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Abstract

In this paper we present a compression scheme for large pointscans including per-point normals. For the encoding
of such scans we introduce a particular type of closest sphere packing grids, the hexagonal close packing (HCP).
HCP grids provide a structure for an optimal packing of 3D space, and for a given sampling error they result in a
minimal number of cells if geometry is sampled into these grids. To compress the data, we extract linear sequences
(runs) of filled cells in HCP grids. The problem of determining optimal runs is turned into a graph theoretical one.
Point positions and normals in these runs are incrementallyencoded. At a grid spacing close to the point sampling
distance, the compression scheme only requires slightly more than 3 bits per point position. Incrementally encoded
per-point normals are quantized at high fidelity using only 5bits per normal (see Figure 1). The compressed data
stream can be decoded in the graphics processing unit (GPU).Decoded point positions are saved in graphics
memory, and they are then used on the GPU again to render pointprimitives. In this way we render gigantic point
scans from their compressed representation in local GPU memory at interactive frame rates (see Figure 2).

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: 3D Graphics and Realism

1. Introduction

Despite the advances in CPU and graphics hardware tech-
nology, for the largest available point scans point based ren-
dering applications still cannot run at acceptable rates. As
rendering capabilities continue to increase, so do the sizes
of data being visualized as well as the resolutions of displays
being used. Today, laser range scans comprised of almost a
billion of vertices are available [Lev00, LPC∗00], making
even CPU processing difficult due to memory constraints.
Figure 2 shows such gigantic scans, the largest of which
consists of 250 millions of vertices and requires 6 GBytes
to store positional and normal information. Because of the
extraordinary richness of detail in these scans, the need for
techniques able to reveal even the finest structures is becom-
ing increasingly important. In addition to such scans, high
resolution display systems of over 10 Mpixels are nowadays
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available, letting the required bandwidth to transmit primi-
tives to the GPU grow substantially. As these requirements
will continuously increase in the future, there is a dire need
for point rendering techniques that comprehensively address
these issues.

Figure 1: Comparison of the original Atlas point scan
[LPC∗00] including normals (6 GB) to the point scan that
was compressed by our method (231 MB). Note how the fine
scale detail is preserved.
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Figure 2: The three largest scans provided by the Michelangelo project are shown. All three scans, including per-point normals,
have been compressed and now fit into 256 MB video memory on recent graphics cards. Images are generated by rendering
the scans out of the compressed data stream on the GPU. Up to 50million points per second can be decoded and rendered on
consumer class graphics hardware.

In computer graphics, point based rendering has recently
gained increasing popularity due to the simple and memory
friendly nature of point rendering primitives. Such primitives
do not require consistent topological information and they
considerably reduce overdraw if high resolution models are
rendered. A thorough discussion of these issues as well as
a summary of recent point rendering techniques including
various applications can be found in [GPA∗, KB04].

First considered by Levoy and Whitted [LW85] and then
revived by Grossmann and Dally [GD98], rendering sys-
tems based on point primitives have been proposed for
both the hierarchical display of large point scan models
[RL00] and high quality rendering of point sampled ge-
ometry [PZvBG00, ZPvBG01]. Due to the frequent use of
such systems in practical applications, over the last few
years there has been an ongoing improvement in this field
with respect to rendering speed and quality, i.e., by ex-
ploiting graphics hardware and efficient GPU data struc-
tures [RPZ02, DVS03], by using high-quality point splats
[BK03, ZRB∗04], and through the use of point hierarchies
[GM04] in combined with polygonal mesh representations
[BK03, ZRB∗04] to allow for efficient LOD rendering.

Besides rendering quality and speed, todays point render-
ing systems are facing the problem of continually increasing
point sets. To keep up with this progress, several issues have
to be considered: For large point scans the CPU might not be
equipped with sufficient system memory. If the CPU works
on a compressed data set, it might not be powerful enough to
decode point positions and attributes at sufficient rates. If, on
the other hand, a streaming representation is available that
enables out-of-core rendering, disk access will most likely
limit the overall performance. Even if the CPU could pro-
vide point rendering primitives at sufficient rate, the band-
width of the communication channel connecting the CPU
with the GPU might be too low as to allow for the transfer
of point positions and attributes a fixed number of times per
second. Finally, the GPU itself might not be able to render
the points within the requested time interval.

Up to now, only a few approaches have focussed on these
issues explicitly. A popular technique is to quantize point
positions with respect to a Cartesian grid hierarchy, either
by absolute position encoding or relative to a parent node in
this hierarchy [RL00, SK01, BWK02]. Although these ap-
proaches can significantly reduce the required number of bits
to encode point positions, a similar compression ratio has
not yet been shown for normals. Ochotta and Saupe [OS04]
locally parameterized point sets as a hight field and re-
sampled the point sampled surface on a regular grid. This
method achieves high compression ratio by using wavelet
transforms to encode the resulting height fields, but it in-
troduces additional smoothing artifacts and produces a non-
uniform sampling of the surface. A progressive compression
scheme for point sets including per-point attributes based
on multiresolution predictive encoding was presented by
Waschbüsch et al. [WWL∗04]. This scheme yields effective
compression rates, but it suffers from both the high com-
plexity of the matching process to find similar points and the
rather costly decoding process, which recursively traverses
binary trees to calculate initial point positions.

In this paper, we present a novel point rendering system
for gigantic point scans that comprehensively accounts for
the aforementioned requirements. This system is based on
a lossy compression scheme for point positions and nor-
mals. Compared to all previous compression schemes for
point sets, point coordinates can be decoded on the GPU.
Our scheme has the following particular properties:

• Memory efficiency: We present an effective compression
scheme for large point scans based on an optimal sam-
pling of these scans.

• Decoding efficiency: The compressed stream provides
random access to encoded points and attributes, and it can
be decoded using a few simple arithmetic and logical op-
erations.

• Bandwidth efficiency: Due to its simplicity, decoding can
be performed on the GPU. To render the point set only the
compressed data stream has to be transmitted.
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• Rendering Efficiency: On the GPU, decoded point posi-
tions and normals are used in turn to render the point scan,
which results in a significant performance gain compared
to previous approaches.

To enable these properties, we introduce closest sphere
packing (CSP) grids as a new and effective spatial data struc-
ture for point clustering. From closest sphere packing theory
[CSB87] we know, that an optimal sampling in the spatial
domain corresponds to the tightest arrangement of spheres
in frequency domain. This can be derived from the obser-
vation that the spectrum of the sampled signal contains the
replicas of the primary spectrum, centered at the points of
the dual (or reciprocal) of the sampling grid. Optimal sam-
pling of the signal is achieved if there are no overlappings
between the replicas.

The CSP grids we employ are composed of Trapezo
Rhombic Dodecahdra (TRD) - the dual of the John-
son Solid 27 [Joh66]. A TRD is a space filling twelve
(twelve=duodecim (latin)) sided polyhedron, which consti-
tutes a base element for a closest sphere packing of 3D space.
CSP grids consisting of TRDs in particular (HCP), have no
second order neighbors, i.e. no cells share only an edge (see
figure 3). If such a grid is sliced orthogonal to the y-axis, the
resulting 2D grid is composed of regular hexagonal cells. In
this 2D grid, all neighbors share an edge and the distance be-
tween adjacent cell centers is constant. These properties are
illustrated in figure 7. Note that besides the CSP grid we use,
there exists the Face Centered Cubic (FCC) grid composed
of the Rhombic Dodecahedron [Mat04, NM02]. Although
both grids are closed sphere packing grids, HCP grids have
some beneficial properties compared to FCC grids. Most im-
portantly, the dual grid of FCC, the Body Centered Cubic
grid (BCC), which is used for sampling, is not composed
of a single cell type. Therefore the volume of the different
sampling cells is distributed non uniformly. This increases
the maximum sampling error compared to HCP grids, al-
though the same number of cells is required to closely pack
3D space. To our best knowledge, the HCP grid has never
been employed in computer graphics applications so far.

Figure 3: A trapezo rhombic dodecahedron and the corre-
sponding closest sphere packing

We take advantage of HCP grids to establish an adja-
cency relation between points. Therefore, a binary spatial

data structure consisting of TRDs is generated, where a cell
is full if it contains a point, and it is empty otherwise. The
adjacency relation is exploited to incrementally encode runs
of connected full cells in slices of the grid. This stage is very
similar to the process described in [MH01] for the encoding
of iso-surfaces in volumetric data sets. In contrast, however,
we turn the problem of determining optimal runs into a graph
theoretical one, which is posed as a search problem to find
the minimum number of edges of specified length that cover
an arbitrary graph.

In addition to incremental encoding of point coordinates,
the same compression scheme can be applied to per-point at-
tributes like normals or colors. Because these attributes show
only a slight variation along the selected point runs, high
fidelity at low bit rate can be achieved by differential en-
coding. To support view frustum and back face culling, run-
specific attributes like cone of normals and bounding boxes
are computed.

The compressed point set can be decoded on the CPU,
and point primitives can be sent to the GPU for rendering.
Alternatively, the compressed stream can be decoded on the
GPU. Therefore, runs of equal length are stored in 2D tex-
ture maps and can then be decoded incrementally. Decoded
point positions are first saved in graphics memory, and they
are then used on the GPU again to render point primitives.
This is realized using recent functionality like vertex tex-
ture fetches in the Shader Model 3.0 [Mic04] or OpenGL
GL_EXT_framebuffer_objects [ATI04]. For the rendering
of large point sets that do not fit into graphics memory, the
presented point rendering system can either avoid bus trans-
fer at all, or it can reduce bandwidth requirements substan-
tially if the meshes are so large that even in compressed for-
mat they do not fit in graphics memory.

2. Uniform Point Clustering

To exploit geometric coherence in unstructured point sets,
an adjacency relation between points is established first. We
employ a regular spatial data structure composed of TRDs,
into which the original point set is sampled. Every TRD that
contains at least one point is marked with 1, while any other
cell is marked with 0.

Compared to other grids, the HCP grid leads to an opti-
mal sampling density, and in particular compared to Carte-
sian grids it yields a significantly smaller sampling error if
a region in 3D space is partitioned using the same number
of cells. In Cartesian grids with grid spacingh the maxi-
mum distance – and thus the upper bound for the sampling
error – between a cell center and any other point inside
a cell is

√
3/2h. For a HCP grid, on the other hand, it is√

3/(2 ·
√

2)h.

In the sampling process, the cell spacing of the HCP grid
has to be determined such that as many cells as possible con-
tain only one original point. On the other hand, by using ever

c© The Eurographics Association 2005.



Krüger et al. / DuoDecim - A Structure for Point Scan Compression and Rendering

smaller cells, connectivity between filled cells will be lost,
letting the incremental encoding scheme become less effi-
cient. Due to this reason, sampling is implemented as a two
step procedure that takes in account both constraints.

2.1. Sampling

To sample a point set, we start with an initial resolution of
the HCP grid. In the current implementation this resolution
is equal to the sample spacing of the scanning device. If this
spacing is not known, an arbitrary initial guess can be spec-
ified. During the sampling process, we count for every cell
how many points are sampled into this cell. Let us call this
value thehit rate. Now the initial resolution of the HCP grid
is iteratively refined until the hit rate drops below a given
threshold.

For the sake of simplicity we explain the algorithm for
the 2D hexagonal slices, the extension to 3D HCP grids
is canonical. A constant time sampling strategy can be de-
rived from the following observation. Considering the odd
and even rows separately generates two cartesian grids. The
vertex in question is sampled into these two grids. This gen-
erates two cells that correspond to two hexagonal cell candi-
dates. To choose from these cells the distance from the ver-
tex to the two cell centers is computed and the cell with the
smallest is the correct hexagon (see Figure 4). In 3D four cell
candidates are generated and four distances are compared to
find the smallest value. Hence, sampling into the HCP re-
duces to a fixed number of modulo operations and distance
calculations.

Figure 4: This figure illustrates the sampling of points into
hexagonal grids using two staggered Cartesian grids.

As the point sets and thus the grids we are concerned with
are very large and can usually not be stored in main mem-
ory, the entire sampling process is performed out-of-core.
Point subsets are sequentially sampled into the grid, and they
are then sorted on disk with respect to increasing cell index
along the x-, z-, and y-axis. The sorted list can then be tra-
versed sequentially to determine duplicate samples in one
cell, and to compute the average hit rate. At the end, the point

set is implicitly given by a set of TRDs – or more precisely
by the coordinates of their centers – that contain at least one
point of this set.

3. Run Generation

The HCP grid provides a structure to generate contiguous
runs of filled cells. This step is the transition from pure clus-
tering to coherence based compression. The goal is to deter-
mine runs that are as long as possible, and to incrementally
encode the cells in these runs. Starting with the grid index
of the first cell in such a run, following cells can be encoded
by storing the face they share with the predecessor. In this
work, we restrict ourselves to the generation of runs within
slices orthogonal to the grid y-axis. Because in such a slice
every element only has 6 faces, adjacency information can
be encoded in 2.25 bits.

Run generation proceeds layer by layer, reading all cells
in the current layer from disk. By connecting these cells, an
undirected graph is constructed. Run generation now oper-
ates on this graph, which makes the algorithm independent
of the underlying grid structure. Ideally, the algorithm finds
the minimum number of edge runs of given lengthSL that
cover the entire graph and do not contain any edge twice.
Since the solution to this problem is NP-hard, we present
a linear-time 2-approximation, i.e., one that contains every
cell at most twice. Note that this 2-approximation property
is a very conservative upper bound. In all meshes we pro-
cessed, the runs never contained more than 5 percent points
more than once.

Figure 5: The Round-Trip Generation

At first, for every connected subgraph a single run is gen-
erated, so-called long-runs, which are then cut into pieces
of length SL. Starting with an arbitrary node in the graph,
as long as this node has exactly one neighbor that has not
yet been visited, the current node is appended to the long-
run and the neighbor becomes the current node. If there are
no such neighbors, the run is terminated. Otherwise, for ev-
ery neighbor that is encountered a new long-run including
the current node as start element is generated. For every new
run but the longest one we now produce a round-trip, i.e.
a run that returns to its starting point. If all new runs, with
the longest of these runs considered last, are appended to the
current run, a contiguous path is generated that traverses ev-
ery branch but the longest forth and back. What remains to

c© The Eurographics Association 2005.



Krüger et al. / DuoDecim - A Structure for Point Scan Compression and Rendering

be done is to eliminate redundant pieces, i.e. round-trips that
begin a run and parts that appear in another short-run. Fig-
ure 5 illustrates this algorithm. For the algorithm we never
need to consider more than three neighbors. Figure 6 shows
that if more than three neighbors are filled, these additional
neighbors are traversed by the child calls already and do not
need to be traversed by the parent anymore.

Figure 6: The images show a cell with four neighbors. Note
that independent of the choice of the first child to be tra-
versed, all neighbors are handled before the recursion re-
turns to the parent node. For more than four neighbors this
procedure is alike.

Due to the construction of runs, in every long-run an in-
dex can appear at most three times. However, for an index
that appears more than twice there always exist at least one
index that appears only once. This property can be proven
by the means of complete induction over all T junctions. If a
child run at a T junction was chosen to be serialized, it must
have been the shorter run of the cell. Therefore the cells of
the longer child are not duplicated. This always duplicates
less then half of the cells while only the T junction itself
could be tripled. Consequently, the algorithm computes a 2-
approximation of the optimal solution.

This procedure generates for every connected subgraph
of one slice a single run. These long-runs are cut into pieces
of given lengthSL; so-called short-runs. While this cutting
takes place several optimizations are performed to furtherre-
duce the number of redundant cells. One of these optimiza-
tion is to skip the way back of a previously serialized child
run.

By restricting the maximum run length, the number of
generated runs is increased at the same time decreasing the
variation of their lengths. This kind of construction accom-
modates perfectly to GPU rendering in that SIMD streaming
computations on such architectures can be exploited. If mul-
tiple processing units, i.e. fragment units, decode a number
of runs in parallel, it is desirable for every run to contain
exactly the same number of encoded points.

To generate a LOD hierarchy of the point set, sampling
and run generation is repeated with decreasing resolution of
the HCP grid. Starting with the optimal resolution, at every
hierarchy level the resolution is reduced by a factor of two.
Because the resolution at every coarser level is now fixed,
grid size optimization of runs does not have to be carried
out.

4. Optimization

To determine the optimal grid resolution for sampling and
run generation, we consider the average length of short-runs
in addition to the average hit rate. The first value measures
how many points are lost due to the sampling process. The
second value is a measure of the compression efficiency. A
perfect sampling would result in an average hit rate of 1 and
an average length of short-runs equal toSL. Making the grid
cells smaller results in a lower hit rate but reduces the av-
erage run length. To find the optimal cell size we first start
with an initial size, which is 1.5 times the average distance
of points in the point set. If the average hit rate is above a
limit, usually 1.6, the cell size is reduced according to ratio
between the maximum hit rate and the current hit rate.

The sampling process is repeated with the new grid reso-
lution, until the hit rate is below the maximum hit rate. Then,
the run generation process is started. If the average lengthof
short-runs is below a given threshold, usually 70% of the
maximum length, we first try to close disconnected runs by
inserting new cells. If this does not bring the average run
length above 70%, the grid cell size is enlarged, sampling
is repeated, and new runs are generated. The process termi-
nates and outputs all current runs if the average run length
is reached. Note that the 70% value is an arbitrary starting
value for the algorithm based on our experience with differ-
ent scans, even with other starting values the algorithm will
still find an optimal value but it will possibly take longer to
converge.

Figure 7: Geometric properties of a hexagonal 2D slice of
the HCP with the one and two-ring neighborhood

To close disconnected runs, we search for filled cells in
the 2-ring neighborhood (see figure 7) of those cells that are
contained in runs shorter than 50% of the maximum length.
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We do not try to connect longer runs because this could re-
sult in runs that are so long that they are cut into short runs
later. If such a cell is found and both cells belong to different
runs, the cell in between is set to connect the two runs. As
the examples below demonstrate, this process adds far less
than 10% of the initial cells on all models we tested.

5. Encoding

The proposed scheme generates a large set of runs less or
equal to a given length. To every run, three 16 Bit values are
associated: the first two values are used to encode the start
cell of each run within the current slice. Positions in slices of
a resolution of up to 216×216 can thus be encoded. The third
16 Bit value is used as index into a codebook that contains
quantized normals. The computation of this index as well as
the codebook is described below.

5.1. Point Encoding

In a run, every point but the first one is encoded relative to
its predecessor using 2.25 bits to encode a step to one of the
6 adjacent neighbors. In our current implementation how-
ever, we use 3 bits per vertex to keep the decoding process
as simple as possible, and thus to enable the GPU to effi-
ciently decode point runs. If decoding is to be performed on
the CPU, memory requirements can be reduced about 25%
by using all bits in the data stream.

5.2. Normal Encoding

Normals are either given for the original point set, or they are
computed prior to the compression stage, e.g., by computing
normals on a given triangulation or by moving least squares
[ABCO∗01].

As adjacent normals in a run only show a slight varia-
tion, they can be encoded incrementally. Every normal but
the first one is expressed in spherical coordinates relativeto
its predecessor. Letθ andφ be the azimuth and the longitude
coordinates, respectively, of the current normal. To avoid
suboptimal compression at the poles we compute both the
negative and the positive angles and use the one that leads
to a smaller delta. If the difference to the following normal
in spherical coordinates is∆θ,∆φ, then the new normal in
Euclidean space coordinates is given by:

x = cos(θ +∆θ) ·sin(φ +∆φ)

y = sin(θ +∆θ) ·sin(φ +∆φ)

x = cos(φ +∆φ)

As this computation requires trigonometric functions to
be evaluated, we employ trigonometric relations

sin(α+β) = sin(α)cos(β)+cos(α)sin(β)

cos(α+β) = cos(α)cos(β)− sin(α)sin(β)

to express Euclidean space coordinates in terms of pre-
computed sine and cosine values. More precisely, given
sin(∆θ), cos(∆θ), sin(∆φ) and cos(∆φ), as well as the re-
spective values for the previous normal, Euclidean coordi-
nates for the current normal can be decoded using simple
arithmetic.

During run generation, we collect all normal increments
in spherical coordinates that occur in the entire data set.
These increments are then clustered using vector quantiza-
tion [AG92]. The two angular increments in the codebook
are stored as four sine and cosine values for each entry. In the
current work, 16 bits are used to quantize the start normal of
every run, and 5 bits are used to quantize normal increments.

6. Rendering

To render the compressed point set, the encoded data is tra-
versed slice by slice. For each run, the start position is de-
coded from the associated grid coordinate, and the start nor-
mal is fetched from the quantization codebook. All other
point coordinates can then be decoded incrementally from
the relative offsets that are stored with respect to the un-
derlying grid structure. Only for the incremental decoding
of normals an additional lookup into the delta normal code-
book is required. This process consecutively generates pairs
of coordinates and normals, which are written to a vertex and
a normal array. Via graphics APIs like OpenGL or DirectX,
these arrays can then be issued for rendering. In the current
implementation, points are rendered as screen aligned cir-
cles, although more elaborate and high quality splats can be
integrated into the system straightforwardly.

If decoding is carried out on the CPU, the vertex and the
normal array have to be sent to the GPU, making bus band-
width a major bottleneck. To overcome this limitation, en-
coded runs are sent to the GPU in compressed form. Due to
the simplicity of the decoding process, runs can be directly
decoded on the GPU using parallel streaming computations.
Reconstructed point positions are rendered directly without
any read back to application memory. In this scenario, the
CPU is only used to control which runs are sent to the GPU,
i.e. to accommodate view frustum and backface culling (see
below).

The GPU decoder exploits functionality on recent graph-
ics cards. On such cards, it is now possible to access texture
maps in the vertex units [Mic04] and to allocate memory ob-
jects (GL_EXT_framebuffer_object) that can be interpreted
as texture maps and vertex arrays alternatively [ATI04]. The
second alternative is exploited in this work.

To prepare compressed point runs for GPU processing,
they are stored in 2D texture maps. For each run, its start
position and normal is stored in a 16 bit RGB texture map.
Consecutive points in a run are encoded in 8 bit luminance
textures, using the first 3 bits to store adjacency information
and the remaining 5 bits to store quantized delta normals.
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These normals are decoded from a quantization codebook.
The principal layout of all data structures on the GPU is il-
lustrated in figure 8.

In consecutive rendering passes, the GPU first decodes
per-point normals and renders these normals into an inter-
mediate memory object, i.e. a normal map. Then, point po-
sitions are decoded, the normal map is read to enable lighting
computations, and positions as well as computed colors are
rendered into a second memory objects. This object is then
bound as a vertex array and can thus be rendered without any
read-back to the CPU. In the following pass, both interme-
diate memory objects are read to obtain previous point posi-
tions and normals required for incremental decoding. Then,
GPU decoding proceeds as described.

Figure 8: This image illustrates the encoding of runs into
texture maps on the GPU.

6.1. Culling and LOD

To render the compressed representation, the CPU deter-
mines the runs to be rendered, and it sends the textures con-
taining these runs to the GPU. To keep bus transfer and GPU
processing as minimal as possible, two different accelera-
tion techniques have been integrated into our approach: First,
runs are clustered, i.e. stored in the same texture, according
to their cone of normals. This is the primary sorting criterion.
Second, within one cone runs are grouped according to their
spatial position, i.e. every texture is split into a set of smaller
textures for which axis aligned bounding boxes are com-
puted. This is the secondary sorting criterion. At run time,
the CPU determines the partitions to be displayed based on
the current viewing direction and the size and orientation of
the view frustum. Only potentially visible partitions are send
to the GPU, where they are finally decoded and rendered.

The CPU also determines the most appropriate LOD, i.e.
grid resolution, to be rendered. We always select the reso-
lution such that grid cells are always projected into an area
smaller the size of one pixel under the current viewing pa-
rameters. An example of a hierarchical LOD representation
with accompanied bounding box hierarchy is shown in Fig-
ure 9.

Figure 9: The upper row shows closeups of David’s head
rendered at 4 different LOD levels. The lower row shows the
corresponding image of the David statue as it would be ren-
dered. The bounding boxes enclose parts of the mesh that
are tested for frustum culling.

7. Results

The efficiency and effectiveness of the proposed point based
rendering system were verified using the large scans from
the Digital Michelangelo Project (see Figure 10). Above all,
it should be noted the richness in detail that can be seen in
these scans, and which is resolved at high fidelity using our
approach. Table 1 shows comprehensive results for the three
largest meshes of this archive as well as for one smaller ref-
erence mesh. Our target architecture is a P4 2.8 GHz CPU
equipped with 1GB RAM and an ATI Radeon X800 XT
graphics card with 256MB.

Figure 10: The David and Atlas statues from the Digital
Michelangelo Project.

In all examples, run optimization resulted in a hit rate be-
low 1.7 and a run efficiency above 70% of a maximum length
of 25. As can be seen, even for the atlas mesh the algorithm
returns the result in less than 10 hours. Due to the hit rate
larger than 1, the original point sets were reduced by a factor
of 1.3 to 1.6.

It is obviously clear, that the point clustering approach as
described introduces sampling errors. For the presented high
resolution examples, these errors are 0.11mm and 0.14mm.
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The scanners used for the Digital Michelangelo Project
have a minimum sample spacing of 0.25x0.25x0.1mm in a
plane perpendicular to the laser [Cyb99]. In the worst case,
two sample points are as much as

√
2×0.252 +0.12mm≈

0.367mmapart, which is the minimum size of features that
can be faithfully reconstructed by the scanning process. Be-
cause in all our examples the sampling spacing is signifi-
cantly higher than the sampling error introduced by our com-
pression method, features present in the original data sets
will not be destroyed. If the scanning device has sampled
the data above the Nyquist rate of the original signal, our
sampling is well above this rate, too, resulting in equal vi-
sual quality of the original and the compressed point set (see
Figure 1).

Table 1 also shows the excellent compression ratio our
method achieves for real-world data sets exhibiting fine scale
details. When using ZIP compression, the encoded VRIP
version of all of the Digital Michelangelo statues requires
about 380MB and can thus be stored twice on an ordinary
CD. Plain encoded, it is still small enough to be stored in
core of our target architecture. Due to the slice based en-
coding scheme for point sets, which is at the core of our
technique, it is also well suited for streaming processing and
progressive transmission of the data [IL04].

While the point scans are considerably compressed, they
can still be decoded very efficiently due to the simplicity of
the decoding scheme. In the table we give timings for GPU
decodingand rendering. To measure these timings, acceler-
ation techniques were all switched off, therefore these tim-
ings are considerably slower compared to the display times
in practice. This can be seen in the accompanied video. If
decoding is carried out on the CPU, we observe a loss in
performance of about a factor of 13.

Model Atlas St. Matthew David Dawn

scan resolution 0.25 mm 0.25 mm 1.00 mm 1.00 mm
# Points 254904158 186865425 28184522 3432203

# Samples 158877859 121718168 17190274 2582256
hit rate 1.60 1.53 1.64 1.32

run efficiency 72% 74% 72% 73%
max sampling error 0.11 mm 0.14 mm 0.48 mm 0.44 mm

ply file size 9.94 GB 7.29 GB 1.1 GB 134 MB
DD compressed size 231 MB 182 MB 28.5 MB 4.2 MB
zip compressed file 172 MB 140 MB 21 MB 3.3 MB

encoding time 9.5 hrs 6 hrs 57 min. 5 min. 40 sec.
decode & render time 4.14 sec. 3.05 sec. 0.43 sec. 0.06 sec.

Table 1: Timing and memory statistics for the proposed
point based rendering system.

On the GPU, the point rendering system achieves a
throughput of about 50 million points per second. This rate
includes the decoding of compressed point runs as well as
the rendering of decoded points and normals. It is worth not-
ing, that we decode and render about 160M distinct points
and normals in roughly 4 seconds on the GPU. Figure 11

Figure 11: Zoom in on the Michelangelo’s St. Mathews
Statue, note the fine scale details even in the lower rightmost
closeup.

shows some more examples that demonstrate the need for a
point based rendering system able to handle such an amount
of primitives. In all images, the point splat size is automati-
cally set according to the screen space projection of the un-
derlying grid cells.

8. Conclusion

In this paper, we have presented an effective compression
scheme for gigantic points scans based on close sphere
packing grids. Such grids provide a structure for optimal
point clustering, and they establish a spatial relation between
points that can be exploited for compression purposes. As
our results have shown, the compression scheme achieves an
extraordinary compression ratio at very high fidelity. Due to
the simplicity of the decoding scheme, point coordinates and
normals can be reconstructed on the GPU. As the GPU can
also render the decoded primitives without any read-back to
the CPU, bandwidth requirements are substantially reduced.

As is demonstrated in the paper, even though GPU ren-
dering includes decoding of point coordinates as well as pro-
cessing of point geometry, a throughput of 50 million points
per second can be achieved. To our best knowledge, this has
not been achieved to this day by any other method.

In the future, we will extend the rendering engine about
more elaborate space partitioning strategies, which allowfor
improved culling if the user zooms into the data set or if
only a small portion of the data is rendered. The integration
of high-quality point rendering techniques, i.e. perspectively
correct sprites or Phong splats, will be considered as well.
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Comparison of the original Atlas point scan including normals (6 GB) to the point scan that was compressed by our method (231 MB). Note
how the fine scale detail is preserved.

A trapezo rhombic dodecahedron and the corresponding closest sphere packing
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