IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 1

A Particle System
for Interactive Visualization of 3D Flows

Jens Kruger, Peter Kipfer, Polina Kondratieva, Riudigers¥rmann

Abstract— We present a particle system for interactive visu-
alization of steady 3D flow fields on uniform grids. For the
amount of particles we target, particle integration needs ¢ be
accelerated and the transfer of these sets for rendering muis
be avoided. To fulfill these requirements, we exploit featues of
recent graphics accelerators to advect particles in the gghics
processing unit (GPU), saving particle positions in graphis
memory, and then sending these positions through the GPU
again to obtain images in the frame buffer. This approach albws
for interactive streaming and rendering of millions of particles,
and it enables virtual exploration of high resolution fieldsin a
way similar to real-world experiments. The ability to display the
dynamics of large particle sets using visualization optios like
shaded points or oriented texture splats provides an effeite
means for visual flow analysis that is far beyond existing sations.
For each particle, flow quantities like vorticity magnitude and A
are computed and displayed. Built upon a previously publisked
GPU implementation of a sorting network, visibility sorting of
transparent particles is implemented. To provide additioral visual
cues, the GPU constructs and displays visualization geonrgtlike
particle lines and stream ribbons.

Index Terms—Flow visualization, particle tracing, pro-
grammable graphics hardware, visibility sorting, visualization
geometry.

|. INTRODUCTION

and to produce graphical primitives such as arrows, motion
particles, particle lines, stream ribbons, and stream stube
These primitives can emphasize flow properties and they act
as depth cues to assist in the exploration of complex spatial
fields.

Fig. 1.
traced through the flow at 60 fps. The local integration eisocolor coded.

Using a RK3(2) integration scheme, one million mdes can be

These techniques are effective in showing the flow fields
local features, but they cannot prodwe display the amount
of primitives needed to visually convey large amounts of 3D
directional information at interactive rates. Both nuroati
and memory bandwidth requirements imposed by particle
integration schemes are too high as to allow for simultaseou
advection of large particle sets. Even if particle possi@an
be updated at sufficient rates, particle rendering incluties

DVANCES in experimental flow analysis and flow nudransfer of data to the graphics system and therefore litiméts

merics are making available an unprecedented amount§f formance.
data from physical phenomena. Relevant data can be captureld the following key experiment, the requirements on
and simulated with sufficient accuracy to permit reliable earticle-based visualization techniques for flow fields are
traction of required information and to even disclose theldvo €mphasized. Particle advection is used to visualize one tim
of unsteady flow mechanics. In flow research and industrigilep of a numerical simulation of incompressible flow. The
practice vector field data is one of the key sources for tf@glvection step is carried out on the CPU, and updated particl
analysis of flow field dynamics. Visual exploration of suckositions are sent to the GPU for rendering. The simulaton i
fields imposes significant requirements on the visualigatiun on a uniform grid of siz&28>x 512. Results are displayed
system and demands for approaches capable of dealing vitha screen resolution d500 x 1200.

large amounts of vector valued information at interactates.

One million particles are traced through the flow using an

With increasing data and display resolution the number Mmbedded Runge-Kutta integration scheme of 3rd order. Em-
graphical primitives required to comprehensively viszeli Pedded schemes can be used to control numerical accuracy by
such fields grows significantly. computing and adaptively selecting the appropriate iratign

In real-world fluid flow experiments [1], [2], external mate-Step size. In the experiment, however, the scheme is not used
rials such as dye, water vapor, liquid or gas droplets areeske for this purpose. Instead, all particles move with the satep s
into the flow. The advection of these materials creates flgvize and the error estimate that is computed by the integrato
lines or particle traces that show the flow patterns. Suatetra is Visualized. The user can change this step size until feryev
experiments have been simulated by scientific visualinati®article the integration error is below a selected thresHiiis
researchers. Numerical methods and three-dimensional céiows one to trade between simulation speed and accuracy

puter graphics techniques have been used to advect partit¥@ile the movement of particles is still bound to the simiofat
time step.

The experiment was run on a Pentium 4 3.0 GHz processor
with 512 kB second level cache and 1 GB dual channel DDR2
main memory. The PC is equipped with an ATI X800 XT

All authors are with the Computer Graphics and Visualizati@roup
at the Department of Computer Science, Technische UnigerdMunchen,
Boltzmannstr. 3, 85748 Garching, Germany.

Email: {jens.kruegdkipfer|kondratjwestermanh@in.tum.de

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 2

graphics card. Particles are rendered as transparensp®im The remainder of this paper is organized as follows. In
local integration error is color coded, ranging from low {tgh Chapter 2 we summarize previous work, which is related to
to high (red) error (see Figure 1). The vector field data isesto ours. We then describe particle integration schemes and we
as 16 Bit floating point data, and it is organized into blodia&tt discuss their realization on recent graphics cards. The use
fit into one cache line. Thus, for the advection of one paaticbf parallel fragment units for visibility sorting is subjeof
cache misses are reduced. Because particle positions ehdigapter 4. In Chapter 5 we introduce various visualization
in every frame, these positions can not be stored in serveptions, and we show timing statistics for different scésar
side (i.e. GPU) video memory. In every frame the entire s€hapter 6 is dedicated to the reconstruction of visuabrati
of particle coordinates and associated color attributesstba geometry like stream lines and stream bands. We conclude the
be transferred to the graphics processing unit. paper with a discussion of techniques to visualize unsteady
On the target architecture the maximum number of afloew and vector fields given on non-uniform grids.
tributed points in client-side (CPU) memory that can be
rende_red per sgcond is 15 millions. Consequently, in ox\r Related Work
experiment particles can be rendered at a frame rate of &t
most 15 fps independent of the performance of the integratorOver the last decade, particle tracing techniques for flow
The integrator itself updates 0.51 million positions pec-seVvisualization have been studied intensively. At the core of
ond, and we are seeing compute power becoming the mdja@se technigues, numerical integration schemes are geatplo
performance bottleneck. Overall, a frame rate of roughy 0t0 compute accurate particle trajectories in steady oreauist
fps can be achieved. With the ability to do more integratiovector fields. In the context of flow visualization, the anal-
steps per time interval, i.e. by using parallel architezsyr ysis of such schemes with respect to accuracy, stability and
SIMD optimization, lower order integration schemes ordast performance has been done [6]-[9].
memory, the bandwidth required will grow substantially. To integrate the velocity along particle traces in discrete
In this paper, we propose a method to overcome both comeshes, techniques for particle location and vector field in
putation and bandwidth limitations in particle tracing.itds terpolation are required. In non-uniform grids, point lhoa
this method, the experiment runs at 47 fps. This is achievtgkes a significant fraction of one integration step. To ever
by leveraging functionality on recent graphics accelasato come this burden, the physical domain is often transformed
carry out particle advection and rendering. Updated dartido a uniform computational domain, where point location is
positions are saved in graphics memory, and they are tHegs expensive [6], [8], [10]. Computational space pagticl
processed on the GPU again to obtain images in the fraf@cing, on the other hand, was shown to produce less aecurat
buffer. Parallelism and memory bandwidth in the fragmefiesults because in general local transformations can oaly b
units is exploited to accelerate numerical integration &md approximated. To accelerate point location in physicatepa
generate additional visualization geometry as shown iniieig cache coherence and efficient data structures have beieeditil
2. During particle tracing, bus transfer between the CPU afitiL]. On-the-fly tetrahedral decomposition of curvilinesils
the GPU can be almost entirely avoided. Only a few API call¥as been described by Kenwright and Lane [12] to efficiently

to execute the required GPU operations have to be issuedpredict the next cell that is entered by a particle. Then,
barycentric interpolation yields the velocity field insidee

elements. Since the trajectory of particles through tetadl
cells can be computed exactly, for this kind of primitives
approximate numerical integration can be entirely avoided
[13], [14].

Regardless the underlying grid structure, adaptive step si
control in numerical integration can significantly redube t
number of numerical and memory access operations in particl
tracing. The local truncation error is most commonly used to
Fig. 2. Particles can be rendered using different visuitimaoptions like steer the _refl_nement of particle traces [15], but also cureat
oriented splats or stream lines. based criteria [7], [12] and refinement schemes based on

velocity magnitude [6], [16] have been considered.

In contrast to topology or feature based techniques [3]-[5] Acceleration techniques for particle tracing also include
which reduce the information to be displayed by extractingiplementations on parallel architectures [17], [18] adl ae
relevant flow structures, our method provides an interactiput-of-core strategies based on application controlledatel
means for visualizing 3D flow dynamics. It allows the usepaging. In the work by Bruckschen et al. [19], at run-time
to guide the visualization process at arbitrary resolytemmd pre-computed particle traces are loaded from disk, whereas
it can be used to virtually explore high resolution fields in &ox et al. and Ueng et al. [16], [20] discussed data partition
way similar to real-world experiments. In particular, @ntbhe and caching strategies for particle tracing.
proposed particle approach does not require a preprogessinTo render particle trajectories, positional and direction
step and enables direct visualization of flow dynamics a$ waiformation needs to be mapped to graphical icons. Pasticle
as derived flow quantities, the system is well suited to serean be rendered directly as point primitives or they can be
as a back end for sources of unsteady flow. connected by line segments. In either case, color provides a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 3

means for encoding flow properties like divergence, vejocibr to enlarge the integration step size. In particular, R¥3(
magnitude or vorticity. Shaded primitives, transpareepth computes a third and a second order solution and estimates a
cues and halos greatly enhance the perception of particiedr fourth order accurate local truncation error from them.ngsi

in 3D [21]-[23]. Oriented texture splats [24] have beenizgitl the truncation error, the optimal step size can be complited.
for image based rendering of graphical primitives, and thdlyis larger than the current step size, the third order smut
significantly reduce the load in the vertex unit of the graphiis taken and the next integration step will use the larggy ste
system. More complex visualization objects include streasize. If it is smaller, a third order solution using the reeldic
ribbons, stream tubes or time surfaces [11], [16], [25]. Gestep size is recomputed.

metric properties of these objects can be modified according~or particle visualization, where one is interested in tont
to the intrinsic flow properties to reveal local structuneghie uous animation of particle sets within constant time irgésy
flow. adaptive schemes are only of limited relevance. Consexutiv

While particle based techniques can effectively visualizgarticle positions have to be displayed at equally spaced
local features in the flow, global imaging techniques fasimulation time steps. Therefore, adaptive schemes requir
visualizing 3D fields [26]-[29] can successfully illuseathe varying numbers of operations to be carried out per partinle
global behavior of such fields. However, it is difficult whera single animation frame, some particles perform many small
using such methods to effectively control particle densitga integration steps while others have to repeat the integrati
way that depicts both the direction structure of the flamd step with reduced step size. As a consequence, the number
the flow magnitude. Usually these techniques do not allow fof particles that can be processed within one animationdram
flow visualization at interactive rates. varies non-deterministically.

LIC-methods [30], [31], on the other hand, allow for in- In this work, we use an embedded RK3(2) scheme for
teractive visual analysis of high resolution 2D vector field numerical particle integration, and we use the local irdegr
However, such techniques generally fail if utilized to gitp tion error as an additional visual cue. The proposed particl
visualize 3D flow. This is because of the tremendous informaystem provides a visualization mode that enables the user
tion density they produce and their inherent occlusionatdéfe to visualize the local per particle truncation error usihg t
Only by selecting regions in the renderable representation third and second order solution to the current particletjuosi
structures in 3D be emphasized [32]-[35]. These technjquégspectively. By reducing the global integration time dtieis
however, do not allow for selective and integral visualmat error can be reduced accordingly.

of characteristic particle traces in general. . GPU PARTICLE TRACING

UR GPU particle system for interactive exploration of
3D flow fields exploits functionality on recent graphics
ARTICLE tracing is a technique for computing the tracards. On such cards, it is now possible to access texture map
jectory of massless particles in a flow field over time. Ifh the vertex units and to allocate memory objects that can

Il. PARTICLE TRACING

classical particle tracing the ordinary differential etjom be interpreted as texture maps and vertex arrays alteehativ
or Figure 3 is a pictorial representation of the improvememas t
ot 0(Z(t), 1) (1) have recently been made to the rendering pipeline. In combi-

nation with programmable fragment shaders, this functipna
enables construction, manipulation and rendering of gédene
data on the GPU. By using this functionality, particle tragi
can be entirely performed on the GPU without any read back
to application memory.

equipped with appropriate initial conditiof(0) = z is
solved numerically. HereZ(¢) is the time-varying particle
position, %f is the tangent to the particle trajectory, ands
an approximation to the real vector field The exact particle

trace is given by the solution of

ox
% ofalt).0) @ -

with the same initial condition. As is sampled on a discrete
lattice, interpolation must be performed to reconstructigle
velocities along their characteristic lines. The highex #p-
proximation order of the integration scheme, the more oft Vertex Shader - V
the interpolation function has to be evaluated. Consedent
the number of both numerical operations and memory accegss
operations increases in a higher order setting. Additignal
in a single integration step the memory footprint is enldrge
letting higher order schemes become less efficient in tefms o
memory cache coherence. On recent GPUs, textures can be accessed in the wentesy and
Besides fixed step size integration schemes like Class'ﬁ%derlng can be directed into textures and vertex arrays.
Euler or Runge-Kutta, embedded schemes are known to yield
superior results both with respect to accuracy and speed. IrOur method computes intermediate results on the GPU,
embedded schemes, the local integration error is used terefaves these results in graphics memory, and uses them again

Render To Vertexarray

—> [Rasterizr] —

Render To Texture

|
@

Textur
<

Texlure
%»»ﬂ% Blening/Ops]

‘o

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 4

as input to the geometry units to render images in the frartteus enabling access to initial particle attributes in gifnant
buffer. This process requires application control over ttshader. In the first simulation pass, the shader performs the
allocation and use of graphics memory; intermediate resufollowing operations:

are “drawn” into invisible buffers, and these buffers are

subsequently used to present vertex data or textures to the Transformation Unit particle coordinates are read from

GPU. the texture unit and transformed with respect4oThe
Initial particle positions are stored in the RGB color compo matrix is issued by the application program as a uniform

nents of a floating point texture of si2é x N. These positions shader parameter.

are distributed regularly or randomly in the unit cube. The « Birth: Each particle is born by initializing its lifetime

visual effect of different distributions is demonstratadrigure as described. The maximum lifetime is presented to the

4. In the alpha component, each particle carries a random shader via a uniform parameter.

floating point value that is uniformly distributed in the ggnof o Update Updated particle coordinates and the initial life-

(0.75,1.25). This value is multiplied by a user defined global time are output to the RGB and alpha components of the

lifetime to give each particle an individual lifetime. Byttiag render target, respectively.

particles die — and thus reincarnate — after different numbg

time steps, particle distributions very similar to thosegrated ~ The 2D render target now contains for every particle both

in real-world experiments can be simulated. its current local object space coordinate and lifetime.He t
advection step these values are changed subsequently.

B. Particle Advection

Particle advection is performed in the fragment units. The
Fig. 4. Random and regular distribution of starting possiowithin the above procedure is employed to generafex N fragments,
particle probe. which read current particle positions, advect these possti
and store the results in an additional texture. Besidegiitiali
The user specifies the number of particles continuoushyrticle container, the current container and a 3D texttoe s
released into the flow. Once this number is changed, gy the velocity field are bound to a second and third texture
appropriately sized initial particle texture is generatedthe ypjt. Vector valued information is stored in the RGB color
CPU and it is uploaded to the GPU. Particle integration noyomponents of the 3D texture. Since tri-linear interpofati

consists of two steps: incarnation and advection. in 32 Bit floating point textures is not supported on current
GPUs, vector components are stored as 16 Bit floating point
A. Particle Incarnation values internally represented in the OpenEXR formt (6 bits

The user can interactively position and resize a 3D pro§&Ponent and 9 bits mantissa). In the fragment shader, the
that injects particles into the flow. Both the position and thfollowing operations are carried out:
size of this probe are specified with respect to the localatbje) - -
coordinate system in which the flow field is initially defined. * Téxture AccessCurrent particle positions and lifetimes

These parameters are encoded in a transformation matrix are read from the second texture unit. _
o Death Test The shader checks for positions outside
Static Quad Texture, _Texture, Texture, the domain or lifetimes equal to zero. If one of these

conditions is true, the particle is reincarnated. Othegwis
it is advected through the flow.

+ A \ \ / [— Advection Particles are advected using the RK3(2)
N 2

- l—> oy " integration scheme, which involves multiple fetches
Vertex Shader - Fragment Shader - into the third texture unit. In addition, each particles’
lifetime is decremented by one. Updated positions
Fig. 5. A fragment stream is generated by rendering a quadctheers as are written to a 2D texture render target, which

many pixels as there should be items in the stream. becomes the particle container in the next pass.
)) — Reincarnation The same operations as described

In every simulation pass, a stream df x N fragments above for particle incarnation are carried out.

corresponding to a contiguous block of pixels in screen espac

is generated. Figure 5 illustrates this procedure. Thenfey theOl(JsrPBrci)goirsnerger%aerrt:tce!\?j iﬁ”%ge[:;;%r ggwal?gsvl{salcl)?ae;u?g uosne

output is rendered to an equally sized texture render targghn jevel constructs and to abstract from the underlying
which becomes the particle container in the next pass. Thgrdware architecture. In the following, a Cg code fragment
initial particle container is bound to the first texture unitmplementing particle advection is shown.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 5

float4 advection(app2Vertex IN) : COLORO { and parallelization is demonstrated. Even though the numbe
float4 pos = tex2D(sPositions, IN Coords); of texture access operations increases from one (Euler) to
float3 field = tex3D(sVol ume, pos. xyz) . xyz; four (RK3(2)), we do not see a corresponding decrease in

/1 pos.w stores |ivetime performance. Compared to its CPU counterpart, the RK3(2)

pos += float4(field,-1); integrator is about 110 times faster.
if (pos.w<=0 || outOFGid(pos.xyz)) . .
pos = tex2D(sStartPositions,|N Coords); C. Particle Rendering
return pos; In the particle advection step, new particle positions are
} computed in the fragment shader and written as RGB colors

Upon finishing the advection step, the current particlgto the current render target (see Figure 6). To renderethes
container can direcﬂy be used to render partic|e primiv@OSitionS, different possibilities are available on red8RUs —
at respective positions in the flow domain. Some renderifPenGL SuperBuffers and vertex texture fetches using Shade
options, however, require additional particle attributes the 3.0 or GLSL.
local integration error, velocity or derived flow quantiien o OpenGL SuperBuffers
the fragment shader used to advect particles, these gaantit To provide the application program with better control of
are directly computed. This procedure will be discussed in the GPUs local video memory, the OpenGL SuperBuffer

detail later in this paper. Scalar values are stored in thkaal extension [38] has been introduced. It definemi@mory
component of the particle container, whereas vector valued objectthat holds a piece of raw video memory. In this pa-
information is written to an additional render target usihg per, we use ATI's UberBuffer which is a preliminary im-

render _t ar get extension [37]. This extension enables the plementation of the OpenGL SuperBuffer. SuperBuffers
fragment shader to simultaneously write to multiple testur are currently under consideration for standardization in
render targets, which can be accessed in upcoming rendering OpenGL.

passes. The memory object interface allows the application to
Whenever the user changes the number of particles, incar- allocate graphics memory directly, and to specify how this
nation is repeated using the initial particle containera@jes memory is to be used. This information, in turn, is used
to the global lifetime or to the position and size of the probe by the driver to allocate memory in a format suitable for
do not affect the flow of operations. the requested uses. When the allocated memory is bound

to anattachment pointa render target, texture, a vertex

or color array), no copying takes place. The net effect for
the application program therefore is a separation of raw
GPU memory from OpenGLs semantic meaning of the
data. In our current implementation, a memory object is

TABLE |
INTEGRATOR PERFORMANCE IN MILLION PARTICLES PER SECOND ON
VARYING TEXTURE SIZES FOR32 BIT FLOATING POINT (8 BIT UNSIGNED
CHAR) DATA ON ATI X800 XT.

("’.rr’fti%’ri‘t%rr 38%’?5 Euler RK2 RK3 RK3(2) subsequently bound as the current texture render target
CPU al sizes| 24 @4) TI(L1) 073073 0505 and as a vertex array used to draw particle primitives.
GPU2562 | 41 (82) 37 (82) 31(82) 31 (78) « Vertex Texture Fetch
GPU 512§ 55 (174) 48 (169) 39 (160) 39 (139) On traditional graphics architectures, textures could onl
GPU1024% | 59 (209) 51(201) 41(189) 41 (160) be accessed in a fragment shader program. The Shader

3.0 and the GLSL specification, finally, also enable

In table | we give timings for the advection of particles ~ texture access in the vertex units hence providing an
using different integration schemes. These timings inelud effective means for displacing geometry on the GPU.

all operations that are carried out until updated positiares This functionality is supported on receiMIDIA graphics
available in the current particle container. Because orAie hardware.

X800, there is no hardware support for tri-linear interpioka To render displaced particles, we render a static vertex
in 32 Bit floating point textures, we give timings for tri- array stored in GPU memory. In a vertex shader program

linear 32 Bit floating point interpolation hand—coded in the the particle position is fetched from the current container
fragment shader compared to 8 Bit hardware supported tri- and this position then replaces the position initially stbr
linear interpolation. Internally, 32 Bit floating point texe in the vertex array.
values are represented by 1, 8, and 23 bits for sign, exponenfor particle advection, ATIs memory objects and vertex
and mantissa, respectively. On the ATI, after reading thetxture fetches omVIDIA cards under Shader 3.0 or GLSL
values from a texture, they are converted to an ATI specifiadfer similar functionality. The key concept is to let the
24 Bit floating point format used by the shader program fdragment units generate textures and to use these textures
internal computations. This restriction will be dropped oas displacement maps for geometric primitives in subseiquen
upcoming ATI cards, and it is nonexistent on currevitDIA rendering passes. Although the render module of our particl
hardware. engine can render particles through either of both intedaall
Our timings clearly show the advantages of GPUs fdimings in this paper are given with respect to the impleraent
particle integration. In particular, the efficient reatipa of tion using memory objects on the ATI X800 XT graphics card.
the memory subsystem including memory bandwidth, cach€se reason for this is that currently the ATI card can render

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 6

current target architecture, the maximum number of padicl
stored in local video memory that can be sent through the
vertex unit and rendered as colored point primitives is 250
millions per second.

E. Oriented Point Sprites

Particularly in a still image, point primitives can not dgsi
reveal flow direction. Even in an animation it is interesting
to observe that oriented iconic particle representatidkes |
arrows, vector glyphs or ellipsoids provide a much more
effective means for showing flow direction. Such geometric
Fhig- 6. Particlg positions are rand%mly stored in a 2%@&@& ;vhichdis representations, however, put the burden to the visualizat
of their otcuronce in the artay. hey are displayed i wrasilty order. 2IMOSt entirely on the geometry subsystem hence limitieg th
The visualization of particles in correct visibility ordisrshown in Figure 11. humber of particles that can be rendered.

Point sprites, on the other hand, give particles a similar

visual appearance to geometric icons, but sprite prinstive
displaced point primitives faster than th&IDIA 6800 Ultra contrast, require far less geometry processing. Conckytaa
using Shader 3.0. The comparison was done using a 2D textgent sprite is a textured quadrilateral centered at thetpbi
of size 1k x 1k, which was initialized with random positionsscreen space projection. Only a single vertex is transfdrme
in normalized device coordinates. Points were rendered ofinathe vertex units and the rasterizer generates a contiguou
1k x 1k view port, and colors were encoded in an addition@lock of n by n fragments around this projection. 2D texture
RGB texture of equal size. coordinates ranging from (0,0) to (1,1) are automatically
generated and used to map a given texture image. The upper
image of Figure 9 shows particles that are rendered as point
sprites. The image of a shaded and lit sphere is used to create
the impression of a spatially extended primitive.

While point sprites can effectively render rotationallyrsy
metric particle primitives, they produce incorrect resiflused
to display arbitrarily shaped geometry. This is mainly doe t
the loss of degrees of freedom if object transformations are
performed after the projection into screen space. To oveeco
this drawback we employ a texture atlas similar to the one
proposed by Guthe et al. [24], but we use a parametrization
that is more suitable for a GPU implementation.

Fig. 7. The data set shows a time step of a 3D time dependentation of The texture atlas contains a 2D array of different views
a turbulent flow around a square block [39]. The simulatiors warried out Of the 3D particle primitive. Views are parameterized with

on a rectilinear grid. Particle tracing is performed on thiid, and particle respect to scaling factor and rotation angle around theig-ax

positions are rendered as points. The parameter domain ranges from O to 1 and ffbta = for

Once particle positions have been fetched from the curr Srﬁ:tallng factor and rotation angle, respectively (see Figi)

; . ere, we assume the particle primitive is aligned with the x-
container, the vertex shader transforms these positicmac N ! :
) S . axis, the local direction of the vector field. To get all ratas
ing to the viewing parameters. Particles can then be redde*e)
. . rom 0 to 27 we use the texture wrap modeirror.
using different modes. . . .
For rendering point sprites, a fragment shader transforms
) the uniform texture coordinates (u,v), which are generated
D. Points for every fragment covered by this sprite, in such a way as
Rendering of point primitives does not require any specitd map into the appropriate atlas sub-image. Therefore the
fragment shader computations, and in particular no textumeagnitude of the local velocity vector is used as u-offset an
fetch has to be performed. By using this mode, millions dhe arc sine of the z-component of the normalized vector is
particles can be displayed at interactive rates. In Figureuged as v-offset. To rotate the selected sub-image aroend th
we show a visualization of the turbulent flow around a block-axis we build a rotation matrixz, —y)*, (y,z)”, where
using point primitives. In the remainder of this paper, this and y are the first components of the normalized velocity
flow field will be used to compare the visual effects that aneector. Because all four parameters - texture coordindsesf
generated by different visualization modes. Although gveand velocity components - are constant for each spritegthes
particle is displayed by a single pixel in screen space, thalues can be computed in the vertex shader and passed to
massive amount of primitives enables the simulation of-readhe fragment shader as a parameter. Because this approach
world experiments where small but numerous particles likequires the vertex shader to access the flow field, it can only
water vapor or gas droplets are released into the flow. On dag realized using Shader 3.0 or GLSL. Another alternative

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 7

IV. SORTING

S many examples have shown, the rendering of particles

using transparent point sprites can enhance the visual
perception of spatial relationships and it allows for thaudk
taneous visualization of exterior and interior structufese
Figure 10).

L
e
L]
]
]
o
o
o
L]
L]
]
o
L]
]
o
(-]

¢ 2 0 0 9 ¢ ¢ 0 0 0 O ¢ O O O @

Fig. 8. Low resolution version of the texture atlas, the esaafl the model
changes from bottom to the top while from left to right di#at rotations are
applied.

. Fig. 10. Velocity magnitude is color coded ranging from apaged (low)
is to create an additional particle container, into whicbst 1 transparent white (high). First, particles are renderedorrect visibility

parameters are written by a fragment shader. This contaioefer. Next, particles are rendered in the order of theiarination.

then can be accessed by all fragments that are covered by a

point sprite. The over operator is the most common way to blend trans-
By using this method, the virtual geometry can be rotatdtfirent objects. It takes into account the color attenuatios

around two axes and scaled correctly before the rotatiogstak0 accumulated opacity along the viewing direction. Beeaus

place. Hence, primitives can point into any spatial dicti the over operator is not commutative, transparent objeszsin

(see Figure 9). The overhead that is introduced by additiod@ be depth sorted before they can be rendered in back-to-

fragment computations is negligible. Nevertheless theatiion ~ front visibility order. To avoid read back of data to the CPU,

data to be processed in the vertex shader causes the peM-have integrated a GPU sorting network into our particle

mance to drop down to about 50% if only one pixel size@nNgIne.

points are rendered. In practical applications howeveerah The sorting routine accounts for the architecture of todays

extended points are used the application becomes fragm@i@iPhics processors. Recent GPUs can be thought of as SIMD

bound and the orientation has almost no impact on the ovei@mputers in which a number of processing units simultane-
performance. ously execute the same instruction on their own data. Censid

erable effort has been spent on the design of sorting alfgosit
amenable to the data parallel nature of such architectures.
Bitonic merge sort [40] is one of these algorithms. Compared
to other sorting algorithms like Quicksort or Heapsort,st i
well suited for such architectures because its sequence of
operations is fixed and not dependent on the data to be sorted.

Fig. 11. By sorting texture values according to their distato the viewer,
particles can be rendered in correct visibility order

Purcell et al. [41] and Kipfer and Westermann [42] propose
GPU implementations of the bitonic merge sort. The latter
Fig. 9. From top to bottom, flow visualization using simpletteed sprites, @pproach minimizes both the number of instructions and
oriented ellipsoidal sprites and oriented arrow sprites sirown. texture operations to be executed. On the GPU, a texture is

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 8

built that contains for every particle a floating point sogti None of the other stages in the particle system are affegted b
key — the distance to the viewer in the current scenariothe sort.

as well as an integer floating point identifier — a reference

into the appropriate position in the current particle corea V. INTERACTIVELY VISUALIZING DERIVED FLOW

Both values are stored in the R and G color components, ATTRIBUTES

respectively. Because the graphics pipeline as implerderte OR flow analysis, additional flow properties are usually
recent cards is highly optimized for the processing of RGB computed and visually encoded. In general, scalar feature
samples, two consecutive entries in each row — includivglumes containing derived quantities like velocity magni
sorting key and identifier — are packed into one single RGB#de, divergence, vorticity magnitude, or higher order flow
texture sample. Thus, coherence between adjacent enitles wharacteristics are built in a pre-process. They can eitleer
respect to memory access and arithmetic operations canvigsalized directly or they can provide additional sourtms
exploited. particle attributes in particle based approaches.

Table Il compares the GPU bitonic merge sort with an Although this kind of pre-processing is advantageous in
optimized data-dependent sorting routine of the C++ STthat generated data sets can be sampled very efficiently, e.g
Both algorithms were run on key/index pairs of equal bit widtby means of hardware accelerated tri-linear interpolatitsn
including the final reorder pass to exchange particle possti drawbacks are manifold. First, this approach puts the urde
according to index permutations. As can be seen, the GRUEthe visualization process almost entirely on the precpss
solution has the potential to outperform the CPU solutioprohibiting the use of such techniques in interactive emar
Sorting can now be relocated freely between the processaents like computational steering or in-vivo imaging. Set,0
and the graphics card without performance penalty. due to the enormous memory overhead imposed by additional

feature volumes, out-of-core techniques are requirec®wi-

TABLEII sualization of time-resolved sequences. Due to limited orgm
SORTING PERFORMANCE on recent GPUs, the use of additional feature volumes beside

sorter | #keys megakeys/sec the flow field is impossible for reasonably sized data sets.
iﬁr)‘(igo”gege sort g?g; 2'421 As the proposed particle engine is supposed to provide
10242 5.1 an interactive means for the visual analysis of steady or
std::sort 2562 5.4 even time-resolved flow on the GPU, any pre-process has to
P4 3.0 GHz 5122 54 be avoided. Thus, computation of additional flow properties

1024 5.0 needs to be integrated into the particle engine. Once feartic

advection has been carried out, in an additional render@sg p

Because sorting becomes the major performance bottlenécragment shader computes for each particle the required
in the particle engine, alternative strategies have to be c@ttribute. The following attributes can be derived:
sidered. One alternative is to lay out a full sort of paricle « Velocity: The sampled vector field'.
over multiple rendering passes. Therefore a sorting reutin « Divergence By V - IV we compute the extent to which
is required that yields “smoother” intermediate resultanth the vector field flow behaves like a source or a sink.
the bitonic merge sort. The odd—even merge sort is such ar Enstrophy: The circulation per unit area at a point in the
algorithm, and it has been shown to be well suited for this flow field is computed agv x V.
purpose [43]. It has the same number of stages and therefore Az: It shows the second eigenvalue of the matsk +
the same complexity as the bitonic merge sort, and we can ©?, whereS and(2 is the symmetric and antisymmetric
utilize similar coding optimizations as for the bitonic rger part of the velocity gradient matrix, respectively [44]. A
sort. In particular for the rendering of transparent popnitss, value less than zero indicates a vortex.
the odd—even merge sort gives visually pleasant results eve Scalar attributes are encoded as colors and they are used
in case the particles set is incompletely sorted. It allogisou as additional rendering attributes. To show values, the
spend as much time of one frame as we want for sorting, thuser selects an iso-value — usually equal to zero — and the
keeping the overall simulation time step within a fixed timepacity of each particle primitive is set such as to highligh
limit. the corresponding., iso-surface. The closer thg, value at

In this scenario, another advantage of GPU sorting becontke current particle position is to the selected threshibid,
apparent. The layout of sorting steps over multiple frames onore opaque the rendered particle primitives are. A linear
the CPU still requires the entire particle set to be down- amdodulation function determines the fall off of opacity frahe
uploaded from and to the GPU. Due to bandwidth limitatiorselected threshold. As can be seen in Figure 12, this approac
no more thanl5/2 fps (see the experiment above) can bprovides an effective means for generating a surface like
achieved. Using GPU sorting, on the other hand, we cappearance even though particle tracing is used. Even more
exactly determine the number of sorting steps per simulationportantly, the particle-based approach does not reghee
pass until sorting becomes the performance bottleneck. computation of an additional scalar feature volume coirigin

In our particle system, sorting is integrated as an addition\, values.
rendering pass subsequent to the advection step. A particul For computing point-wise flow characteristics two diffetren
shader performs the sort and reorganizes particle posiiad techniques are currently supported: nearest neighbdr &td
attributes in the current container accordingly (see FdLk). tri-linear interpolation.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 9

ping-pong buffers — 2D texture maps — that are subsequently
interpreted as render target and as container to be read from
Throughout the construction process, the container hdids t
current position of all particles initially released intoetflow.
By the procedure described above, as many fragments as there
are stream lines are generatefl < L throughout the following
discussion. Both the current container and the 3D texture
storing the vector field data are bound to different textumiésu
In a fragment program, the container is read to retrievagart
Fig. 12. \ortex structures as seen from different views ateaeted on a per POSitions at the current time step, and the velocity textsire
Farticlslgﬁsg (;T ths]GZLn)az Zgllgreslsa[g ggntﬂg)lilrt%?cgf;n865f;ee§;?3rgﬁnzrzz?d%ampIed multiple times to numerically integrate to the next
a?(Tgreater than (gre’en) zero. The data set of resol@868 x 50 shows a positions. UpdaFed positions are rend_ered into t_he s_ecmlg;-:l P
simulated flow transition in a boundary layer. For 1/4 millimughly 40 fps. Pong buffer, which becomes the particle container in thet nex
pass.
To generate stream lines, not only have particle positions t

The nearest neighbor fetch computes the flow quantity orthe computed but entire particle traces must be stored. These
at the grid point closest to the particle position and assigtraces are packed into a texture atlas, which has to be large
this value to the particle. Partial derivatives are appr@ted enough to holdL x L x T positions. Here[" is the number
by central differences, which are computed from adjaceot steps to be performed along the trajectories. If this neimb
samples in the 3D flow texture. For tri-linear interpolatibis exceeds the maximum texture size, multiples of these atlase
procedure is performed eight times — once for each adjacené required.
grid point. Finally, the particle attribute is computed st After the current particle container has been updated, its
linear interpolation between these values. content is copied into the atlas. Therefore, the atlas isiSpe

The most time consuming, shader computes the Jacobia@s render target, and the rendering output is directed h#o t
of the vector field and solves a linear system of equations dppropriate texture area. A simple fragment shader reaals th
compute the eigenvalues of the Jacobian. If particle pwest particle container and writes current positions into thasat
are rendered as points using nearest neighbor fetch, arlos®ing-pong rendering and copying is performed as many times
performance of about 40% is introduced. Tri-linear intéapo as specified by the user via a maximum line length.
tion slows down the performance about a factor of two. On Once particle trajectories have been computed and stored,
the other hand, if particles are rendered as sprites théveslarespective texture samples are interpreted as controkspoin
loss in performance is quickly becoming negligible. This iThese points are finally rendered as polylines. Using Shader
due to the fact that the, value only has to be computed3.0 or GLSL, one single polyline consisting Bfcontrol points
once for every sprite regardless the number of fragments tig built prior to stream line construction. To th&" point

are generated. along the line, the texture atlas position of tié particle
position along the first stream line is assigned by means of 2D
VI. VISUALIZATION GEOMETRY texture coordinates. Now the polyline is rendefed L times,

O provide additional visual cues for perceiving Com(_aach time specifying a 2D textur.e coordinate offset suphnast
I plex 3D flow structures, we have integrated stream "r{gference stream lines consecutively. In a vertex shadechw

construction and rendering into the particle engine. The ViECEIVES this offset as a shader constant, the atlas is edmpl

sualization of stream ribbons has been built on top of th‘?@d t_he texture value is mterpbr_eted as ve_rtgx p(:jsmon.
construction process. It is worth noting that we do not ekpec .U_smg (f)penGL r.nemo;y objects, aln in e)t()e'l arr;’:\y C(in'
stream line construction on the GPU to perform faster thi#NING references into the texture atlas is built. Thesatla

optimized software solutions. If numerical integratiohemes = interpreted as the c_oordmate array by OpenG_L — Is sent
rough the GPU again, and the indexed array is rendered.

with adaptive step size control are employed, significant : N) .
less samples need to be reconstructed. Such data depen H?'S way, an additional data structure is required toestor
rdinate indices, but the application program only has to

schemes, however, can not be implemented efficiently on d5eP :
parallel vertex or fragment processors. As a matter of faat, perform one ca!l to change the semantic of the atlas from
system supports stream line construction using a fixed st>ure to coordinate array. o

RK3(2) scheme, but it allows the user to visualize the local In Figure 13, we show str_eam lines in the reference da_ta
truncation error and to reduce the step size accordinglyhét set. As can be seen, the particle system generates strezsn lin

same time the number of integration steps might be increas% variable length. Because many traces will b_e terminated
before T' steps have been carried out, respective fragments

] become idle in upcoming passes. Fortunately, recent graphi
A. Stream Lines hardware allows one to conditionally exit a fragment shader
For stream line construction, particle positions areatfided program thus enabling the corresponding fragment unit to
such as to place particles close to each other in adjacdntéex process subsequent items out of the fragment stream. Tids ki
samples. In this way, during stream line integration textuof acceleration, however, only works effectively if contaus
cache coherence can be exploited most efficiently. We use tii@gment groups are discarded. Due to the coherence between

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 10

Fig. 13. 1K stream lines of length 1K can be reconstructedrandered at Fig. 14. 1K stream bands of length 1K can be reconstructedremdered
20 fps at 14 fps

stream lines released at adjacent positions in the proteréex normal vectors as well as reading and writing the second

likely this likely in the current applications. texture atlas, timings are of about a factor of 30% slower

compared to the construction and rendering of stream lifes.

B. Stream Ribbons shade the ribbons, a vertex normal is computed in the fragmen
shader during the construction step. These normals aredstor

While stream lines illustrate the direction of flow, streany, 5 separate texture, and they are sampled in the geometry
ribbons also show rotation about the flow axis by twisting gnits at the time the triangle strip is rendered.

ribbon-shaped geometry [16]. Starting with a random normal
vector at the seed point of a particle trajectory, at subsequ
points the incremental rotation of this vector accordingh®
rotation about the flow direction is computed as

VII. CONCLUSION AND FUTURE WORK

S demonstrated in the key experiment, the proposed GPU
particle engine significantly outperforms CPU engines
Oip1 =0; - l(mt(g) x v') for flow visualization. In a number of different examples
this statement could be verified. The ability to trace massiv
Here, rot(v) = V x v is the rotation of the vector field andparticle sets at interactive rates in combination withrakive
v’ is the normalized flow direction. The sum of all incrementisualization options to reveal local flow properties erabl
angles up to a certain point on the trajectory is used toeotatirtual exploration of large fields in a way similar to real-
the normalized projection of the previous normal vectoo intworld experiments. The possibility to integrate numefical
the plane orthogonal to the flow direction at this point. Band data intensive computations for flow analysis into the
rendering points on the trajectory and end points of the mbrnrendering process distinguishes the GPU engine from puisvio
projection vectors in alternative order, a ribbon-shapiedgle approaches.
strip is formed. Besides particle advection, the engine provides a variety o

On the GPU, we construct particle traces as described abovisualization options to visually convey relevant struesiin
and we use the alpha component of each texture elemenB8steady flow fields. Even though we did not yet compare the
store the accumulated increment angle. All four componemsrformance of these techniques to optimized CPU implemen-
— particle position and increment — are finally written intdations, our experiments have shown interactive constuct
the texture atlas. During ping-pong rendering, positiond aand rendering of large scale visualization geometry iniseal
increments are updated. tically sized flow fields.

To generate stream bands we proceed as follows. AfterAs the images in the color plate demonstrate, the particle
having computed the atlas containing positions and inckmengine also provides an effective means for visualizing 2D
angles, a second atlas is built that contains the other rflfows. By using massive particle sets in combination with
of each stream band. A fragment shader reads from theented sprites, LIC-like visualizations can be achieseath-
original atlas, rotates the initial normal vector accogdito teractive rates. This includes higher-order integraticmesnes
the accumulated increment angles and writes the end pdintshaus providing numerically accurate particle traces. le th
the rotated vectors into the second atlas. To display thddarfuture, we plan to extend the engine for the visualization of
using Shader 3.0 or GLSL, a pre-computed triangle strip flsw on triangular surfaces.
rendered times, each time taking the respective displacementin addition to flow fields given on Cartesian grids, visual-
values from either atlas. Using OpenGL memory objects,ization techniques need to be capable of dealing with non-
texture twice as large as the atlas is generated, whichiosntauniform or structured grids. For instance, the Navier-8tok
the respective control points in correct order. This textisr simulation of turbulent flow, which is shown in Figures 4 to
interpreted as a vertex array, and it is rendered as a setldf was carried out on a rectilinear grid. Along two coordéna
triangle strips. axes the grid is refined towards the region right behind the

In Figure 14, stream ribbons as they occur in the referenblck. To visualize this data set on the GPU, we built two
data set are displayed. Due to the extra work to be done textures that define the mapping from physical coordinates t
computing accumulated increment angles, rotating pregectnon-uniformly sized grid cells. The resolution of thesettiegs

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 11

is chosen with respect to the smallest cell size. Note that we ACKNOWLEDGMENT
do not resample the grid itself, but we store the non-linear
1D mapping for each axis separately. The additional memor
requirement imposed by this approach is insignificant. @n t
GPU, prior to accessing the ve_ctor field data, two add|t|onW?u|d like to thank Simon Stegmaier from the University
texture fetches have to be carried out to transform the Io<§),[.-
) . : . uttgart for providing the\;-shader.

particle position to the computational domain. In the cotre
scenario, the extra texture fetches slow down the perfocaman

by a factor of two. REFERENCES

This work was financially supported by the German Re-
garch Foundation (DFG) in the Priority Programm 1147
aI?:ildgebende Messverfahren fur die Stromungsmechahile’

. : :] NASA Ames Research Center, “Windtunnel Experiments,”
With regard to more general grid structures, we believét http-/Awindtunnels. arc.nasa.gov/,

that a similar performance gain as seen for uniform gridg) A. Adrian, “Particle imaging techniques for experimahfluid mechan-
can be achieved. This assumption is evidenced in the timing ics,” Annual Review of Fluid Mechanicsol. 23, pp. 261-304, 2003.
statistics given in this paper. It has been shown, that foin bO[] L. Hesselink and T. DglmarceIItSuentlﬂc V|su_a||za_t|on_ - advances and

h . . . challenges Academic Press, 1994, ch. Visualization of vector and
computation and memory bandwidth bound applications the tensor data sets, pp. 367-390.

GPU outperforms CPU based particle integration schemes. A4 R. Peikert and M. Roth, “The ‘parallel vectors’ operataa vector field

integration in non-uniform grids requires additional nuicea! ‘é';uggz;itgl primitive,” in Proceedings IEEE Visualization 99999,
and memory access operations, i.e. evaluation of adjacengy G. scheuermann and X. Tricoche, “Topological methods flow
information, transformation of points and velocities, rij@@@n- visualization,” in Visualization HandbogkC. Johnson and C. Hansen,
tric) interpolation, computation of Jacobians and invetae Eds. Academic Press, 2005.

). p P 8 . [8] P. G. Buning, “Numerical algorithms in CFD post-prodegs’ van
cobians, improved performance on current and UPCOMING’ Karman Institute for Fluid Dynamics, pp. 1-20, 1989.

graphics cards can be expected. [7] R. Haimes and D. Darmofal, “Visualization in computati fluid
dynamics: a case study,” iProceedings of the 2nd conference on
A GPU data structure that accommodates particle tracing i[?;] Visualization '91 1991, pp. 392-397.

. . F. Post, “Fluid flow visualization,Focus on Scientific Visualizatippp.
tetrahedral grids was presented by Weiler et al. [46]. Altifo 1-40 1993, orp

in a different setting, it was shown that essentially the esam[9] C. Teitzel, M. Hopf, and T. Ertl, “Scientific visualizath on sparse

data structures can be implemented on the GPU than on 9rids,” in Proceedings of Scientific Visualization - Dagstuhl '97, ditgi
he CPU. B di di inf . . dditi | berg H. H. G. M. Nielson and F. Post, Eds. |IEEE Computer Society,
the . by encoding aagjacency In ormation In additional IEEE Computer Society Press, 2000, pp. 284—295.

texture maps and by clipping particle paths against elemegmni] A. Sadarjoen, T. van Walsum, A. Hin, and F. Post, “Péetitracing
faces, GPU particle tracing in tetrahedral grids should be Algorithms for 3-D Curvilinear Grids,” inProc. 5th Eurographics

. Workshop on Visualization in Scientific Computid®94.
possible in a very similar way to a CPU Implem(:"matlorfll] J. P. M. Hultquist, “Constructing stream surfaces ieasly 3D vector

As barycentric interpolation in simplicial elements can be fields,” in Proceedings of the 3rd conference on Visualization EEE.
performed efficiently on the GPU, local exact integration iP IEEE Computer Society Press, 1992, pp. 171-178.

. . . 12] D. N. Kenwright and D. A. Lane, “Interactive time-demEmt particle
tetrahedral ngdS IS p055|ble as well [13]' tracing using tetrahedral decompositiofEE Transactions on Visual-

. . L ization and Computer Graphicsol. 2, no. 2, pp. 120-129, 1996.
In addition, the ability to perform conditional per-fragnie [13] M. Nielson, I.-H. Jung, N. Srinivasan, J. Sung, and J¥8on, “Tools
computations on the GPU has particular advantages for rende for computing tangent curves and topological graphs foualiging

; i : : : : piecewise linearly varying vector fields over triangulatddmains,”
ing non-uniform grid structures. This functionality allswne in Scientific Visualization: Overviews, Methodologies andhiiques

to aboard fragment shader computations and to make availabl M. Nielson, H. Hagen, and H. Miller, Eds. IEEE Computer 8tgi
the fragment processor for operations on the next fragment, Press, Los Alamitos, California, 1997, pp. 527-562.

. s [14] P. Kipfer, F. Reck, and G. Greiner, “Local exact padidracing on
Adaptive algorithms like the stencil walk for point locatiin unstructured grids.Computer Graphics Forunvol. 22, no. 2, pp. 133

P-space will greatly benefit from this functionality. 142, june 2003.
[15] C. Teitzel, R. Grosso, and T. Ertl, “Efficient and Rel@alntegration
Multiblock grids, on the other hand, require new approaches Methods for Particle Tracing in Unsteady Flows on Discreteshes,”

; s in Proc. 8th Eurographics Workshop on Visualization in Sdfent
to leverage current GPU architectures most efficiently.hSuc Computing W. Lefer and M. Grave, Eds. IEEE, 1997, pp. 49-56.

grids consist of multiple, potentially overlapping unifior [16] s. Ueng, K. Sikorski, and K. Ma, “Efficient streamlinetreamribbon,
grids of varying size and resolution. Locating the block a and streamtube constructions on unstructured gridsTramsactions on

; ; ; SN Visualization and Computer GraphicsIEEE, 1996, pp. 2:100-110.
parucle |s.passmg. throth .takes a S|gn|f|cant amount Ok_NO[r17] S. Bryson and C. Levit, “The virtual windtunnel: an emnment for the
in traversing multiblock grids. Such tests could be realiz€ ~ expioration of three-dimensional unsteady flows Firoceedings IEEE

efficiently by using rendering functionality on current ghécs Visualization 1991, pp. 17-24.

; ;] M. Malte Zockler, D. Stalling, and H.-C. Hege, “Pasdllline integral
C.ardis' By. rende”ng the bqundlng boxes of each block, tHé convolution,” Parallel Computing vol. 23, no. 7, pp. 975-989, 1997.
viewing distance of respective front and back faces as veell @g) r. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy, 1Rieze out-of-

a unique block id can be drawn to an intermediate textures Thi core visualization of particle traces,” iRroceedings of the IEEE 2001

information, in turn, can be accessed by particles to determ ;)F/Jmi(s)iuom on parallel and large-data visualization andpdnias 2001,
whether they are inside or outside the rendered block. Tmlaveyo; . cox and D. Ellsworth, “Application-controlied demd paging for

repeated executions of this process, as many blocks abf@ssi out-of-core visualization,” irProceedings IEEE Visualizatior1997, pp.
have to be processed in one pass. In particular, by renderinﬁ 235-244. _ . o

Il blocks. depth l id b tilized to di d th 42 M. Zockler, D. Stalling, and H. Hege, “Interactive umlization of
a 0cks, deptnh peeling cou € utlized to aiscar 0S€ " 3g.vector fields using illuminated stream lines,” Froceedings of
blocks that have already been processed. Visualization '96 ACM, 1996, pp. 107-113.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]
[32]

(33]
(34]
[35]
[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

H. Hauser, R. S. Laramee, and H. Doleisch, “State-efatt report 2002
in flow visualization,” VRVis Research Center, Vienna, TeBep. TR-

VRVis-2002-003, 2002.

O. Mattausch, T. Theussl, H. Hauser, and E. Grolletrdtegies for
Interactive Exploration of 3D Flow Using Evenly-Spaceduttiinated

Streamlines,” inProceedings of SCC&003, pp. 213-222.

S. Guthe, S. Gumhold, and W. Strasser, “Interactiveualigation of

volumetric vector fields using texture based particles,Pioceedings
of WSCG vol. 10, 2002, pp. 33-41.

M. Brill, H. Hagen, H.-C. Rodrian, W. Djatschin, and S. Klimenko,

“Streamball techniques for flow visualization,” iRroceedings of the
conference on Visualization '94994, pp. 225-231.

J. van Wijk, “Spot noise: Texture synthesis for dataueiszation,”

Computer Graphicsvol. 25, no. 4, pp. 309-318, 1991.

R. Crawfis and N. Max, “Direct volume visualization of rée-

12

Jens Kruger is a PhD student at the computer
graphics and visualization group headed by Pro-
fessor Rudiger Westermann at the Technische Uni-
versitat Munchen. There he works on GPU based
techniques for computer graphics and visualization.
Jens’ current research is focused on GPU solutions
for numerical problems, often arising in physically-
based simulations. He has published papers on GPU
programming at internationally recognized confer-
ences like ACM SIGGRAPH or IEEE VISUAL-
IZATION. In 2004 he received the ATI fellowship
award, which honored him as an outstanding graduate stilenéas related

to computer graphics and graphics systems.

dimensional vector fields,” ifProceedings ACM Workshop on Volume

Visualization 1992, pp. 55-60.

——, “Texture splats for 3D scalar and vector field viszafion,” in
Proceedings IEEE Visualization 93993, pp. 261-265.

N. Max, R. Crawfis, and C. Grant, “Visualizing 3D Velogit-ields
Near Contour Surfaces,” iRroceedings |IEEE Visualization 94994,
pp. 248-255.

D. Stalling and H.-C. Hege, “Fast and resolution indegent line inte-

gral convolution,” inComputer Graphics (SIGGRAPH 95 Proceedings) s

1995, pp. 249-256.

J. J. van Wijk, “Image based flow visualization,” Proceedings Visu-
alization |EEE, 2002.

V. Interrante and C. Grosch, “Visualizing 3D FlowZomputer Graphics
and Applications vol. 18, no. 4, pp. 49-53, 1998.

C. Rezk-Salama, P. Hastreiter, and T. Ertl, “Interactexploration of
volume line integral convolution based on 3D-texture magpgi in
Proceedings IEEE Visualization 99999, pp. 233-240.

A. Telea and J. J. van Wijk, “3D IBFV: Hardware-Accelrd 3D Flow
Visualization,” inProceedings Conference on Visualization 200BEE,
2003, pp. 233-240.

G.-S. Li, U. Bordoloi, and H.-W. Shen, “Chameleon: Antdractive
texture-based rendering framework for visualizing thd@aensional
vector fields,” inVisualization 2003 |IEEE, 2003, pp. 241 — 248.
nVidia, “nVidia White Papers,” http://www.nvidia.co/Developer/Cg.
OpenGL Architecture Review Board,GL_EXT_render _t ar get ,”
http://www.opengl.org/resources/features/GXT _rendertarget.txt.
nVidia, “Data Storage and Transfer in OpenGL,”
http://developer.nvidia.com/docs/I0/8229/Data-X8&tore.pdf.

R. Verstappen and A. Veldman, “Spectro-consistentrédiization of
Navier-Stokes: a challenge to RANS and LESurnal of Engineering
Mathematics no. 1, pp. 163-179, 1998.

K. Batcher, “Sorting networks and their applicatiéng Proceedings
AFIPS 1968 1968.

T. Purcell, C. Donner, M. Cammarano, H. Jensen, and Rrafen,
“Photon mapping on programmable graphics hardwareProceedings
ACM SIGGRAPH/Eurographics Workshop on Graphics Hardw2083,
pp. 41-50.

P. Kipfer, M. Segal, and R. Westermann, “Uberflow: A GBaked

Peter Kipfer is a post-doc researcher at the Com-
puter Graphics & Visualization Group at the Tech-
nische Universitat Miinchen. He received his Ph.D.
from the University of Erlangen-Nurnberg in 2003
for his work on parallel and distributed visualization
and rendering within the KONWIHR supercomput-
ing project. His current research focuses on general
purpose computing and geometry processing on the
GPU.

Polina Kondratieva is a PhD student at the
computer graphics and visualization group headed
by Professor Rudiger Westermann. She works on
GPU/CPU implementation of algorithms for visu-
alization and image processing. Particularly, her re-
search is focused on the development of GPU based
solutions for the reconstruction of flow fields from
image pairs and flow visualization.

particle engine,” inProceedings Eurographics Graphics Hardware Con-

ference T. Akenine-Mbller and M. McCool, Eds.
115-122.

A. Kolb, L. Latta, and C. Rezk-Salama, “Hardware-bassahulation
and collision detection for large particle systems,” Rroceedings
Eurographics Graphics Hardware Conferencé Akenine-Moller and
M. McCool, Eds. IEEE, 2004, pp. 123-131.

J. Jeong and F. Hussain, “On the identification of a vgttdournal of
Fluid Mechanics vol. 285, pp. 69-94, 1995.

T. Klein, S. Stegmaier, and T. Ertl, “Hardware-accated Reconstruc-
tion of Polygonal Isosurface Representations on Unstredtrids,” in
Proceedings of Pacific Graphics '02004, pp. 186-195.

M. Weiler, M. Kraus, M. Merz, and T. Ertl, “Hardware-Bed Ray
Casting for Tetrahedral Meshes,” Rrocceedings of IEEE Visualization
'03. |EEE, 2003, pp. 333-340.

IEEE, 2004, pp.

Rudiger Westermann studied computer science
at the Technical University Darmstadt, Germany.
He pursued his Doctoral thesis on multiresolution
techniques in volume rendering, and he received a
PhD in computer science from the University of
Dortmund, Germany. In 1999, he was a visiting
professor at the University of Utah in Salt Lake
City, and he became an assistant professor at the
University of Stuttgart, Germany. In 2000, he was
appointed an associate professor at the Technical
University Aachen, Germany, where he was head
of the Scientific Visualization and Imaging Group. In 2002ed¢rmann
was appointed the chair of Computer Graphics and Visu@izaat the
Technische Universitat Minchen. His research interigstside general pur-
pose computing on GPUs, hardware accelerated visualizaitd image
synthesis, hierarchical methods in scientific visual@ativolume rendering,
flow visualization and parallel graphics algorithms.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSYOL. 11, NO. 6, 11. 2005 13

Fig. 15. Particle-based visualization of 2D flow on &2 x 512 grid. The flow is induced by micro-biological structures,igthare displayed in the
background image. From left to right, transparent elipsdidprites, enlarged transparent ellipsoidal sprites,rsparent arrows and stream lines are shown.
In regions of low velocity, multiple sprites overlap and guce a more dense appearance. On/d x 1K viewport and by advecting 250K particles using
a RK3(2) integration scheme in the leftmost image, the atimauns at 28 fps on the ATI X800 XT graphics card.

Fig. 16. On the left, the turbulent flow around a block is visualizethgshaded lines. The data is given on a rectilinear grid. &auction and rendering
of 512 stream lines can be performed 35 times per second. ©right, the flow transition in a boundary layer is visualizétied(green) depictas values
less(greater) than zero. Transparency is fading out wittréasingA2 magnitude. Using 250K particles, the particle probe can bsifoned interactively at
30 fps.

Fig. 17. Hurricane Isabelle is visualized using different visuatian options. From left to right, transparent point spete\, color coded points, stream
balls and stream ribbons are shown.

