linear equations.

To solve this system, implicit Euler integration is
often employed. Because artificial damping is typ-
ical to this integration scheme, a Newmark scheme
is used for second order accurate time integration:

u̇
t+dt = u̇

t +

„

1

2
ü

t +
1

2
ü

t+dt

«

dt

u
t+dt = u

t + u̇
t
dt +

„

1

4
ü

t +
1

4
ü

t+dt

«

dt
2

By discretizingu as well as the partial derivatives of
u with respect to time, and by replacingu̇t+dt and
üt+dt in equation (1), the system of linear equa-
tions K̃ut+dt = f̃ t+dt can be formulated. Be-
cause in linear elasticity the stiffness matrix does
not change, and because bothM and C do not
change either, the system matrix̃K remains un-
changed as long as topology changes do not occur.

3.2 Multigrid Method

For the efficient simulation of an elastic de-
formable solid we have developed a geometric
multigrid method. In particular, this method in-
cludes geometry-specific relaxation, restriction, and
interpolation operators. These operators form the
essential multigrid components.

Multigrid methods give rise to scalable linear
solvers. A relaxation method like Gauss-Seidel is
used to efficiently damp high-frequency error. The
remaining low-frequency error can be accurately
and efficiently solved for on a coarser grid. Recur-
sive application of this basic idea to each consecu-
tive system on a hierarchy of grid levels leads to a
multigrid V-cycle.

In this work, we define an appropriate finite ele-
ment hierarchy, which allows for an efficient imple-
mentation of multigrid components. The result is a
method that uniformly damps all error frequencies
with a computational cost that depends only linearly
on the problem size.

3.2.1 Unstructured Hierarchy

The geometric multigrid method requires a mesh hi-
erarchy that represents the deformable object at dif-
ferent resolution levels. On this hierarchy, appro-
priate transfer operators to map quantities between
different levels have to be designed. Starting with a
finite element mesh at the coarsest resolution level,
a common way to construct the hierarchy in a top-
down approach is to split each tetrahedron as shown
in Figure 1. The octahedron is subsequently split
into four tetrahedra, such that eight children are
generated overall. This approach results in a nested
hierarchy, which allows the transfer operators to be
defined straight forwardly, but it requires the initial
mesh to be fine enough to achieve a proper repre-
sentation of the object at ever finer resolution levels.

For volumetric objects given on a Cartesian grid this
requirement does not pose a restriction, because at
every level the entire domain is covered. If we start
with a coarse representation of an arbitrary object,
however, rather shallow hierarchies are constructed
and the multigrid method can not be used to its
full potential. In addition, because the subdivision
scheme does not account for the objects surface at
the finest scale, it leads to poor visual results. To
avoid these drawbacks, we propose linear transfer
operators that do not require a nested hierarchy, and
which can be integrated efficiently into the multi-

Figure 1: Left: tetrahedral subdivision lends itself di-
rectly to a nested hierarchy. Right: geometric relations
between elements in the non-nested hierarchy are illus-
trated (the 2D case is shown for simplicity). Dotted and
solid lines indicate the coarse and the fine mesh respec-
tively. Barycentric interpolation weights are highlighted
by dotted (red) lines.

666

grid scheme. These operators establish relations in
a multilevel hierarchy of unstructured and unrelated
meshes by means of barycentric interpolation as il-
lustrated in Figure 1.

Given the restriction operatorIH
h and the interpo-

lation operatorIh
H = (IH

h)T , whereh denotes the
fine mesh andH the coarser mesh, the system ma-
trix at H is computed as

K
H = I

H
h K

h
I

h
H .

Only in this case we can ensure optimal conver-
gence of the multigrid scheme, which lacks the ten-
dency of finite elements methods to behave differ-
ently on distinct levels of detail [4].

Overall, with both the nested and the non-nested
unstructured hierarchy we achieve nearly the same
performance. However, the latter one allows for an
improved approximation of the continuum model.
In particular, it is possible to refine the mesh in crit-
ical regions in a pre-process while keeping tetrahe-
dral elements well shaped.

3.2.2 Linear Elasticity Multigrid

Given the linear transfer operatorsIH
h and Ih

H as
well as an initial approximation̂uh of the displace-
ment values of a deformable solid on a fine grid,
then a new approximationuh can be computed as
follows (eh andeH denote the error):

① compute residual rh = fh − Khûh

② restrict residual rH = IH
h rh

③ solution on coarse grid KHeH = rH

④ transfer correction eh = Ih
HeH

⑤ correction uh = ûh + eh

The algorithm is extended to a 2-grid approach
by pre-smoothing the residual prior to stage① to
avoid the transfer of quantities from theh-grid that
can not be reduced on theH-grid, and by post-
smoothing the result after stage⑤ to avoid high
frequencies introduced by numerical inaccuracies.
In general,1 − 2 Gauss-Seidel steps are sufficient
for pre-smoothing and post-smoothing, and they
keep the relative error smaller than10−3 in our ex-
amples. However, if the external force field does
not change anymore, the relative error decreases to
10−6 after few timesteps. Given the solution of the
system of equations on the coarse grid using matrix
inversion, a full multigrid V-cycle can be derived.

In every simulation step and for every vertex of the
finite element mesh at the finest level, displacement
vectors are computed by the simulation engine. Up-
dated vertex positions of the boundary elements are
uploaded to a 2D RGBA texture – the displace-
ment map – onto the GPU. The fourth color chan-
nel is used to store an additional scalar per-vertex
attribute, which can be visualized.

3.3 Simulation Results

In the following, we give several examples that
demonstrate the efficiency of the physics-based
simulation engine. The solution of the system of
linear equations is computed on a P4 3.0 GHz pro-
cessor using the proposed multigrid method. One
Gauss-Seidel step was used both for pre- and post-
smoothing in all examples of Table 1. An integra-
tion time step of0.03sec allows for a stable sim-
ulation with a relative error less than10−3. As
shown in Table 1 and Figure 2, the multigrid method
scales linearly with the number of elements, and it
achieves excellent performance rates even for large
models. To our best knowledge, a similar perfor-
mance can not be achieved so far using any other
physics-based finite element method. In particular,
the comparison to a diagonal preconditioned conju-
gate gradient method (see Figure 2) shows an ever
increasing performance gain of our proposed multi-
grid method for larger meshes.

model elements vertices levels timesteps
per sec.

cloth1 8192 4225 7 150
cloth2 131072 66049 9 9

car 7008 2341 2 160
horse 10268 2815 2 125

bunny 11206 3019 2 113
horse 49735 12233 3 20

bunny 89648 19266 3 13
bridge 196608 35937 6 8
bridge 1572864 274625 7 1

Table 1: Timing statistics for differently sized trian-
gular (first two rows) and tetrahedral models. The
performance for the triangular grids is not as high
as expected due to the high vertex count of the used
meshes.

Compared to previous approaches, the implicit
multigrid solver enables much larger integration
time steps of up to one second. Even more impor-
tantly, both the time step and the number of itera-

666

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07

T
im

e
[s

ec
]

tetrahedra

Figure 2: Comparison of the time required until con-
vergence on a double logarithmic scale for the multigrid
method (solid lines) and the diagonal preconditioned con-
jugate gradient method (dashed lines). The former method
scales linearly with the number of tetrahedra, while the lat-
ter one requires ever more iterations to achieve the same
relative error of10−4 in the solution. The timings where
measured using a cube model that was subsequently re-
fined by the split operation shown in Figure 1, and a fixed
integration time step of0.02sec.

tions until convergence do not depend on material
stiffness as illustrated in Figure 3. Especially for
stiff materials, the multigrid method is far superior
to the ill-conditioned conjugate gradient method.
The multigrid solver enables stable simulation of
heterogeneous bodies with an elastic modulus vary-
ing from 103 to 1011. In Figure 6, different stiff-
ness values have been assigned to different parts
of a finite tetrahedral mesh. This mesh was gen-
erated from a triangular horse model. In particu-
lar, all four legs exhibit very high stiffness, while
the abdomen is made of soft material. As a mat-
ter of fact, the abdomen moves to the ground due to
gravity, while the legs keep the rest of the horse in
shape. Figure 11 shows the influence of wind force
and gravity to bars of different density and stiffness.
As the force is constant everywhere, softer bars are
deformed much more significantly than stiffer ones.

Finally, let us mention that the proposed multigrid
solver is not limited to tetrahedral models. Arbi-
trary triangular models like cloth can be simulated
in the same way, by adapting the system to trian-
gular finite elements. This change only influences
the internal structure of the stiffness matrix as well
as the interpolation operator required by the multi-
grid scheme. Figure 5 shows some deformations of
triangular surface models under external forces.

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

T
im

e
[s

ec
]

Elastic modulus [N/m^2]

Figure 3:Performance measures for a bridge model con-
sisting of3k tetrahedral elements. For ever stiffer materi-
als, the conjugate gradient method (dashed line) requires
more steps to be performed to achieve the same relative
error of 10−4 as the multigrid method (solid line). The
elastic modulus affects the performance of the conjugate
gradient method significantly, while it does not affect the
performance of the multigrid method. Only for extremely
soft materials, the performance of the multigrid method
drops down, as forces cause only very local deformations
that cannot be solved for on a coarser grid.

4 Rendering

On the GPU, the render engine updates a render
mesh, i.e. a triangular mesh, according to uploaded
displacements of the boundary of the simulation
mesh. Vertices of the render mesh are bound to
vertices of the simulation mesh via interpolation
weights, which are pre-computed and stored on the
GPU. The deformation of high resolution meshes
can thus be driven by the simulation engine at mini-
mum bus transfer. Furthermore, parallelism as well
as memory bandwidth on recent GPUs can be ex-
ploited to update the render mesh.

4.1 Render Surface

The high-resolution render surface, which resides in
local GPU memory, is represented as an index array
that contains for every triangle references into a ge-
ometry image with associated per-vertex attributes.
All containers are internally stored as 2D textures.
Every vertex in the geometry image gets assigned
additional references into the displacement texture
that is sent from the CPU. These references are
accompanied by barycentric interpolation weights.
Four references are stored, one for every vertex of

666

the tetrahedron closest to the render vertex. Once
displaced vertices of the simulation mesh are up-
loaded on the GPU, a fragment program fetches
respective vertex coordinates~vi and interpolation
weightswi and computes the new vertex position as
P3

i=0
~vi ·wi. If additional vertex attributes are sent

with the displacement texture, i.e. color, texture co-
ordinates, these values are interpolated as well. The
fragment output is finally rendered into a 2D texture
render target. To render the displaced triangle mesh,
different possibilities are available on recent GPUs
– OpenGL SuperBuffers and vertex texture fetches
using Shader 3.0 or GLSL.

To provide the application program with better con-
trol of the GPUs local video memory, the OpenGL
SuperBuffer extension [20] has been introduced. It
defines amemory objectthat holds a piece of raw
video memory. By using non-standardized memory
objects, i.e. ATI’s UberBuffers, a memory object
can subsequently be bound as the current texture
render target and as a vertex array used to draw par-
ticle primitives. Because this approach restricts the
application to a particular GPU architecture, how-
ever, in the current work we exploit the possibil-
ity to perform texture fetches in the vertex units of
the GPU. Although this method is actually less ef-
ficient than the one using UberBuffers, similar per-
formance can be expected in the near future due to
optimized texture caches in the vertex units of up-
coming graphics processors.

On traditional graphics architectures, textures could
only be accessed in a fragment shader program.
The Shader 3.0 and the GLSL specification also en-
able texture access in the vertex units hence pro-
viding an effective means for displacing geometry
on the GPU. This functionality is supported on re-
centnVIDIA graphics hardware, and it will also be
supported on upcoming ATI cards. To render a dis-
placed surface, we render a static vertex array stored
in GPU memory. In a vertex shader program, vertex
positions are fetched from the texture that contains
the displaced vertex positions, and the vertex coor-
dinate is displaced accordingly. Therefore, any read
back of data to CPU memory is avoided.

4.2 Results

The timings in Table 2 have been generated on
a nVIDIA 6800 GT graphics card equipped with
256MB local video memory.

model #tris Update Update & Rendering

sarah 16k 1ms 515fps
car 36k 1ms 215fps

bunny 64k 2ms 100fps
horse 64k 2ms 80fps

Table 2: Performance of GPU surface render en-
gine for different models. In the third column, tim-
ings are given for uploading displacement textures
of size322 and642, respectively, to the GPU, and
for updating the render geometry. The last col-
umn shows the overall performance of the GPU ren-
der engine including the update of the render sur-
face, normal calculation, texture fetches in the ver-
tex shaders to access the displaced vertex coordi-
nates and the normals, as well as per-pixel lighting.

Figure 7 shows the bunny model consisting of 11k
tetrahedral elements. Besides a high-resolution ren-
der surface (32k triangles), a GPU fur shader can
be applied [15]. Rendering performance decreases,
as several layers have to be rendered. However, ge-
ometry has only to be updated once. Figure 9 and
10 give additional examples for interactive defor-
mation and rendering using the proposed system.

5 Future Work

With regard to the internal properties of the mate-
rial to be simulated, the presented system consid-
ers the linear Cauchy strain measure. This measure
omits higher order terms in the strain tensor, and
for large deformations this approximation does not
allow for an accurate simulation of the resulting dis-
placements.

Multigrid methods are not limited to the solution of
system of linear equations, and the proposed solver
can be extended to the simulation of non-linear
strain measures (see Figure 4). Solving a non-linear
system of equations, however, significantly reduces
the number of elements that can be rendered at ac-
ceptable rates. A good trade-off between Cauchy
and Green strain tensors can be achieved using the
so-called corotational strain of linear elasticity [17],
in which finite elements are first rotated into their
initial configuration before the strain is computed.
As this method fits nicely into the multigrid frame-
work, one future research direction will be to incor-
porate corotational strain into the implicit solver.

666

Figure 4: The images show the displacements due
to external forces as they were simulated using the
linear Cauchy strain tensor (left) and the non-linear
Green strain tensor (right), respectively.

6 Conclusion

We have described a system for interactive and
physics-based simulation and rendering of de-
formable bodies. This system consists of a CPU
simulation engine that runs in parallel with a GPU
render engine. It allows users to interact with vol-
umetric objects by simulating and directly visual-
izing the results of external forces acting on these
objects. By leveraging commodity parts, the build-
ing blocks of the system can be easily upgraded as
technology improves. We will extend our simula-
tion engine to allow for the corotational strain of lin-
ear elasticity as well as the non-linear Green strain
measure, as both can be combined with our multi-
grid solver.

References

[1] Mark Adams and James W. Demmel. Parallel multigrid
solver for 3d unstructured finite element problems. In
ACM/IEEE Supercomputing, 1999.

[2] K.-J. Bathe.Finite Element Procedures. Prentice Hall, 1995.

[3] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse ma-
trix solvers on the gpu: conjugate gradients and multigrid.In
Proceedings of ACM SIGGRAPH 2003, 2003.

[4] D. Braess.Finite Elements: Theory, Fast Solvers, and Appli-
cations in Solid Mechanics. Cambridge Univ. Press, 2001.

[5] M. Bro-Nielsen and S. Cotin. Real-time volumetric de-
formable models for surgery simulation using finite elements
and condensation. InProceedings of Eurographics, 1996.

[6] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popovic.
A multiresolution framework for dynamic deformations. In
ACM SIGGRAPH Symposium on C. Animation, 2002.

[7] G. Debunne, M. Desbrun, A. Barr, and M.-P. Cani. Dy-
namic real-time deformations using space & time adaptive
sampling. InProceedings of SIGGRAPH ’01, 2001.

[8] O. Etzmuß, M. Keckeisen, and W. Straßer. A fast finite ele-
ment solution for cloth modelling. InPacific Conference on
Computer Graphics and Applications ’03, 2003.

[9] S. F. Gibson and B. Mirtich. A survey of deformable models
in computer graphics. InTechnical Report TR-97-19, Mit-
subishi, 1997.

[10] Gunther Greiner and Roberto Grosso. Hierarchical
tetrahedral-octahedral subdivision for volume visualization.
The Visual Computer, 16(6):357–369, 2000.

[11] M. Griebel, D. Oeltz, and M.A. Schweitzer. An algebraic
multigrid method for linear elasticity.SIAM J. Sci. Comput.,
25(2):385–407, 2003.

[12] Eitan Grinspun, Petr Krysl, and Peter Schröder. Charms: a
simple framework for adaptive simulation. InProceeding of
SIGGRAPH ’02, 2002.

[13] M. Hauth, J. Groß, and W. Straßer. Interactive physically
based solid dynamics. InSCA ’03: Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Com-
puter animation, 2003.

[14] Gordon Kindlmann and James W. Durkin. Semi-automatic
generation of transfer functions for direct volume rendering.
In VVS ’98: Proceedings of the 1998 IEEE symposium on
Volume visualization, pages 79–86, 1998.

[15] J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe. Real-
time fur over arbitrary surfaces. InACM Symposium on In-
teractive 3D Graphics, 2001.

[16] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and Bar-
bara Cutler. Stable real-time deformations. InACM SIG-
GRAPH/EG symp. on Computer animation ’02, 2002.

[17] M. Müller and M. Gross. Interactive virtual materials. In
Proceedings of the 2004 conference on Graphics interface,
2004.

[18] M. Müller, L. McMillan, J. Dorsey, and R. Jagnow. Real-
time simulation of deformation and fracture of stiff materi-
als. InEurographics Workshop on Computer Animation and
Simulation ’01, 2001.

[19] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carl-
son. Physically based deformable models in computer graph-
ics. InEurographics ’05, 2005.

[20] nVidia. Data Storage and Transfer in OpenGL.
http://developer.nvidia.com/docs/IO/8229/Data-Xfer-
Store.pdf.

[21] J. Schöberl. Netgen - an advancing front 2d/3d-mesh gener-
ator based on abstract rules.Comput.Visual.Sci, 1997.

[22] E. Tejada and T. Ertl. Large steps in gpu-based deformable
bodies simulation.to appear in Simulation Modelling Prac-
tice and Theory, 2005.

[23] X. Wu and F. Tendick. Multigrid integration for interactive
deformable body simulation. InMedical Simulation ’04.

[24] Y. Zhuang and J. Canny. Real-time simulation of physically
realistic global deformation. InIEEE Vis ’99, 1999.

Figure 5: The simulation engine allows for the de-
formation of triangle meshes as well.

666

Figure 6: The deformation of a tetrahedral horse
model is shown. From top left to bottom right
we show the initial model, the model exhibiting
homogeneous and inhomogeneous stiffness under
gravity, and the heterogenous model under external
forces.

Figure 7: Interactive deformation and rendering of
the bunny finite element model (11206 simulation
tetrahedra). The high resolution surface with 32k
triangles is rendered using a GPU-based fur shader.

Figure 8: An ever softer tetrahedral bunny model
under the influence of gravity is simulated.

Figure 9: Interactive deformation and rendering of
the car model (7k simulation tetrahedra) can be per-
formed with 150 fps. The high resolution surface
consists of 36k triangles.

Figure 10: Interactive deformation and rendering of
a manikin. The fur shader accounts for the bodies
dynamic deformation as can be seen on the right
hand side.

Figure 11:A visualization of the internal states (i.e. von
Mises stress) of three towers exhibiting different stiffness
is shown. A standard approach for direct volume render-
ing is used to generate the images. A constant wind force
is applied to all models. Stress values are color coded
ranging from red (high) to blue (low).

666

