
The Application of GPU Particle Tracing
to Diffusion Tensor Field Visualization

Polina Kondratieva, Jens Krüger, Rüdiger Westermann∗
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ABSTRACT

In this paper we introduce GPU particle tracing for the visualiza-
tion of 3D diffusion tensor fields. For about half a million particles,
reconstruction of diffusion directions from the tensor field, time in-
tegration and rendering can be done at interactive rates. Different
visualization options like oriented particles of diffusion-dependent
shape, stream lines or stream tubes facilitate the use of particle trac-
ing for diffusion tensor visualization. The proposed methods pro-
vide efficient and intuitive means to show the dynamics in diffusion
tensor fields, and they accommodate the exploration of the diffusion
properties of biological tissue.
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1 INTRODUCTION

The diffusion properties of biological tissue can be measured using
diffusion tensor magnetic resonance imaging (DT-MRI) [1]. The
imaging process reveals the diffusion of water molecules depend-
ing on the shape and orientation of tissue cells, i.e. within fibrous
material the diffusion is anisotropic while there is an equal diffusion
probability in real matter of other types. The diffusion probability
is characterized by a second order tensor, which describes the de-
flection of a molecular pathway as a function of spatial position.

Approaches to visualize the diffusion in real tissue can be classi-
fied into two major categories: glyph-based techniques reveal local
variations in diffusion tensor fields by mapping tensor properties
like deflection or diffusion probability to the shape or appearance
of graphical primitives, i.e. ellipsoids [10], composite shapes [15],
or superquadrics [8]. In contrast, directional tracking of massless
particles along the most probable diffusion directions in tensor field
data [4] allows for the classification of anatomical structures, e.g.
the white matter fiber tracks. Different geometric representations
like stream lines [14, 12] and stream tubes [17, 3], or stream sur-
faces [17, 13] have been employed to visualize these structures. To
improve the quality and stability of such tracking techniques, reg-
ularization and filtering approaches [2, 18, 5] along with heuristics
to determine the most probable directions [14, 18] have been pro-
posed. Dedicated color and opacity mapping schemes to visually
enhance particular features in diffusion tensor data have been pre-
sented in [14, 7, 15, 8].

While tracking based techniques can effectively visualize local
features in tensor fields, glyph-based imaging techniques for visu-
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alizing 3D fields can successfully illustrate the global behavior of
such fields. However, it is difficult when using such methods to ef-
fectively control glyph density, shape and appearance in a way that
depicts both the direction structure of the diffusion and the diffu-
sion magnitude. Neither of these techniques allows for interactive
exploration of large tensor fields, and they typically fail to visualize
and to monitor the diffusion dynamics in real tissue.

In this paper, we propose an interactive technique based on GPU
particle tracing for tensor field visualization. This method can dis-
play the dynamics of large particle sets in flow fields, and it can thus
be used to monitor the diffusion in biological tissue in real time. A
number of visualization options like oriented texture splats, stream
lines and stream tubes provide the user with an effective means for
the visual analysis of 3D tensor fields given on a Cartesian grid.

2 DIFFUSION TENSORS

The second order diffusion tensor can be expressed mathematically
as a 3×3 symmetric semi-positive matrix:

D =





Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz



 (1)

From a physical point of view, the tensor D describes the proba-
bility density for the deflection of molecular pathways in diffusive
tissue. Following the common classification, diffusion tensors can
be represented as ellipsoids with main, medium, and minor axes
corresponding to the eigenvectors e1, e2, e3 – with respective eigen-
values λ1 ≥ λ2 ≥ λ3 – of the tensor. The relative differences be-
tween the eigenvalues are related to the anisotropy of the diffusion.
Three basic types of anisotropy are usually considered in the liter-
ature (see Table 1). A thorough discussion of diffusion tensors and
other derived quantities can be found in [8, 16].

Table 1: Classification of diffusion tensor anisotropy.

Name Coefficient

linear cl =
λ1 − λ2

λ1 + λ2 +λ3

planar cp =
2(λ2 − λ3)

λ1 + λ2 +λ3

spherical cs =
3λ3

λ1 + λ2 +λ3

Besides the mapping of local anisotropy to the shape of geomet-
rical icons, a number of different color encoding schemes have been
proposed:

RGB = (µ1, µ2, A3) (2)



RGB = (J4, FA, A3) (3)
RGB = (cl , cp, cs) (4)
RGB = FA(|e1x |, |e1y |, |e1z |) (5)

RGB = RA(|e1x |, |e1y |, |e1z |) (6)

Here, the coefficients µ1, µ2, A3, J4, FA, RA are computed as
follows:

µ1 = 1
3 ∑λi, 1st central moment of eigenvalues,

µ2 = 1
3 ∑(λi − µ1)

2
, 2nd central moment of eigenvalues,

A3 = ∑(λi − µ1)
3

3·µ2
√µ2

, skewness of eigenvalues,

J4 = ∑λ 2
i , invariant of tensor D,

FA = 3√
2

√

µ2
J4

, fractional anisotropy,

RA =
√µ2√

2µ1
, relative anisotropy

3 GPU PARTICLE ENGINE

To interactively explore the dynamics in 3D diffusion tensor fields,
we employ a particle system for visualizing steady 3D flow fields
on Cartesian grids [9]. We exploit features of recent graphics ac-
celerators to advect particles on the GPU, saving particle positions
in graphics memory, and then sending these positions through the
GPU again to obtain images in the frame buffer. By using this
functionality, particle tracing in Cartesian grids can be entirely per-
formed on the GPU without any read back to application mem-
ory. This approach allows for interactive streaming and rendering
of millions of particles, and it enables virtual exploration of high
resolution fields. In the current scenario, the ability to display the
dynamics of large particle sets using visualization options like ori-
ented texture splats, stream lines, and stream tubes provides an in-
tuitive means for the visual analysis of 3D tensor fields that is far
beyond existing solutions.

Particle advection is performed in the fragment units of pro-
grammable GPUs. During particle tracing, particle positions are
subsequently read from the current particle container and the result
of the advection step is written to an additional container. Contain-
ers are internally stored as 2D texture maps. The vector field data
is stored in the RGB color components of a 3D texture. To dis-
play particle primitives, a vertex array containing as many entries
as there are particles is rendered. This array resides in local GPU
memory. In the GPU’s vertex units, respective particle positions are
fetched from the current particle container, and vertex positions are
displaced accordingly. This is accomplished using functionality in
Shader Model 3.0 [11].

The particle engine provides different visualization options. Ori-
ented 3D icons can be simulated by rendering textured point sprites
in combination with a texture atlas. For every icon this atlas con-
tains a set of pre-computed views, of which the one most similar to
the actual view is rendered. In addition, the traces of particles can
be stored and used to render stream lines, stream balls or stream
tubes.

4 TENSOR VISUALIZATION USING PARTICLE TRACING

To use the GPU particle engine (see Figure 1) for tensor field visual-
ization, a number of data-specific extensions have been integrated.
In particular, the direction vector along which a particle is traced
first has to be reconstructed from the tensor field. The basic differ-
ences between particle tracing in flow fields and in tensor fields are
illustrated in Figure 2.

In the following, the specific extensions we have integrated to ac-
commodate the use of particle tracing for tensor field visualization
are described:

Figure 1: The work cycle of a general particle engine. The advection
subsystem takes an initial position, and a vector field to generate a
new position which is used for rendering. In the next time-step the
initial position is replaced by the advected position and the whole
process is repeated from the beginning.

Figure 2: Differences between particle tracing in a vector field and in
a tensor field. Note that the advection of a particle in a tensor field
as proposed in [14] requires both the current and the last particle
direction.

• The six distinct entries of the diffusion tensor are stored in
two 3D RGB texture maps. Because hardware accelerated tri-
linear interpolation of 32 bit floating point textures is not sup-
ported on recent GPUs, we use 16 bit floating point textures in
the current implementation. If this precision is not sufficient,
hand–coded interpolation of 32 bit floating point values can
be performed in a fragment shader. As shown in [9], this only
results in a slight decrease in performance.

• At every particle position, the tensor is tri-linearly interpo-
lated from the two 3D texture maps.

• To derive a vector field for particle tracing, at every particle
position the eigen-decomposition of the resampled tensor is
computed on the fly 1. Therefore, on the GPU we have im-
plemented a non-iterative analytical algorithm proposed by
Hasan et al. [6]. If the tensor is not positive-definite, or if
its eigenvalues are degenerate (equal to each other), the prop-
agation process is terminated.

• For the rendering of textured particle sprites, two differ-
ent texture atlases for tensor visualization have been de-
signed. The first atlas extends the one proposed in [9] about
an additional scaling factor used to emphasize the diffusion

1The interpolation of precomputed eigenvectors and eigenvalues does
not allow for a consistent computation of diffusion direction [8, 18].



anisotropy ca = cl + cp. The second one contains precom-
puted views of short stream tubes at different orientation and
size. By texturing particle sprites with the image of the re-
spective view – scaled according to the tensor attributes – the
appearance of closed stream tubes can be simulated.

• Because particle tracking in 3D tensor fields along the largest
eigenvector of the tensor can lead to ambiguous results (oppo-
site eigenvector directions are both valid), the outgoing parti-
cle direction is computed as a linear combination of the de-
flected incoming direction and the principal eigenvector [14].

• A number of different criteria to stop particle propagation
have been integrated [8]. In particular, if the fractional
anisotropy is less than a given threshold, a particle trace is
stopped. In addition, if the fractional anisotropy is above a
threshold, it is used to modulate the particle transparency. In
this way, particles can be faded out continuously in nearly
isotropic regions.

• The user can interactively select and change tensor-specific
parameters, such as the color mapping scheme, the threshold
of the fractional anisotropy used to fade out particles, and the
propagation algorithm (along the largest eigenvector or along
the deflected direction).

5 RESULTS

All of our experiments have been done on a NVIDIA Quadro FX
4400 graphics card equipped with 512MB video memory. Render-
ing was performed into a viewport of 1280×1024 pixels. In this
section we show screenshots of the dynamic 3D tensor field vi-
sualization including various visualization options. Although the
images already show the functionality of the particle engine, we
should note here that the real benefit of the presented approach is a
lot more apparent in the accompanying video.

Table 2 gives timings for the advection and rendering of par-
ticles. Timings in the second column include all operations that
are carried out until updated particle positions are available in
the current particle container, i.e. tensor interpolation, eigen-
decomposition and particle advection using Euler integration. The
third and the fourth columns include timings for the rendering of
diffusion-aligned point sprites. To demonstrate the dependency of
performance from the number of generated fragments, differently
sized sprites are used. The last column shows the time that is re-
quired to reconstruct different amounts of stream lines of length
100. In all these tests, a 2563 tensor data set (canine heart) was
visualized.

As can be seen, even for large particle sets the GPU implementa-
tion still allows for the interactive exploration of tensor fields. It is
interesting to note, that with increasing fragment size the rendering
stage quickly becomes fragment bound. Moreover, the number of
generated fragments strongly depends on viewing parameters, such
as field of view, the distance of particles to the camera. As it is
rather difficult to provide precise and meaningful timing statistics
for different amounts of particles in combination with differently
sized point sprites, we give specific timings for all the generated
images shown in the following. Also, since for fibers the number
of advection steps is proportional to their length, the approximate
time for tracking and rendering a fiber of an arbitrary length can
be computed as the time needed for one segment multiplied by the
number of segments.

In contrast to previous approaches, where only the final render-
ing of precomputed entities can be done interactively, the proposed
method provides an even more intuitive means to explore high reso-
lution diffusion tensor fields. In particular, the user can interactively
select the seed density of particles as well as parameters specific to

particles advection only oriented splats lines length 100
1×1 pixels 7×7 pixels

642 1434 700 470 64 130
1282 343 185 123 128 100
2562 83.2 43.7 28.8 256 78
5122 19.4 8.4 5.9 512 55
10242 4.2 2.0 1.6 1024 38

Table 2: Application performance in frames per second, for different
amounts of particles and for stream tubes each consisting of 100
segments.

the propagation process. By using these options, pathways can be
visualized at almost arbitrary resolution. The advection of oriented
particles allows for the simultaneous exploration of both local and
global diffusion tensor properties. Fiber structures can be observed
without that particle positions have to be connected. Even in still
images the fibrous structures in the investigated tissue can clearly
be seen.

Figures 3 to 9 show a number of examples that were generated
using the presented particle engine. Two data sets were used to
demonstrate the effectiveness of particle tracking for tensor field
visualization: a human brain data set of resolution 148×190×160
and a canine heart data set of resolution 256× 256× 256. Both
data sets consist of six diffusion tensor components and an addi-
tional confidence value per voxel. Different visualization options
and color mappings were selected to emphasize particular diffusion
properties and anatomical structures in these data sets. In all exam-
ples, visual exploration was performed in real-time, thus allowing
for an effective and intuitive analysis of biological tissue.

In Figure 3 colored point sprites of size 5×5 pixels were ren-
dered to visualize the human brain data set. The FA-based color
mapping scheme (equation 5) was used. By fading out particles in
regions showing low anisotropy, highly anisotropic brain structures,
such as corpus callosum, corona radiata and pyramid, are empha-
sized and can clearly be distinguished in the generated image.

Figure 3: Visualization of the diffusion tensor field measured in a hu-
man brain. Below a given anisotropy threshold the transparency of
rendered particle primitives is inversely proportional to the measured
anisotropy. In this way, particles in regions of low anisotropy are con-
tinuously faded out. 64K particles of size 5×5 pixels were rendered
at roughly 40 frames per second.

In Figure 4, diffusion-dependent oriented sprites were used to



render a close up view of the corona radiata. According to the FA-
based color mapping scheme, an optic tract can be clearly distin-
guished by green color. To generate the image, 64K point sprites of
size 45×45 pixels were rendered at 6.1 frames per second.

The left image in Figure 5 shows a visualization of the corona
radiata using stream tubes. The seed box from which particle traces
were initially released is shown as wire frame in red. Overall, 512
traces of a maximum length of 600 were traced. Textured point
sprites of size 15× 15 pixels were rendered using the texture at-
las described above. Reconstruction and rendering was performed
at 2.4 frames per second. As can be seen, this visualization option
helps to track the bunches of fibers with biologically similar proper-
ties, and it allows the expert to follow the paths of single fibers. On
the right of Figure 5 the superior longitudinal fasciculus is rendered
by means of colored stream lines. The axial slice along the fascicu-
lus was chosen as seed region. 512 lines of a maximum length of
600 were computed and displayed at 10 frames per second. Both
images show nicely the property of stream tubes and stream lines
to effectively reveal spatial relationships between different tracks.

The sagittal, coronal, and axial slices through the human brain
are visualized in Figure 6 using diffusion-dependent sprites. In
combination, shape and color of the rendered ellipsoids give a good
impression of the degree of anisotropy and the main diffusion direc-
tion within the corresponding brain structures. The brain structures
themselves, such as pyramidal tracts, U-shaped fibers, superior lon-
gitudinal fasciculus and others, are clearly visible in all slices. The
axial and sagittal slices were rendered using 64K particles of size
20×20 pixels at 10.8 frame per second. The coronal slice was pro-
duced using 256K particles of size 10×10 pixels at 4.5 frames per
second.

Visualizations of the canine heart data set are shown in Fig-
ures 7, 8, 9. Figure 7 shows the longitudinal and latitudinal heart
slices, rendered with textured point sprites. The orientation of the
sprites corresponds to the helical construction of the heart muscle,
and the spatial positions depict the heart structure consisting of four
chambers and several valves in between. The animation of 64K par-
ticles of size 25×25 pixels runs at roughly 8 frames per second.

Figure 8 shows images of the heart data set rendered from differ-
ent view points using aligned diffusion-dependent point sprites. In
the interactive animation, the clockwise and counter-clockwise mo-
tion of particles along the muscle structure can be clearly tracked.
Both images were rendered using 64K particles at 25 × 25 and
45× 45 pixels per point sprite, respectively. Accordingly, the ap-
plication performance dropped from 9.4 frames per second to 7.4
frames per second.

Stream tubes were used in Figure 9 to visualize the heart data
set. On the right, tubes were colored according to equation 3. Both
images were generated using 1K stream tubes of maximum length
of 1K in combination with point sprites of size 5×5 pixels to render
the texture-based tube segments. Reconstruction and rendering was
done at 1.5 frames per second.

6 CONCLUSION

We have presented an efficient and effective visualization system
for 3D diffusion tensor fields. This system allows for the visual ex-
ploration of such fields at interactive rates and at arbitrary level of
detail. The user can interactively select regions of interest by posi-
tioning a particle probe of adjustable position and size. A number
of different visualization options can be selected to visualize local
as well as global features in the diffusion process.

By using this system, local variations in diffusion tensor fields
as well as anatomical structures can be visualized at interactive
rates. Due to the possibility to simulate the dynamic behavior of
massless particles in the derived diffusion field, a very intuitive ap-
proach to understanding diffusion tensor fields has been presented.

In contrast to previous methods, real-time advection and render-
ing of large particle sets produces animations that closely and intu-
itively mimic the underlying dynamic diffusion process.
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Figure 4: Brain structures: By using the color mapping scheme described in equation 5, the optic tract (green) and corona radiata (blue) fibers
can be clearly distinguished. At 6.1 frames per second, 64K particles can be advected, and rendered using textured sprites of size 45×45 pixels.

Figure 5: Brain structures: On the left, corona radiata is visualized using stream tubes. On the right, the axial slice along the longitudinal
fasciculus is rendered by means of simple stream lines. The FA-based color mapping scheme (equation 5) is applied. 512 fibers with a
maximum length of 600 can be generated and rendered at 2.4 and 10 frames per second, respectively.

Figure 6: Brain structures: Axial (left), coronal (middle) and sagittal (right) slices through the brain are shown. The coronal and sagittal slices
are color coded using equation 5, and equation 4 is used to color the axial slice. The axial and sagittal slices were rendered using 64K particles
of size 20×20 pixels at 10.8 frames per second. The image of the coronal slice was generated at 4.5 frames per second using 256K particles of
size 10×10 pixels.



Figure 7: Longitudinal (top) and latitudinal (bottom) slices of the heart muscle are reconstructed and rendered at 8 frames per second. The
helical orientation of the heart muscle fiber becomes apparent from the latitudinal slice. Both slices also depict the four-chambered structure of
the heart. The FA-based color mapping scheme was chosen.

Figure 8: Heart muscle: Multiple views of the data set are shown. The helical structure of the heart muscle can be easily tracked on both images.
The FA-based color mapping scheme (equation 5) was applied. 64K particles of size 25×25 pixels (left) and 45×45 pixels (right) were animated
at 9.4 and 7.4 frames per second, respectively.

Figure 9: Heart muscle: Multiple views of the data set are shown. The color mapping schemes described in equation 5 (left) and equation 3
(right) were used. 1K stream tubes of maximum length of 1K were reconstructed and rendered with point sprites of size 5×5 pixels. Both images
were generated at 1.5 frames per second.


