
GPU Construction and Transparent Rendering of Iso-Surfaces

Peter Kipfer, R̈udiger Westermann

Computer Graphics & Visualization, Technische Universität München
Boltzmannstrasse 3, 85748 Garching, Germany

Email: {kipfer, westermann}@in.tum.de

Abstract

Iso-surface construction and rendering on pro-
grammable graphics hardware has recently been
shown for tetrahedral grids. In this paper, we
present a novel edge-based approach that avoids
redundant computations of edge–surface intersec-
tions. We show how to achieve a significant per-
formance gain by considering intrinsic features of
recent GPUs. The iso-surface extraction process is
re-formulated in a way that reduces both numeri-
cal computations and memory access operations. A
span-space data structure allows us to avoid the pro-
cessing of elements not intersected by the selected
surface. Finally, to allow for the rendering of trans-
parent surfaces, a GPU sorting routine is integrated
into the rendering pass. Our applications show nu-
merical simulation results, distance volumes and
advanced shading effects.

1 Introduction and Previous Work

Iso-surface extraction has established itself as a
powerful visualization technique for 3D scalar data
fields. For reasonably sized data sets, however, this
technique can usually not run at interactive rates due
to the huge amount of geometric primitives it pro-
duces, and which then have to be transfered to the
GPU for rendering.

As a matter of fact, since the invention of the
Marching Cubes [10] algorithm for iso-surface ex-
traction in 3D hexahedral grids, one avenue of re-
search has led towards interactive surface fitting ap-
proaches. Besides the use of hierarchical data struc-
tures to minimize the number of elements to be
visited during surface construction [21, 19, 2, 18],
other approaches try to reduce numerical computa-
tions by extracting less accurate surface approxima-
tions [11] or by view dependent surface construc-
tion [9, 6].

Alternative techniques avoid the construction of
a polygonal surface representation by displaying the
iso-surface on a per-pixel basis using hardware as-
sisted texture mapping [20, 5] or cell projection
[17]. However, it is difficult to simulate transparent
surfaces or shadows using such techniques. In ad-
dition, these techniques require the entire data sets
to be rendered in every frame, while the surface can
usually be rendered much more efficiently once it is
constructed as a polygonal model.

To overcome these limitations, a number of ap-
proaches that perform the Marching Tetrahedra [4]
algorithm on the GPU have been presented recently.
In [13, 16], the calculation of the iso-surface inside
the tetrahedral elements was carried out in the ver-
tex units of programmable graphics hardware. For
each element four vertices are processed, resulting
in a (possibly degenerate) quad. Because vertices
are processed independently by the graphics hard-
ware, the classification of elements as well as the
computation of all possible intersection points has
to be repeated for every vertex. In addition, the
computed geometry cannot be stored in graphics
memory, but it has to be rendered directly. As no
surface mesh is constructed, the construction pro-
cess has to be repeated in every frame. Furthermore,
none of these methods allow for the rendering of
transparent surfaces as they would need to read back
the computed geometry for sorting. Smooth inter-
polation of vertex attributes across the tetrahedral
elements was not considered by these approaches.

A significant improvement of GPU-based sur-
face construction in tetrahedral meshes was pre-
sented by Klein et al. [8]. First, fragment units have
been employed, which provide a much more effi-
cient means for performing the construction step.
Second, OpenGL SuperBuffer objects have been
used to store the result of the surface extraction
step. The SuperBuffer can subsequently be bound
as vertex array without any copy operation and

VMV 2005 Erlangen, Germany, November 16–18, 2005



the iso-surface can be redrawn at maximum GPU
speed. While this allows the persistent storage of
the iso-surface geometry for further processing, it
does not improve on the processing required for
each generated vertex. Because the algorithm is
element-centric, multiple edge-surface intersections
and classifications of the element have to be per-
formed for each generated vertex. Additionally,
due to intensive use of shader computations, the re-
quired shader length poses a major problem in the
implementation. Acceleration techniques to reduce
the number of elements processed on the GPU as
well as transparent surface rendering was not con-
sidered.

In this paper, we introduce a new method to con-
struct iso-surfaces from tetrahedral grids. Although
this method also has the potential to accelerate CPU
surface construction, it is in particular well suited
for implementation on the GPU due to its compute
and memory access pattern. Similar to the approach
by [8], our approach exploits OpenGL SuperBuffers
[14, 12] for storing and rendering the iso-surface
on the GPU, but it minimizes the number of op-
erations to be performed as well as the amount of
data to be accessed on the GPU. This is achieved
in two ways: First, element vertices are ordered in
a unique way thus enabling an edge-based classifi-
cation step that is far simpler than the one usually
performed, both in terms of the number of numeri-
cal computations and the number of memory access
operations. Second, an edge-based data structure
is employed, which allows minimizing the num-
ber of edge-surface intersections. We present an
efficient mapping from local intersection points to
global vertex indices, which is amenable to stan-
dard acceleration structures. Therefore the method
can selectively process those tetrahedra that have an
intersection with the iso-surface. Smooth shading
and GPU sorting for transparent rendering can be
achieved in this way.

The remainder of this paper is organized as fol-
lows: The next section presents the modification
of the Marching Tetrahedra algorithm that is at the
core of the improved GPU implementation. Next,
the acceleration techniques we have implemented
are discussed. While Section 6 presents perfor-
mance results for the iso-surface extraction, Section
5 demonstrates a number of applications of the pro-
posed technique.

2 Marching Tetrahedra Revisited

The Marching Tetrahedra algorithm is a variant of
the Marching Cubes algorithm that can use smaller
tables because there are less possibilities a surface
can pass through such an element. Because of
the linear interpolant inside a tetrahedron, the con-
tained surface is guaranteed to be flat. The March-
ing Tetrahedra avoids ambiguous cases and requires
less numerical computations per element compared
to the Marching Cubes algorithm. When convert-
ing a hexahedral grid into a tetrahedral one, how-
ever, a larger number of surface elements is con-
structed and only a first order approximation to the
real surface is generated. In the Marching Tetrahe-
dra algorithm, a pre-computed case table consisting
of 16 cases is used to determine for every element
the edges that are intersected by the iso-surface.

The basic idea of our approach is to build an iso-
surface extraction algorithm that strictly minimizes
the number of operations to be performed. Because
an iso-surface is uniquely defined by the intersec-
tions of the edges of the 3D mesh, edge-based pro-
cessing guarantees to find all intersections and to
avoid redundant computations.

2.1 Edge-based Classification

In contrast to the standard Marching Tetrahedra al-
gorithm, our approach is based on a particular or-
dering of element vertices. In this way, we can
base our decision on the comparison of the iso-value
with the scalar values at two of the four vertices.
This results in a minimal number of data values
to be fetched in the classification step as well as a
minimal length shader to perform the classification.
Therefore, we enforce the local enumeration of the
vertices of a tetrahedron to be in ascending order
with respect to the scalar value they hold. Figure 1
shows the resulting layout.

e5

v2

e3

v1

e0

v0

e1

e4v3

e2

three intersections four intersections three intersections

v0 ≤ v1 ≤ v2 ≤ v3

Figure 1: The canonical layout of the tetrahedron
and the three basic intersection cases.

666



According to this setup, only three different cases
of how the surface intersects the edges of an ele-
ment for a specific iso-valuei are possible (see Fig-
ure 1 on the right):

➟ Case 1: v0 ≤ i < v1 ≤ v2 ≤ v3: edges
e0, e1, e2 are intersected. This gives one trian-
gle inside the tetrahedron.

➟ Case 2: v0 ≤ v1 < i < v2 ≤ v3: edges
e1, e2, e3, e4 are intersected. This gives one
quad inside the tetrahedron. Because of the
linear interpolant, the quad is guaranteed to be
flat.

➟ Case 3: v0 ≤ v1 ≤ v2 < i ≤ v3: edges
e2, e4, e5 are intersected. This gives one trian-
gle inside the tetrahedron.

Because of the canonical ordering of the vertices,
the decision which case to select can be done by
considering edgee3 alone. If there is an intersection
with this edge, the element is classified as a case 2,
otherwise it depends on whether the iso-value is less
thanv1 (case 1) or larger thanv2 (case 3). Triv-
ial cases, where no intersection between any edge
(and therefore with the element) and the iso-surface
is found, do not need to be addressed explicitly –
they will be implicitly handled as described below.
This is much simpler to implement than the classi-
cal Marching Tetrahedra approach, as we do only
have to consider the scalar values at the verticesv1

and v2. From an edge-based perspective, the el-
ement classification is implicitly given by the in-
tersection status of element edgee3. Let us note
here, that we never need to perform an element-
centric classification and therefore need to evaluate
each edge only once. A linear interpolation using a
clamped interpolation parameter for all edges of the
tetrahedron will trivially give us the correct partial
surface.

2.2 Edge-based Data Structure

Previous approaches to GPU iso-surface construc-
tion solely employed data structures on a tetrahe-
dral element basis. In such data structures, each
element stores indices to its four vertices and as-
sociated scalar values. By comparing each scalar
value with the iso-value, a bit pattern used to clas-
sify the element is built. Finally, linear interpolation
along classified edges is carried out to determine the
surface–edge intersection points.

The crucial observation here is, that the data
structure as described is well suited for processing

on the CPU but it cannot be realized efficiently on
the GPU. Once a particular element has computed
the resultant edge–surface intersection points, these
vertices have to be written into a vertex array for
rendering. This would imply, however, that a sin-
gle element—one tetrahedron—has to spawn multi-
ple elements—the intersection points—on the GPU.
Unfortunately this can not be realized, and as a mat-
ter of fact, the described computation has to be per-
formed repeatedly for the set of all possible inter-
section points.

This procedure has several limitations. First,
for every potentially generated intersection point
four scalar values and four floating point coordi-
nates have to be retrieved. Second, all scalar values
have to be considered to perform the classification.
Third, if multiple elements share an edge, the inter-
section point along this edge is computed multiple
times.

To avoid these drawbacks, we favor an edge-
based data structure, which decreases both the
amount of data to be stored on the GPU and the
amount of data that has to be accessed during iso-
surface construction. We build the edge-based data
structure as follows. In a floating point texture, we
store vertex coordinates and the associated scalar
value. In an edge texture, for every edge each texel
carries index pairs referencing the two vertices con-
nected by that edge. Hence, every edge can access
its vertices as well as the scalar values at these ver-
tices, and it can thus compute the intersection point
along that edge. This interpolated intersection point
is written into a vertex array equally sized than the
edge texture.

By using this data structure, multiple computa-
tions of the same intersection point are avoided.
Furthermore, if an edge does not find an interior
intersection, the fourth component of the intersec-
tion point is set to -1 or -2. While the former value
indicates the iso-value to be less thanv1 the latter
one tells us that the value was larger thanv2. In
this way, simply by fetching the intersection point
for its edgee3 can every tetrahedron classify itself
according to the iso-value.

We exploit this observation by always construct-
ing a quad inside each tetrahedron. For the cases
with three intersections only, we simply repeat the
first or the last intersection point producing a degen-
erate triangle-quad. Because the processing is now
edge-based, we’re guaranteed to process each edge

666



only once. This is a huge advantage compared to
previous approaches.

3 Extraction algorithm

We implement a three-pass algorithm for creating
the iso-surface geometry:

① Interpolation:Compute the linear interpolated
intersection position with each edge of the
tetrahedral mesh.

② Global indices:Compute the global vertex in-
dices of the quad for each tetrahedron.

③ Data arrays:Map the global indices to linear
arrays for rendering. This pass creates vertex
and normal arrays and other vertex attribute ar-
rays.

3.1 Interpolation

szyx mẑŷx̂Y
e
n
d

X
e
n
d

Y
s
ta

r
t

X
s
ta

r
t

floating point

other edges

edgese3

floating point

other edges

edgese3

fixed point

intersections
interpolatedverticesedges

Figure 2: The first pass computes intersections for
all edges.

The first pass computes the interpolated intersec-
tion position for each edge using the fragment units.
We provide the shader with a four component float-
ing point texture that holds the vertex coordinates
(the fourth component stores the scalar values) and
an index texture as shown in Figure 2. It contains in
the left half all edgese3 – one for each tetrahedron.
This means that an edge can be stored more than
once if it is the canonical edgee3 for more than one
tetrahedron. The right half of the edge index tex-
ture holds all remaining edges uniquely. All edges
are oriented such that the first vertex has the smaller
scalar value. The indices are encoded as(u, v) tex-
ture coordinates into two fixed point values of suffi-
cient Bit-width. This allows to address any number
of vertices up to64k × 64k. The special arrange-
ment of the edgese3 is crucial for the next pass.
The halves may be filled unevenly, so we draw two
separate quads to adaptively generate fragments for
the shader.

The interpolation shader fetches the two vertices
of each edge and interpolates the position according

to the given iso-value. The interpolation coefficient
is computed straight forward. The computed po-
sition will be illegal if the iso-surface does not in-
tersect the tetrahedron, but those positions will be
ruled out later on anyway so we ignore that fact
here to keep the shader simple. The shader writes
the interpolated position(x̂, ŷ, ẑ) to a floating point
render target. The fourth component of the output
holds a markerm that is set to -1 if the iso-value
is smaller than the first vertex and it is set to -2
if it is larger than the second vertex. If there is a
correct intersection,m holds the computed interpo-
lation parameter clamped to[0; 1]. The following
pseudo-code implements the interpolation shader.

edge = tex2D(Edges,TCoord[0]);
v0 = tex2D(Vertices,edge.xy);
v1 = tex2D(Vertices,edge.zw);

// we know that v0 has smaller scalar
d = max(v1.w - v0.w, epsilon);
i = clamp((Iso - v0.w) / d);

result = lerp(v0,v1,i);

if (Iso > v1.w) result.w = -2;
else if (Iso < v0.w) result.w = -1;
else result.w = i;

3.2 Creating Global Indices

m
3

m
2

m
1

m
0

mẑŷx̂ i 3i 2i 1i 0m
5

m
4

fixed point floating point fixed pointfixed point

edgese3

other edges

global indices
intersections
interpolatedglobal index maps

Figure 3: Computing the global indices of the iso-
surface vertices.

In the second pass, we need to determine the four
global indices for each tetrahedron that form the
(possibly degenerate) iso-surface quad. As we have
shown above, this can be decided solely based on
the status of edgee3. We therefore can determine
the local indices of the quad simply by looking at
them component produced for all edgese3 in the
previous pass. Because we have put all edgese3 on
the left side, a fixed point render target half in width
nicely fits our needs. Figure 3 illustrates the con-
cept. Here is the table for mappingm to the local
quad indices. It is encoded as a constant array in the

666



shader. Note that it is much smaller than the tables
needed in previous approaches. We thus never risk
of running out of shader registers.

m local0 local1 local2 local3

-1 0 1 2 2
[0; 1] 1 2 3 4

-2 2 2 4 5

The local indices are now mapped toglobal in-
dices by selecting the indicated value from the pro-
vided global index maps of the tetrahedron accord-
ing to its canonical layout. Because the first step
produced an intersection position for each edge,
these indices now represent the correct partial sur-
face inside the tetrahedron. These maps are static
and do not need to be recomputed like it is the
case in cell-projection approaches. This operation
therefore does not require any dependent texture
lookups, as we carefully aligned the index maps
and edgee3 at the same texture coordinate position.
Although this sounds like a quite expensive opera-
tion, it can be encoded very efficiently in an ARB
fragment program using only 17 instructions by ex-
ploiting the vectorization capability of the compare
statement. Here is pseudo-code for the shader com-
puting the global indices(i0, i1, i2, i3) from linear
1D edge indices.

v = tex2D(InterpVtx, TCoord[0]);

if (v.w == -1)
// iso smaller than values at edge3
idx = [0, 1, 2, 2];

else if (v.w == -2)
// iso larger than values at edge3
idx = [2, 2, 4, 5];

else
// flip last two for GL_QUAD draw
idx = [1, 2, 4, 3];

// get global edge indices of tet
map0 = tex2D(Map0, TCoord[0]*[2,1]);
map1 = tex2D(Map1, TCoord[0]*[2,1]);

res = map1.yyyy;
res = (idx < 5) ? map1.xxxx : res;
res = (idx < 4) ? map0.wwww : res;
res = (idx < 3) ? map0.zzzz : res;
res = (idx < 2) ? map0.yyyy : res;
res = (idx < 1) ? map0.xxxx : res;

3.3 Creating Vertices

The optional third pass converts the global indices
into linear data arrays that can be drawn using the

wzyx

wzyx

i 3i 2i 1i 0

fixed point

global indices

floating point

floating point

lin
ea

r
da

ta
ar

ra
ys

Figure 4: Creating the data arrays of the iso-surface.

glDrawArrays command or can be further pro-
cessed. We choose to expand the global indices into
two arrays in order not to get buffers with large
aspect ratios. The shader only needs to do a de-
pendent texture fetch to get the interpolated vertex
corresponding to the global index and writes it to a
floating point SuperBuffer target that can be bound
as vertex, normal, color or attribute array (see Fig-
ure 4). The first pass already took care of setting the
m component of the interpolated vertex. When cre-
ating a vertex array, negative values, i.e. non-valid
edge intersections, push the geometry outside the
viewing frustum. The shader only has to replace
values in[0; 1], which signal valid intersection po-
sitions, with 1 if rendering using the fixed-function
pipeline is required. If one uses custom shaders to
draw the iso-surface, the value can simply be ig-
nored or used as parameter to some visualization.
Tetrahedra that don’t have an intersection at all will
therefore automatically be pushed completely out-
side the viewing frustum.

Note that if the same approach is taken to pro-
duce a normal array for lighting and color or tex-
ture coordinate arrays for mapping additional val-
ues, sophisticated mappings that choose to sample
the remaining edges of the tetrahedron are easy to
do, as this information is available from the global
index maps that can be accessed directly thanks to
the alignment with the current position of the frag-
ment.

The third pass can be skipped, if only the ge-
ometry and topology of the iso-surface are de-
sired for further processing or if the applica-
tion decides to use indexed drawing, e.g. using
glDrawElements. The global index array from
the second pass is already in the correct tightly
packed format for rendering quad primitives. The

666



SuperBuffer specification allows it to be bound as
on-GPU index array without copying.

4 Acceleration structures

For a particular iso-value, many of the tetrahedra
won’t be intersected. Our algorithm will produce
quads for them that lie outside the viewing frustum.
Although we can safely assume that these quads
will be efficiently culled by the rendering pipeline,
we like to avoid computing them beforehand. For
doing so, many acceleration structures have been
proposed in the past to avoid redundant computa-
tion. For iso-surface extraction on the GPU, we
need a structure that adapts nicely to the instrument
driving our computation: the screen-space quad
covering the fragments to produce.

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

[m2; m3][m0; m1]

[m0; m3]

tetrahedra interval tree selected tetrahedra

[min;max]

[min;max]

[min;max]

[min;max]

m
in

-
so

rt
ed

Figure 5: A interval tree built from the per-row
min/max scalar values of a sorted tetrahedra field
is used to accelerate the iso-surface extraction up to
a factor of 2.8.

We observe that using the iso-surface extraction
algorithm proposed above, the processing for one
tetrahedron is independent of all others, and we can
freely rearrange the tetrahedra sequence if we move
the edgese3 and the global tetrahedra index maps
accordingly. If we sort the tetrahedra according to
the smallest scalar they contain, we get a two di-
mensional field of which we can determine the min-
imum and maximum scalar value that occurs per
row. Figure 5 illustrates this process. From the
min/max intervals we build an interval tree [3]. It
can be queried rapidly in which row any concrete
iso-value occurs. For accelerating the iso-surface
extraction, we want to process only tetrahedra that
have an intersection. So we simply determine the
smallest and largest row number from the interval
tree for the specific iso-value and draw a full-width
quad that exactly fits only these rows in height. In
order to also rule out the non-contributing tetra-
hedra in the quad, the first pass can write out ap-

propriate depth values to exploit the early-z culling
feature of modern GPUs for the successive passes.
However, for rendering the resulting arrays, one
has to clear the array buffers with vertex positions
that have a negativew component so they won’t
be drawn. Unfortunately, this optimization offers
only limited speedup, as the clear operation is rather
expensive as it always fills the entire target buffer
whereas the quad identified by the interval tree is
often small.

Note also that as we have aligned the intersec-
tion interpolation of the edgese3 and the compu-
tation of the global tetrahedra indices exactly with
the tetrahedra, the adaptive quad height computed
from the interval tree is valid for all passes of our
algorithm and therefore accelerates all passes ac-
cordingly. This is especially beneficial for the last
one that generates the data arrays and attributes as
it has the largest output bandwidth. For drawing
the iso-surface, the top row of the quad must sim-
ply be specified as a starting offset for a call to the
glDrawArrays command with appropriate array
length.

If the dataset has more elements, edges or ver-
tices than can be indexed with the given Bit-width,
we split the model into regions that are stored in
separate textures. Because processing of the tetra-
hedra is independent, the regions do not need to
have any spatial relation. The procedure takes care,
that the global sortedness of the tetrahedra is not
changed. Consequently, the interval tree also tells
us whether a region can be skipped completely be-
cause it doesn’t contain any contributing tetrahe-
dra. Sorting the tetrahedra, creating the regions and
building the interval tree is done in the preprocess-
ing step. For the bluntfin dataset, the preprocessing
needs about 5 seconds. The structure can also eas-
ily be saved to disk. At runtime, the interval tree is
queried every time the iso-value changes. Our im-
plementation of the interval tree accounts for that
by using a B-Tree as basis for the interval tree. The
B-Tree can be configured for a fixed tree depth or
limited number of elements at its nodes. This al-
lows for fine tuning of the query performance by
balancing CPU versus GPU performance depending
on how many intervals are accumulated in the tree
nodes. For fast GPUs, processing one row more or
less doesn’t make the difference while saving CPU
time by traversing a shallow tree does.

666



5 Applications

Because passes two and three of our system cre-
ate results in native OpenGL format used for in-
dexed or array drawing, it can be integrated straight-
forward into existing rendering systems. This sec-
tion demonstrates versatile applications of our sys-
tem to efficiently drive further processing steps.
Our system can interpolate any per-vertex attribute
for the iso-surface. Figure 4 on the color page
shows the ability to create per-face or per-vertex
normals for flat or smooth shading and to inter-
polate texture coordinates for mapping a precom-
puted 3D LIC texture. We can also make use of
OpenGL extensions likeATI pn triangles to
smooth the geometry. In Figure 4 on the color page
we render subdivided triangles using cubic interpo-
lation for the vertex positions.

Although our system allows for highly interactive
iso-surface extraction rates, one might be interested
in displaying multiple level sets at once. For this,
the surfaces have to be rendered transparently. Pre-
vious approaches needed to read back the geometry
for sorting on the CPU or employed depth-peeling.
We take advantage of the indices created in pass two
and feed them into a GPU sorter [7]. Now the iso-
surfaces can be blended correctly in back-to-front
order. Figure 2 on the color page shows an ex-
ample. Note that it’s advantageous to use sorting
compared to depth peeling, as the complexity of the
sorter does not depend on the depth complexity of
the iso-surface, which varies and is not trivial to de-
termine. The GPU sorter can sort 7 million items
per second. In Figure 5 on the color page we com-
pute smooth per-vertex normals and texture coordi-
nates to apply a third-party glass shader [1] without
modifications for convincing refraction.

6 Results

In the following, we present performance results.
We provide timings for a system equipped with a
P4 3.0 GHz processor and ATI Radeon 9800Pro
graphics card. This represents the same hardware
that has been used by Klein et al. in [8]. Table 1
shows the performance we achieve using 6 regions,
an 8-Bit (u, v) edge map and 1D indexed 16-Bit
global index maps. The two pass method means,
we only extract the interpolated vertices of the iso-
surface and the global index array. The three pass
method produces a complete vertex array. The last

Method million tets / sec
Interval tree Interval tree
disabled enabled

Extract (2 pass) 65.1 83.2
Extract (3 pass) 21.2 52.5

Extract & Render 15.2 42.2

Table 1: Performance on an ATI 9800Pro GPU.

Method million tets / sec
Interval tree Interval tree
disabled enabled

Extract (2 pass) 112 143
Extract (3 pass) 43.5 69.4

Extract & Render 28.6 57.1

Table 2: Performance on an ATI X800 XT GPU.

method extracts a vertex array of the iso-surface,
computes per-vertex normals and draws the lit sur-
face onto the screen. On the left column, we have
disabled the interval tree and process and draw all
tetrahedra. This is the lower performance bound. In
the right column, the interval tree selects only con-
tributing tetrahedra. Consequently, the performance
varies with the iso-value. The numbers shown here
is the maximum performance occurring if the iso-
value performs a full sweep from min to max. The
bluntfin model was used for these timings where
each hexahedral cell is split into 5 tetrahedra (see
Figure 3 on the color page for multiple iso-values).
Table 2 lists the performance of our method for
state-of-the-art graphics hardware.

These numbers are valid for datasets that fit into
GPU memory. Most of the performance gain of our
system comes from the fact that we process each
edge intersection interpolation only once. This can
be expressed equivalently by comparing the texture
read bandwidth of the two systems. Klein’s system
requires 216 Byte per tetrahedron. If we assume
an edge valence of 6 on average, our system reads
only 130 Bytes per tetrahedron. Both systems store
identical 128 Bit of floating point data per vertex.
For storing per-tetrahedron information our system
is more efficient and needs only 128 Bit compared
to 224 Bit of the previous solution.

The performance of our system could be im-
proved by future hardware that supports three-
component fragment shader output to packed target
formats or has more output bandwidth. Then we
would be able to split the output of the first pass
without penalty and render the interpolated inter-
section position and the marker to two separate tar-

666



get buffers. The marker can be encoded easily in
8 Bits. The second pass then would only need to
fetch from this low bandwidth texture.

7 Conclusion and future work

We have presented a system for iso-surface extrac-
tion on the GPU that produces both geometry and
topology and stores it in GPU memory for ren-
dering or further processing. Using an innovative
edge-based approach, it minimizes both the neces-
sary operations and the shader bandwidth required.
Additionally, it provides a more compact storage
format than previous approaches. The capability
to interpolate arbitrary per-vertex attributes offers
a very versatile tool for highly interactive rendering
of level sets.

We extended the system with post-processing
techniques for high quality rendering of the surface
geometry, including advanced shading for mapping
additional data on the surface as well as techniques
that add additional depth cues to the visualization
like high-quality sorted transparency or reflections.
Because our system processes iso-surface geome-
try only in actually contributing tetrahedra, the post-
processing is efficient, too.

An exciting future extension would be the inte-
gration of more sophisticated automatic accelera-
tion techniques similar to [15] that can be evalu-
ated directly on the GPU. This would improve the
timings in Table 2 as the CPU is the limiting factor
here. Our approach provides all the geometric and
topologic information that is necessary. An implicit
occluder can be used to drive the early-z culling fea-
ture of the GPU to allow for view-dependent pro-
cessing. The SuperBuffer technique allows us to
render to a compatible render target that can be used
as hierarchical z-buffer in successive passes without
involving any copy operations.

References
[1] 3Dlabs. Opengl shading language demo.

http://developer.3dlabs.com/openGL2/downloads, 2005.
[2] Stephan Bischoff and Leif P. Kobbelt. Isosurface reconstruc-

tion with topology control. InPG ’02: Proceedings of the
10th Pacific Conference on Computer Graphics and Appli-
cations, page 246, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[3] P. Cignoni, P. Marino, C. Montani, E. Puppo, and
R. Scopigno. Speeding up isosurface extraction using inter-
val trees. InIEEE Transactions on Visualization and Com-
puter Graphics, volume 3, pages 158–170, 1997.

[4] A. Doi and A. Koide. An efficient method of triangulating
equi-valued surfaces by using tetrahedral cells. InIEICE

Transactions Commun. Elec. Inf. Syst., volume E-74, pages
214–224, 1991.

[5] Klaus Engel, Martin Kraus, and Thomas Ertl. High-
Quality Pre-Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading. InEurographics / SIGGRAPH
Workshop on Graphics Hardware ’01, Annual Conference
Series, pages 9–16. Addison-Wesley Publishing Company,
Inc., 2001.

[6] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and
K.I. Joy. Interactive view-dependent rendering of large iso-
surfaces. InProceedings of IEEE Conference on Visualiza-
tion, pages 475–482, 2002.

[7] Peter Kipfer, Mark Segal, and R̈udiger Westermann. Uber-
flow: A GPU-based particle engine. In T. Akenine-Möller
and M. McCool, editors,Proceedings Eurographics Graph-
ics Hardware Conference, pages 115–122. IEEE, 2004.

[8] T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelerated
Reconstruction of Polygonal Isosurface Representations on
Unstructured Grids. InProceedings of Pacific Graphics ’04,
pages 186–195, 2004.

[9] Yarden Livnat and Charles Hansen. View dependent isosur-
face extraction. InVIS ’98: Proceedings of the conference on
Visualization ’98, pages 175–180, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[10] William E. Lorensen and Harvey E. Cline. Marching Cubes:
A High Resolution 3D Surface Construction Algorithm.
In Computer Graphics (SIGGRAPH 87 Proceedings), vol-
ume 21, pages 163–169, 1987.

[11] C. Montani, R. Scateni, and R. Scopigno. Discretized march-
ing cubes. InVIS ’94: Proceedings of the conference on
Visualization ’94, pages 281–287. IEEE Computer Society
Press, 1994.

[12] nVidia. Data Storage and Transfer in OpenGL.
http://developer.nvidia.com/docs/IO/8229/Data-Xfer-
Store.pdf.

[13] V. Pascucci. Isosurface computation made simple: Hardware
acceleration, adaptive refinement and tetrahedral stripping.
In Proceedings of IEEE TCVG Symposium on Visualization,
pages 293–300, 2004.

[14] J. Percy. Opengl extensions.
http://www.ati.com/developer/SIGGRAPH03/
PercyOpenGLExtensionsSIG03.pdf, 2003.

[15] S. Pesco, P. Lindstrom, V. Pascucci, and C. Silva. Implicit
occluders. InIEEE/SIGGRAPH Symposium on Volume Vi-
sualization, pages 47–54, 2004.

[16] Frank Reck, Carsten Dachsbacher, Roberto Grosso, Günther
Greiner, and Marc Stamminger. Realtime isosurface extrac-
tion with graphics hardware. InEurographics 2004 Short
Presentations, 2004.

[17] S. R̈ottger, M. Kraus, and T. Ertl. Hardware-accelerated
volume and isosurface rendering based on cell-projection.
In Proceedings of IEEE Visualization ’00, pages 109–116,
2000.

[18] Dietmar Saupe and Jürgen Toelke. Optimal memory con-
strained isosurface extraction. InVMV ’01: Proceedings
of the Vision Modeling and Visualization Conference 2001,
pages 351–358. Aka GmbH, 2001.

[19] Han-Wei Shen, Charles D. Hansen, Yarden Livnat, and
Christopher R. Johnson. Isosurfacing in span space with ut-
most efficiency (ISSUE). In Roni Yagel and Gregory M.
Nielson, editors,IEEE Visualization ’96, pages 287–294,
1996.

[20] R. Westermann and T. Ertl. Efficiently using Graphics
Hardware in Volume Rendering Applications. InCom-
puter Graphics (SIGGRAPH 98 Proceedings), pages 169–
177, 1998.

[21] Jane Wilhelms and Allen Van Gelder. Octrees for faster iso-
surface generation.ACM Transactions on Graphics (TOG),
11(3):201–227, July 1992.

666


