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A Particle System
for Interactive Visualization of 3D Flows

Jens Krüger, Peter Kipfer, Polina Kondratieva, Rüdiger Westermann

Abstract— We present a particle system for interactive visu-
alization of steady 3D flow fields on uniform grids. For the
amount of particles we target, particle integration needs to be
accelerated and the transfer of these sets for rendering must
be avoided. To fulfill these requirements, we exploit features of
recent graphics accelerators to advect particles in the graphics
processing unit (GPU), saving particle positions in graphics
memory, and then sending these positions through the GPU
again to obtain images in the frame buffer. This approach allows
for interactive streaming and rendering of millions of part icles,
and it enables virtual exploration of high resolution fields in a
way similar to real-world experiments. The ability to display the
dynamics of large particle sets using visualization options like
shaded points or oriented texture splats provides an effective
means for visual flow analysis that is far beyond existing solutions.
For each particle, flow quantities like vorticity magnitude and λ2

are computed and displayed. Built upon a previously published
GPU implementation of a sorting network, visibility sorting of
transparent particles is implemented. To provide additional visual
cues, the GPU constructs and displays visualization geometry like
particle lines and stream ribbons.

Index Terms— Flow visualization, particle tracing, pro-
grammable graphics hardware, visibility sorting, visualization
geometry.

I. I NTRODUCTION

A DVANCES in experimental flow analysis and flow nu-
merics are making available an unprecedented amount of

data from physical phenomena. Relevant data can be captured
and simulated with sufficient accuracy to permit reliable ex-
traction of required information and to even disclose the world
of unsteady flow mechanics. In flow research and industrial
practice vector field data is one of the key sources for the
analysis of flow field dynamics. Visual exploration of such
fields imposes significant requirements on the visualization
system and demands for approaches capable of dealing with
large amounts of vector valued information at interactive rates.
With increasing data and display resolution the number of
graphical primitives required to comprehensively visualize
such fields grows significantly.

In real-world fluid flow experiments [1], [2], external mate-
rials such as dye, water vapor, liquid or gas droplets are seeded
into the flow. The advection of these materials creates flow
lines or particle traces that show the flow patterns. Such tracer
experiments have been simulated by scientific visualization
researchers. Numerical methods and three-dimensional com-
puter graphics techniques have been used to advect particles

All authors are with the Computer Graphics and Visualization Group
at the Department of Computer Science, Technische Universität München,
Boltzmannstr. 3, 85748 Garching, Germany.
Email: {jens.krueger|kipfer|kondrati|westermann}@in.tum.de

and to produce graphical primitives such as arrows, motion
particles, particle lines, stream ribbons, and stream tubes.
These primitives can emphasize flow properties and they act
as depth cues to assist in the exploration of complex spatial
fields.

Fig. 1. Using a RK3(2) integration scheme, one million particles can be
traced through the flow at 60 fps. The local integration erroris color coded.

These techniques are effective in showing the flow fields
local features, but they cannot produceanddisplay the amount
of primitives needed to visually convey large amounts of 3D
directional information at interactive rates. Both numerical
and memory bandwidth requirements imposed by particle
integration schemes are too high as to allow for simultaneous
advection of large particle sets. Even if particle positions can
be updated at sufficient rates, particle rendering includesthe
transfer of data to the graphics system and therefore limitsthe
performance.

In the following key experiment, the requirements on
particle-based visualization techniques for flow fields are
emphasized. Particle advection is used to visualize one time
step of a numerical simulation of incompressible flow. The
advection step is carried out on the CPU, and updated particle
positions are sent to the GPU for rendering. The simulation is
run on a uniform grid of size1282×512. Results are displayed
on a screen resolution of1600 × 1200.

One million particles are traced through the flow using an
embedded Runge-Kutta integration scheme of 3rd order. Em-
bedded schemes can be used to control numerical accuracy by
computing and adaptively selecting the appropriate integration
step size. In the experiment, however, the scheme is not used
for this purpose. Instead, all particles move with the same step
size and the error estimate that is computed by the integrator
is visualized. The user can change this step size until for every
particle the integration error is below a selected threshold. This
allows one to trade between simulation speed and accuracy
while the movement of particles is still bound to the simulation
time step.

The experiment was run on a Pentium 4 3.0 GHz processor
with 512 kB second level cache and 1 GB dual channel DDR2
main memory. The PC is equipped with an ATI X800 XT
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graphics card. Particles are rendered as transparent points. The
local integration error is color coded, ranging from low (white)
to high (red) error (see Figure 1). The vector field data is stored
as 16 Bit floating point data, and it is organized into blocks that
fit into one cache line. Thus, for the advection of one particle
cache misses are reduced. Because particle positions change
in every frame, these positions can not be stored in server-
side (i.e. GPU) video memory. In every frame the entire set
of particle coordinates and associated color attributes has to
be transferred to the graphics processing unit.

On the target architecture the maximum number of at-
tributed points in client-side (CPU) memory that can be
rendered per second is 15 millions. Consequently, in our
experiment particles can be rendered at a frame rate of at
most 15 fps independent of the performance of the integrator.
The integrator itself updates 0.51 million positions per sec-
ond, and we are seeing compute power becoming the major
performance bottleneck. Overall, a frame rate of roughly 0.5
fps can be achieved. With the ability to do more integration
steps per time interval, i.e. by using parallel architectures,
SIMD optimization, lower order integration schemes or faster
memory, the bandwidth required will grow substantially.

In this paper, we propose a method to overcome both com-
putation and bandwidth limitations in particle tracing. Using
this method, the experiment runs at 47 fps. This is achieved
by leveraging functionality on recent graphics accelerators to
carry out particle advection and rendering. Updated particle
positions are saved in graphics memory, and they are then
processed on the GPU again to obtain images in the frame
buffer. Parallelism and memory bandwidth in the fragment
units is exploited to accelerate numerical integration andto
generate additional visualization geometry as shown in Figure
2. During particle tracing, bus transfer between the CPU and
the GPU can be almost entirely avoided. Only a few API calls
to execute the required GPU operations have to be issued.

Fig. 2. Particles can be rendered using different visualization options like
oriented splats or stream lines.

In contrast to topology or feature based techniques [3]–[5],
which reduce the information to be displayed by extracting
relevant flow structures, our method provides an interactive
means for visualizing 3D flow dynamics. It allows the user
to guide the visualization process at arbitrary resolution, and
it can be used to virtually explore high resolution fields in a
way similar to real-world experiments. In particular, since the
proposed particle approach does not require a preprocessing
step and enables direct visualization of flow dynamics as well
as derived flow quantities, the system is well suited to serve
as a back end for sources of unsteady flow.

The remainder of this paper is organized as follows. In
Chapter 2 we summarize previous work, which is related to
ours. We then describe particle integration schemes and we
discuss their realization on recent graphics cards. The use
of parallel fragment units for visibility sorting is subject of
Chapter 4. In Chapter 5 we introduce various visualization
options, and we show timing statistics for different scenarios.
Chapter 6 is dedicated to the reconstruction of visualization
geometry like stream lines and stream bands. We conclude the
paper with a discussion of techniques to visualize unsteady
flow and vector fields given on non-uniform grids.

A. Related Work

Over the last decade, particle tracing techniques for flow
visualization have been studied intensively. At the core of
these techniques, numerical integration schemes are employed
to compute accurate particle trajectories in steady or unsteady
vector fields. In the context of flow visualization, the anal-
ysis of such schemes with respect to accuracy, stability and
performance has been done [6]–[9].

To integrate the velocity along particle traces in discrete
meshes, techniques for particle location and vector field in-
terpolation are required. In non-uniform grids, point location
takes a significant fraction of one integration step. To over-
come this burden, the physical domain is often transformed
to a uniform computational domain, where point location is
less expensive [6], [8], [10]. Computational space particle
tracing, on the other hand, was shown to produce less accurate
results because in general local transformations can only be
approximated. To accelerate point location in physical space,
cache coherence and efficient data structures have been utilized
[11]. On-the-fly tetrahedral decomposition of curvilinearcells
has been described by Kenwright and Lane [12] to efficiently
predict the next cell that is entered by a particle. Then,
barycentric interpolation yields the velocity field insidethe
elements. Since the trajectory of particles through tetrahedral
cells can be computed exactly, for this kind of primitives
approximate numerical integration can be entirely avoided
[13], [14].

Regardless the underlying grid structure, adaptive step size
control in numerical integration can significantly reduce the
number of numerical and memory access operations in particle
tracing. The local truncation error is most commonly used to
steer the refinement of particle traces [15], but also curvature
based criteria [7], [12] and refinement schemes based on
velocity magnitude [6], [16] have been considered.

Acceleration techniques for particle tracing also include
implementations on parallel architectures [17], [18] as well as
out-of-core strategies based on application controlled demand
paging. In the work by Bruckschen et al. [19], at run-time
pre-computed particle traces are loaded from disk, whereas
Cox et al. and Ueng et al. [16], [20] discussed data partition
and caching strategies for particle tracing.

To render particle trajectories, positional and directional
information needs to be mapped to graphical icons. Particles
can be rendered directly as point primitives or they can be
connected by line segments. In either case, color provides a
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means for encoding flow properties like divergence, velocity
magnitude or vorticity. Shaded primitives, transparency,depth
cues and halos greatly enhance the perception of particle traces
in 3D [21]–[23]. Oriented texture splats [24] have been utilized
for image based rendering of graphical primitives, and they
significantly reduce the load in the vertex unit of the graphics
system. More complex visualization objects include stream
ribbons, stream tubes or time surfaces [11], [16], [25]. Geo-
metric properties of these objects can be modified according
to the intrinsic flow properties to reveal local structures in the
flow.

While particle based techniques can effectively visualize
local features in the flow, global imaging techniques for
visualizing 3D fields [26]–[29] can successfully illustrate the
global behavior of such fields. However, it is difficult when
using such methods to effectively control particle densityin a
way that depicts both the direction structure of the flowand
the flow magnitude. Usually these techniques do not allow for
flow visualization at interactive rates.

LIC-methods [30], [31], on the other hand, allow for in-
teractive visual analysis of high resolution 2D vector fields.
However, such techniques generally fail if utilized to globally
visualize 3D flow. This is because of the tremendous informa-
tion density they produce and their inherent occlusion effects.
Only by selecting regions in the renderable representationcan
structures in 3D be emphasized [32]–[35]. These techniques,
however, do not allow for selective and integral visualization
of characteristic particle traces in general.

II. PARTICLE TRACING

PARTICLE tracing is a technique for computing the tra-
jectory of massless particles in a flow field over time. In

classical particle tracing the ordinary differential equation

∂x̃

∂t
= ṽ(x̃(t), t) (1)

equipped with appropriate initial conditioñx(0) = x0 is
solved numerically. Here,̃x(t) is the time-varying particle
position, ∂x̃

∂t
is the tangent to the particle trajectory, andṽ is

an approximation to the real vector fieldv. The exact particle
trace is given by the solution of

∂x

∂t
= v(x(t), t) (2)

with the same initial condition. Asv is sampled on a discrete
lattice, interpolation must be performed to reconstruct particle
velocities along their characteristic lines. The higher the ap-
proximation order of the integration scheme, the more often
the interpolation function has to be evaluated. Consequently,
the number of both numerical operations and memory access
operations increases in a higher order setting. Additionally,
in a single integration step the memory footprint is enlarged,
letting higher order schemes become less efficient in terms of
memory cache coherence.

Besides fixed step size integration schemes like classical
Euler or Runge-Kutta, embedded schemes are known to yield
superior results both with respect to accuracy and speed. In
embedded schemes, the local integration error is used to refine

or to enlarge the integration step size. In particular, RK3(2)
computes a third and a second order solution and estimates a
fourth order accurate local truncation error from them. Using
the truncation error, the optimal step size can be computed.If
it is larger than the current step size, the third order solution
is taken and the next integration step will use the larger step
size. If it is smaller, a third order solution using the reduced
step size is recomputed.

For particle visualization, where one is interested in contin-
uous animation of particle sets within constant time intervals,
adaptive schemes are only of limited relevance. Consecutive
particle positions have to be displayed at equally spaced
simulation time steps. Therefore, adaptive schemes require
varying numbers of operations to be carried out per particle. In
a single animation frame, some particles perform many small
integration steps while others have to repeat the integration
step with reduced step size. As a consequence, the number
of particles that can be processed within one animation frame
varies non-deterministically.

In this work, we use an embedded RK3(2) scheme for
numerical particle integration, and we use the local integra-
tion error as an additional visual cue. The proposed particle
system provides a visualization mode that enables the user
to visualize the local per particle truncation error using the
third and second order solution to the current particle position,
respectively. By reducing the global integration time stepthis
error can be reduced accordingly.

III. GPU PARTICLE TRACING

OUR GPU particle system for interactive exploration of
3D flow fields exploits functionality on recent graphics

cards. On such cards, it is now possible to access texture maps
in the vertex units and to allocate memory objects that can
be interpreted as texture maps and vertex arrays alternatively.
Figure 3 is a pictorial representation of the improvements that
have recently been made to the rendering pipeline. In combi-
nation with programmable fragment shaders, this functionality
enables construction, manipulation and rendering of geometric
data on the GPU. By using this functionality, particle tracing
can be entirely performed on the GPU without any read back
to application memory.

Fig. 3. On recent GPUs, textures can be accessed in the vertexunits, and
rendering can be directed into textures and vertex arrays.

Our method computes intermediate results on the GPU,
saves these results in graphics memory, and uses them again
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as input to the geometry units to render images in the frame
buffer. This process requires application control over the
allocation and use of graphics memory; intermediate results
are “drawn” into invisible buffers, and these buffers are
subsequently used to present vertex data or textures to the
GPU.

Initial particle positions are stored in the RGB color compo-
nents of a floating point texture of sizeM×N . These positions
are distributed regularly or randomly in the unit cube. The
visual effect of different distributions is demonstrated in Figure
4. In the alpha component, each particle carries a random
floating point value that is uniformly distributed in the range of
(0.75, 1.25). This value is multiplied by a user defined global
lifetime to give each particle an individual lifetime. By letting
particles die – and thus reincarnate – after different numbers of
time steps, particle distributions very similar to those generated
in real-world experiments can be simulated.

Fig. 4. Random and regular distribution of starting positions within the
particle probe.

The user specifies the number of particles continuously
released into the flow. Once this number is changed, an
appropriately sized initial particle texture is generatedon the
CPU and it is uploaded to the GPU. Particle integration now
consists of two steps: incarnation and advection.

A. Particle Incarnation

The user can interactively position and resize a 3D probe
that injects particles into the flow. Both the position and the
size of this probe are specified with respect to the local object
coordinate system in which the flow field is initially defined.
These parameters are encoded in a transformation matrixA.

Fig. 5. A fragment stream is generated by rendering a quad that covers as
many pixels as there should be items in the stream.

In every simulation pass, a stream ofM × N fragments
corresponding to a contiguous block of pixels in screen space
is generated. Figure 5 illustrates this procedure. The fragment
output is rendered to an equally sized texture render target,
which becomes the particle container in the next pass. The
initial particle container is bound to the first texture unit

thus enabling access to initial particle attributes in a fragment
shader. In the first simulation pass, the shader performs the
following operations:

• Transformation: Unit particle coordinates are read from
the texture unit and transformed with respect toA. The
matrix is issued by the application program as a uniform
shader parameter.

• Birth: Each particle is born by initializing its lifetime
as described. The maximum lifetime is presented to the
shader via a uniform parameter.

• Update: Updated particle coordinates and the initial life-
time are output to the RGB and alpha components of the
render target, respectively.

The 2D render target now contains for every particle both
its current local object space coordinate and lifetime. In the
advection step these values are changed subsequently.

B. Particle Advection

Particle advection is performed in the fragment units. The
above procedure is employed to generateM × N fragments,
which read current particle positions, advect these positions
and store the results in an additional texture. Besides the initial
particle container, the current container and a 3D texture stor-
ing the velocity field are bound to a second and third texture
unit. Vector valued information is stored in the RGB color
components of the 3D texture. Since tri-linear interpolation
in 32 Bit floating point textures is not supported on current
GPUs, vector components are stored as 16 Bit floating point
values internally represented in the OpenEXR formt (6 bits
exponent and 9 bits mantissa). In the fragment shader, the
following operations are carried out:

• Texture Access: Current particle positions and lifetimes
are read from the second texture unit.

• Death Test: The shader checks for positions outside
the domain or lifetimes equal to zero. If one of these
conditions is true, the particle is reincarnated. Otherwise,
it is advected through the flow.

– Advection: Particles are advected using the RK3(2)
integration scheme, which involves multiple fetches
into the third texture unit. In addition, each particles’
lifetime is decremented by one. Updated positions
are written to a 2D texture render target, which
becomes the particle container in the next pass.

– Reincarnation: The same operations as described
above for particle incarnation are carried out.

Our proposed particle engine for flow visualization on
the GPU is implemented in Cg [36]. Cg allows one to use
high level constructs and to abstract from the underlying
hardware architecture. In the following, a Cg code fragment
implementing particle advection is shown.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,VOL. 11, NO. 6, 11. 2005 5

float4 advection(app2Vertex IN) : COLOR0 {
float4 pos = tex2D(sPositions,IN.Coords);
float3 field = tex3D(sVolume,pos.xyz).xyz;

// pos.w stores livetime
pos += float4(field,-1);

if (pos.w <= 0 || outOfGrid(pos.xyz))
pos = tex2D(sStartPositions,IN.Coords);

return pos;
}

Upon finishing the advection step, the current particle
container can directly be used to render particle primitives
at respective positions in the flow domain. Some rendering
options, however, require additional particle attributeslike the
local integration error, velocity or derived flow quantities. In
the fragment shader used to advect particles, these quantities
are directly computed. This procedure will be discussed in
detail later in this paper. Scalar values are stored in the alpha
component of the particle container, whereas vector valued
information is written to an additional render target usingthe
render target extension [37]. This extension enables the
fragment shader to simultaneously write to multiple texture
render targets, which can be accessed in upcoming rendering
passes.

Whenever the user changes the number of particles, incar-
nation is repeated using the initial particle container. Changes
to the global lifetime or to the position and size of the probe
do not affect the flow of operations.

TABLE I

INTEGRATOR PERFORMANCE IN MILLION PARTICLES PER SECOND ON

VARYING TEXTURE SIZES FOR32 BIT FLOATING POINT (8 BIT UNSIGNED

CHAR) DATA ON ATI X800 XT.

integrator 32Bit Euler RK2 RK3 RK3(2)
(integrator 8Bit)

CPU all sizes 2.4 (2.4) 1.1 (1.1 ) 0.73 (0.73) 0.51 (0.51)
GPU 2562 41 (82) 37 (82) 31 (82) 31 (78)
GPU 5122 55 (174) 48 (169) 39 (160) 39 (139)

GPU 10242 59 (209) 51 (201) 41 (189) 41 (160)

In table I we give timings for the advection of particles
using different integration schemes. These timings include
all operations that are carried out until updated positionsare
available in the current particle container. Because on theATI
X800, there is no hardware support for tri-linear interpolation
in 32 Bit floating point textures, we give timings for tri-
linear 32 Bit floating point interpolation hand–coded in the
fragment shader compared to 8 Bit hardware supported tri-
linear interpolation. Internally, 32 Bit floating point texture
values are represented by 1, 8, and 23 bits for sign, exponent
and mantissa, respectively. On the ATI, after reading these
values from a texture, they are converted to an ATI specific
24 Bit floating point format used by the shader program for
internal computations. This restriction will be dropped on
upcoming ATI cards, and it is nonexistent on currentnVIDIA
hardware.

Our timings clearly show the advantages of GPUs for
particle integration. In particular, the efficient realization of
the memory subsystem including memory bandwidth, caches

and parallelization is demonstrated. Even though the number
of texture access operations increases from one (Euler) to
four (RK3(2)), we do not see a corresponding decrease in
performance. Compared to its CPU counterpart, the RK3(2)
integrator is about 110 times faster.

C. Particle Rendering

In the particle advection step, new particle positions are
computed in the fragment shader and written as RGB colors
into the current render target (see Figure 6). To render these
positions, different possibilities are available on recent GPUs –
OpenGL SuperBuffers and vertex texture fetches using Shader
3.0 or GLSL.

• OpenGL SuperBuffers
To provide the application program with better control of
the GPUs local video memory, the OpenGL SuperBuffer
extension [38] has been introduced. It defines amemory
objectthat holds a piece of raw video memory. In this pa-
per, we use ATI’s UberBuffer which is a preliminary im-
plementation of the OpenGL SuperBuffer. SuperBuffers
are currently under consideration for standardization in
OpenGL.
The memory object interface allows the application to
allocate graphics memory directly, and to specify how this
memory is to be used. This information, in turn, is used
by the driver to allocate memory in a format suitable for
the requested uses. When the allocated memory is bound
to anattachment point(a render target, texture, a vertex
or color array), no copying takes place. The net effect for
the application program therefore is a separation of raw
GPU memory from OpenGLs semantic meaning of the
data. In our current implementation, a memory object is
subsequently bound as the current texture render target
and as a vertex array used to draw particle primitives.

• Vertex Texture Fetch
On traditional graphics architectures, textures could only
be accessed in a fragment shader program. The Shader
3.0 and the GLSL specification, finally, also enable
texture access in the vertex units hence providing an
effective means for displacing geometry on the GPU.
This functionality is supported on recentnVIDIA graphics
hardware.
To render displaced particles, we render a static vertex
array stored in GPU memory. In a vertex shader program
the particle position is fetched from the current container,
and this position then replaces the position initially stored
in the vertex array.

For particle advection, ATIs memory objects and vertex
texture fetches onnVIDIA cards under Shader 3.0 or GLSL
offer similar functionality. The key concept is to let the
fragment units generate textures and to use these textures
as displacement maps for geometric primitives in subsequent
rendering passes. Although the render module of our particle
engine can render particles through either of both interfaces, all
timings in this paper are given with respect to the implementa-
tion using memory objects on the ATI X800 XT graphics card.
The reason for this is that currently the ATI card can render
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Fig. 6. Particle positions are randomly stored in a 2D texture map, which is
then interpreted as a vertex array. Because vertices are rendered in the order
of their occurrence in the array, they are displayed in wrongvisibility order.
The visualization of particles in correct visibility orderis shown in Figure 11.

displaced point primitives faster than thenVIDIA 6800 Ultra
using Shader 3.0. The comparison was done using a 2D texture
of size1k × 1k, which was initialized with random positions
in normalized device coordinates. Points were rendered on a
1k × 1k view port, and colors were encoded in an additional
RGB texture of equal size.

Fig. 7. The data set shows a time step of a 3D time dependent simulation of
a turbulent flow around a square block [39]. The simulation was carried out
on a rectilinear grid. Particle tracing is performed on thisgrid, and particle
positions are rendered as points.

Once particle positions have been fetched from the current
container, the vertex shader transforms these positions accord-
ing to the viewing parameters. Particles can then be rendered
using different modes.

D. Points

Rendering of point primitives does not require any special
fragment shader computations, and in particular no texture
fetch has to be performed. By using this mode, millions of
particles can be displayed at interactive rates. In Figure 7
we show a visualization of the turbulent flow around a block
using point primitives. In the remainder of this paper, this
flow field will be used to compare the visual effects that are
generated by different visualization modes. Although every
particle is displayed by a single pixel in screen space, the
massive amount of primitives enables the simulation of real-
world experiments where small but numerous particles like
water vapor or gas droplets are released into the flow. On our

current target architecture, the maximum number of particles
stored in local video memory that can be sent through the
vertex unit and rendered as colored point primitives is 250
millions per second.

E. Oriented Point Sprites

Particularly in a still image, point primitives can not easily
reveal flow direction. Even in an animation it is interesting
to observe that oriented iconic particle representations like
arrows, vector glyphs or ellipsoids provide a much more
effective means for showing flow direction. Such geometric
representations, however, put the burden to the visualization
almost entirely on the geometry subsystem hence limiting the
number of particles that can be rendered.

Point sprites, on the other hand, give particles a similar
visual appearance to geometric icons, but sprite primitives, in
contrast, require far less geometry processing. Conceptually, a
point sprite is a textured quadrilateral centered at the points’
screen space projection. Only a single vertex is transformed
in the vertex units and the rasterizer generates a contiguous
block of n by n fragments around this projection. 2D texture
coordinates ranging from (0,0) to (1,1) are automatically
generated and used to map a given texture image. The upper
image of Figure 9 shows particles that are rendered as point
sprites. The image of a shaded and lit sphere is used to create
the impression of a spatially extended primitive.

While point sprites can effectively render rotationally sym-
metric particle primitives, they produce incorrect results if used
to display arbitrarily shaped geometry. This is mainly due to
the loss of degrees of freedom if object transformations are
performed after the projection into screen space. To overcome
this drawback we employ a texture atlas similar to the one
proposed by Guthe et al. [24], but we use a parametrization
that is more suitable for a GPU implementation.

The texture atlas contains a 2D array of different views
of the 3D particle primitive. Views are parameterized with
respect to scaling factor and rotation angle around the y-axis.
The parameter domain ranges from 0 to 1 and from0 to π for
scaling factor and rotation angle, respectively (see Figure 8).
Here, we assume the particle primitive is aligned with the x-
axis, the local direction of the vector field. To get all rotations
from 0 to 2π we use the texture wrap modemirror.

For rendering point sprites, a fragment shader transforms
the uniform texture coordinates (u,v), which are generated
for every fragment covered by this sprite, in such a way as
to map into the appropriate atlas sub-image. Therefore the
magnitude of the local velocity vector is used as u-offset and
the arc sine of the z-component of the normalized vector is
used as v-offset. To rotate the selected sub-image around the
z-axis we build a rotation matrix(x,−y)T , (y, x)T , where
x and y are the first components of the normalized velocity
vector. Because all four parameters - texture coordinate offsets
and velocity components - are constant for each sprite, these
values can be computed in the vertex shader and passed to
the fragment shader as a parameter. Because this approach
requires the vertex shader to access the flow field, it can only
be realized using Shader 3.0 or GLSL. Another alternative
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Fig. 8. Low resolution version of the texture atlas, the scale of the model
changes from bottom to the top while from left to right different rotations are
applied.

is to create an additional particle container, into which these
parameters are written by a fragment shader. This container
then can be accessed by all fragments that are covered by a
point sprite.

By using this method, the virtual geometry can be rotated
around two axes and scaled correctly before the rotation takes
place. Hence, primitives can point into any spatial direction
(see Figure 9). The overhead that is introduced by additional
fragment computations is negligible. Nevertheless the direction
data to be processed in the vertex shader causes the perfor-
mance to drop down to about 50% if only one pixel sized
points are rendered. In practical applications however, where
extended points are used the application becomes fragment
bound and the orientation has almost no impact on the overall
performance.

Fig. 9. From top to bottom, flow visualization using simple textured sprites,
oriented ellipsoidal sprites and oriented arrow sprites are shown.

IV. SORTING

A S many examples have shown, the rendering of particles
using transparent point sprites can enhance the visual

perception of spatial relationships and it allows for the simul-
taneous visualization of exterior and interior structures(see
Figure 10).

Fig. 10. Velocity magnitude is color coded ranging from opaque red (low)
to transparent white (high). First, particles are renderedin correct visibility
order. Next, particles are rendered in the order of their incarnation.

The over operator is the most common way to blend trans-
parent objects. It takes into account the color attenuationdue
to accumulated opacity along the viewing direction. Because
the over operator is not commutative, transparent objects need
to be depth sorted before they can be rendered in back-to-
front visibility order. To avoid read back of data to the CPU,
we have integrated a GPU sorting network into our particle
engine.

The sorting routine accounts for the architecture of todays
graphics processors. Recent GPUs can be thought of as SIMD
computers in which a number of processing units simultane-
ously execute the same instruction on their own data. Consid-
erable effort has been spent on the design of sorting algorithms
amenable to the data parallel nature of such architectures.
Bitonic merge sort [40] is one of these algorithms. Compared
to other sorting algorithms like Quicksort or Heapsort, it is
well suited for such architectures because its sequence of
operations is fixed and not dependent on the data to be sorted.

Fig. 11. By sorting texture values according to their distance to the viewer,
particles can be rendered in correct visibility order

Purcell et al. [41] and Kipfer and Westermann [42] propose
GPU implementations of the bitonic merge sort. The latter
approach minimizes both the number of instructions and
texture operations to be executed. On the GPU, a texture is
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built that contains for every particle a floating point sorting
key – the distance to the viewer in the current scenario –
as well as an integer floating point identifier – a reference
into the appropriate position in the current particle container.
Both values are stored in the R and G color components,
respectively. Because the graphics pipeline as implemented on
recent cards is highly optimized for the processing of RGBA
samples, two consecutive entries in each row – including
sorting key and identifier – are packed into one single RGBA
texture sample. Thus, coherence between adjacent entries with
respect to memory access and arithmetic operations can be
exploited.

Table II compares the GPU bitonic merge sort with an
optimized data-dependent sorting routine of the C++ STL.
Both algorithms were run on key/index pairs of equal bit width
including the final reorder pass to exchange particle positions
according to index permutations. As can be seen, the GPU
solution has the potential to outperform the CPU solution.
Sorting can now be relocated freely between the processor
and the graphics card without performance penalty.

TABLE II

SORTING PERFORMANCE

sorter #keys megakeys/sec

Bitonic merge sort 256
2 7.2

ATI X800 XT 512
2 6.4

1024
2 5.1

std::sort 256
2 5.4

P4 3.0 GHz 512
2 5.4

1024
2 5.0

Because sorting becomes the major performance bottleneck
in the particle engine, alternative strategies have to be con-
sidered. One alternative is to lay out a full sort of particles
over multiple rendering passes. Therefore a sorting routine
is required that yields “smoother” intermediate results than
the bitonic merge sort. The odd–even merge sort is such an
algorithm, and it has been shown to be well suited for this
purpose [43]. It has the same number of stages and therefore
the same complexity as the bitonic merge sort, and we can
utilize similar coding optimizations as for the bitonic merge
sort. In particular for the rendering of transparent point sprites,
the odd–even merge sort gives visually pleasant results even
in case the particles set is incompletely sorted. It allows us to
spend as much time of one frame as we want for sorting, thus
keeping the overall simulation time step within a fixed time
limit.

In this scenario, another advantage of GPU sorting becomes
apparent. The layout of sorting steps over multiple frames on
the CPU still requires the entire particle set to be down- and
uploaded from and to the GPU. Due to bandwidth limitations
no more than15/2 fps (see the experiment above) can be
achieved. Using GPU sorting, on the other hand, we can
exactly determine the number of sorting steps per simulation
pass until sorting becomes the performance bottleneck.

In our particle system, sorting is integrated as an additional
rendering pass subsequent to the advection step. A particular
shader performs the sort and reorganizes particle positions and
attributes in the current container accordingly (see Figure 11).

None of the other stages in the particle system are affected by
the sort.

V. I NTERACTIVELY V ISUALIZING DERIVED FLOW

ATTRIBUTES

FOR flow analysis, additional flow properties are usually
computed and visually encoded. In general, scalar feature

volumes containing derived quantities like velocity magni-
tude, divergence, vorticity magnitude, or higher order flow
characteristics are built in a pre-process. They can eitherbe
visualized directly or they can provide additional sourcesfor
particle attributes in particle based approaches.

Although this kind of pre-processing is advantageous in
that generated data sets can be sampled very efficiently, e.g.
by means of hardware accelerated tri-linear interpolation, its
drawbacks are manifold. First, this approach puts the burden
of the visualization process almost entirely on the pre-process
prohibiting the use of such techniques in interactive environ-
ments like computational steering or in-vivo imaging. Second,
due to the enormous memory overhead imposed by additional
feature volumes, out-of-core techniques are required for the vi-
sualization of time-resolved sequences. Due to limited memory
on recent GPUs, the use of additional feature volumes besides
the flow field is impossible for reasonably sized data sets.

As the proposed particle engine is supposed to provide
an interactive means for the visual analysis of steady or
even time-resolved flow on the GPU, any pre-process has to
be avoided. Thus, computation of additional flow properties
needs to be integrated into the particle engine. Once particle
advection has been carried out, in an additional rendering pass
a fragment shader computes for each particle the required
attribute. The following attributes can be derived:

• Velocity: The sampled vector fieldV .
• Divergence: By ∇ · V we compute the extent to which

the vector field flow behaves like a source or a sink.
• Enstrophy: The circulation per unit area at a point in the

flow field is computed as|∇ × V |.
• λ2: It shows the second eigenvalue of the matrixS2 +

Ω2, whereS andΩ is the symmetric and antisymmetric
part of the velocity gradient matrix, respectively [44]. A
value less than zero indicates a vortex.

Scalar attributes are encoded as colors and they are used
as additional rendering attributes. To showλ2 values, the
user selects an iso-value – usually equal to zero – and the
opacity of each particle primitive is set such as to highlight
the correspondingλ2 iso-surface. The closer theλ2 value at
the current particle position is to the selected threshold,the
more opaque the rendered particle primitives are. A linear
modulation function determines the fall off of opacity fromthe
selected threshold. As can be seen in Figure 12, this approach
provides an effective means for generating a surface like
appearance even though particle tracing is used. Even more
importantly, the particle-based approach does not requirethe
computation of an additional scalar feature volume containing
λ2 values.

For computing point-wise flow characteristics two different
techniques are currently supported: nearest neighbor fetch and
tri-linear interpolation.
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Fig. 12. Vortex structures as seen from different views are extracted on a per
particle basis on the GPU.λ2 values are computed using the fragment shader
from Klein et al. [45], and color is used to indicate values less than (red)
and greater than (green) zero. The data set of resolution2562 × 50 shows a
simulated flow transition in a boundary layer. For 1/4 million roughly 40 fps.

The nearest neighbor fetch computes the flow quantity only
at the grid point closest to the particle position and assigns
this value to the particle. Partial derivatives are approximated
by central differences, which are computed from adjacent
samples in the 3D flow texture. For tri-linear interpolationthis
procedure is performed eight times – once for each adjacent
grid point. Finally, the particle attribute is computed by tri-
linear interpolation between these values.

The most time consumingλ2 shader computes the Jacobian
of the vector field and solves a linear system of equations to
compute the eigenvalues of the Jacobian. If particle primitives
are rendered as points using nearest neighbor fetch, a loss in
performance of about 40% is introduced. Tri-linear interpola-
tion slows down the performance about a factor of two. On
the other hand, if particles are rendered as sprites the relative
loss in performance is quickly becoming negligible. This is
due to the fact that theλ2 value only has to be computed
once for every sprite regardless the number of fragments that
are generated.

VI. V ISUALIZATION GEOMETRY

T O provide additional visual cues for perceiving com-
plex 3D flow structures, we have integrated stream line

construction and rendering into the particle engine. The vi-
sualization of stream ribbons has been built on top of this
construction process. It is worth noting that we do not expect
stream line construction on the GPU to perform faster than
optimized software solutions. If numerical integration schemes
with adaptive step size control are employed, significantly
less samples need to be reconstructed. Such data dependent
schemes, however, can not be implemented efficiently on data
parallel vertex or fragment processors. As a matter of fact,our
system supports stream line construction using a fixed step
RK3(2) scheme, but it allows the user to visualize the local
truncation error and to reduce the step size accordingly. Atthe
same time the number of integration steps might be increased.

A. Stream Lines

For stream line construction, particle positions are initialized
such as to place particles close to each other in adjacent texture
samples. In this way, during stream line integration texture
cache coherence can be exploited most efficiently. We use two

ping-pong buffers – 2D texture maps – that are subsequently
interpreted as render target and as container to be read from.
Throughout the construction process, the container holds the
current position of all particles initially released into the flow.
By the procedure described above, as many fragments as there
are stream lines are generated –L×L throughout the following
discussion. Both the current container and the 3D texture
storing the vector field data are bound to different texture units.
In a fragment program, the container is read to retrieve particle
positions at the current time step, and the velocity textureis
sampled multiple times to numerically integrate to the next
positions. Updated positions are rendered into the second ping-
pong buffer, which becomes the particle container in the next
pass.

To generate stream lines, not only have particle positions to
be computed but entire particle traces must be stored. These
traces are packed into a texture atlas, which has to be large
enough to holdL × L × T positions. Here,T is the number
of steps to be performed along the trajectories. If this number
exceeds the maximum texture size, multiples of these atlases
are required.

After the current particle container has been updated, its
content is copied into the atlas. Therefore, the atlas is specified
as render target, and the rendering output is directed into the
appropriate texture area. A simple fragment shader reads the
particle container and writes current positions into the atlas.
Ping-pong rendering and copying is performed as many times
as specified by the user via a maximum line length.

Once particle trajectories have been computed and stored,
respective texture samples are interpreted as control points.
These points are finally rendered as polylines. Using Shader
3.0 or GLSL, one single polyline consisting ofT control points
is built prior to stream line construction. To theith point
along the line, the texture atlas position of theith particle
position along the first stream line is assigned by means of 2D
texture coordinates. Now the polyline is renderedL×L times,
each time specifying a 2D texture coordinate offset such as to
reference stream lines consecutively. In a vertex shader, which
receives this offset as a shader constant, the atlas is sampled
and the texture value is interpreted as vertex position.

Using OpenGL memory objects, an indexed array con-
taining references into the texture atlas is built. The atlas
– interpreted as the coordinate array by OpenGL – is sent
through the GPU again, and the indexed array is rendered.
In this way, an additional data structure is required to store
coordinate indices, but the application program only has to
perform one call to change the semantic of the atlas from
texture to coordinate array.

In Figure 13, we show stream lines in the reference data
set. As can be seen, the particle system generates stream lines
of variable length. Because many traces will be terminated
before T steps have been carried out, respective fragments
become idle in upcoming passes. Fortunately, recent graphics
hardware allows one to conditionally exit a fragment shader
program thus enabling the corresponding fragment unit to
process subsequent items out of the fragment stream. This kind
of acceleration, however, only works effectively if contiguous
fragment groups are discarded. Due to the coherence between
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Fig. 13. 1K stream lines of length 1K can be reconstructed andrendered at
20 fps

stream lines released at adjacent positions in the probe texture,
likely this likely in the current applications.

B. Stream Ribbons

While stream lines illustrate the direction of flow, stream
ribbons also show rotation about the flow axis by twisting a
ribbon-shaped geometry [16]. Starting with a random normal
vector at the seed point of a particle trajectory, at subsequent
points the incremental rotation of this vector according tothe
rotation about the flow direction is computed as

θi+1 = θi ·
1

2
(rot(~v) × v′)

Here,rot(~v) = ∇ × v is the rotation of the vector field and
v′ is the normalized flow direction. The sum of all increment
angles up to a certain point on the trajectory is used to rotate
the normalized projection of the previous normal vector into
the plane orthogonal to the flow direction at this point. By
rendering points on the trajectory and end points of the normal
projection vectors in alternative order, a ribbon-shaped triangle
strip is formed.

On the GPU, we construct particle traces as described above,
and we use the alpha component of each texture element to
store the accumulated increment angle. All four components
– particle position and increment – are finally written into
the texture atlas. During ping-pong rendering, positions and
increments are updated.

To generate stream bands we proceed as follows. After
having computed the atlas containing positions and increment
angles, a second atlas is built that contains the other rim
of each stream band. A fragment shader reads from the
original atlas, rotates the initial normal vector according to
the accumulated increment angles and writes the end points of
the rotated vectors into the second atlas. To display the bands
using Shader 3.0 or GLSL, a pre-computed triangle strip is
renderedT times, each time taking the respective displacement
values from either atlas. Using OpenGL memory objects, a
texture twice as large as the atlas is generated, which contains
the respective control points in correct order. This texture is
interpreted as a vertex array, and it is rendered as a set of
triangle strips.

In Figure 14, stream ribbons as they occur in the reference
data set are displayed. Due to the extra work to be done for
computing accumulated increment angles, rotating projected

Fig. 14. 1K stream bands of length 1K can be reconstructed andrendered
at 14 fps

normal vectors as well as reading and writing the second
texture atlas, timings are of about a factor of 30% slower
compared to the construction and rendering of stream lines.To
shade the ribbons, a vertex normal is computed in the fragment
shader during the construction step. These normals are stored
in a separate texture, and they are sampled in the geometry
units at the time the triangle strip is rendered.

VII. C ONCLUSION AND FUTURE WORK

A S demonstrated in the key experiment, the proposed GPU
particle engine significantly outperforms CPU engines

for flow visualization. In a number of different examples
this statement could be verified. The ability to trace massive
particle sets at interactive rates in combination with alternative
visualization options to reveal local flow properties enables
virtual exploration of large fields in a way similar to real-
world experiments. The possibility to integrate numerically
and data intensive computations for flow analysis into the
rendering process distinguishes the GPU engine from previous
approaches.

Besides particle advection, the engine provides a variety of
visualization options to visually convey relevant structures in
3D steady flow fields. Even though we did not yet compare the
performance of these techniques to optimized CPU implemen-
tations, our experiments have shown interactive construction
and rendering of large scale visualization geometry in realis-
tically sized flow fields.

As the images in the color plate demonstrate, the particle
engine also provides an effective means for visualizing 2D
flows. By using massive particle sets in combination with
oriented sprites, LIC-like visualizations can be achievedat in-
teractive rates. This includes higher-order integration schemes
thus providing numerically accurate particle traces. In the
future, we plan to extend the engine for the visualization of
flow on triangular surfaces.

In addition to flow fields given on Cartesian grids, visual-
ization techniques need to be capable of dealing with non-
uniform or structured grids. For instance, the Navier-Stokes
simulation of turbulent flow, which is shown in Figures 4 to
14, was carried out on a rectilinear grid. Along two coordinate
axes the grid is refined towards the region right behind the
block. To visualize this data set on the GPU, we built two
textures that define the mapping from physical coordinates to
non-uniformly sized grid cells. The resolution of these textures
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is chosen with respect to the smallest cell size. Note that we
do not resample the grid itself, but we store the non-linear
1D mapping for each axis separately. The additional memory
requirement imposed by this approach is insignificant. On the
GPU, prior to accessing the vector field data, two additional
texture fetches have to be carried out to transform the local
particle position to the computational domain. In the current
scenario, the extra texture fetches slow down the performance
by a factor of two.

With regard to more general grid structures, we believe
that a similar performance gain as seen for uniform grids
can be achieved. This assumption is evidenced in the timing
statistics given in this paper. It has been shown, that for both
computation and memory bandwidth bound applications the
GPU outperforms CPU based particle integration schemes. As
integration in non-uniform grids requires additional numerical
and memory access operations, i.e. evaluation of adjacency
information, transformation of points and velocities, (barycen-
tric) interpolation, computation of Jacobians and inverseJa-
cobians, improved performance on current and upcoming
graphics cards can be expected.

A GPU data structure that accommodates particle tracing in
tetrahedral grids was presented by Weiler et al. [46]. Although
in a different setting, it was shown that essentially the same
data structures can be implemented on the GPU than on
the CPU. By encoding adjacency information in additional
texture maps and by clipping particle paths against element
faces, GPU particle tracing in tetrahedral grids should be
possible in a very similar way to a CPU implementation.
As barycentric interpolation in simplicial elements can be
performed efficiently on the GPU, local exact integration in
tetrahedral grids is possible as well [13].

In addition, the ability to perform conditional per-fragment
computations on the GPU has particular advantages for render-
ing non-uniform grid structures. This functionality allows one
to aboard fragment shader computations and to make available
the fragment processor for operations on the next fragment.
Adaptive algorithms like the stencil walk for point location in
P-space will greatly benefit from this functionality.

Multiblock grids, on the other hand, require new approaches
to leverage current GPU architectures most efficiently. Such
grids consist of multiple, potentially overlapping uniform
grids of varying size and resolution. Locating the block a
particle is passing through takes a significant amount of work
in traversing multiblock grids. Such tests could be realized
efficiently by using rendering functionality on current graphics
cards. By rendering the bounding boxes of each block, the
viewing distance of respective front and back faces as well as
a unique block id can be drawn to an intermediate texture. This
information, in turn, can be accessed by particles to determine
whether they are inside or outside the rendered block. To avoid
repeated executions of this process, as many blocks as possible
have to be processed in one pass. In particular, by rendering
all blocks, depth peeling could be utilized to discard those
blocks that have already been processed.
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Fig. 15. Particle-based visualization of 2D flow on a512 × 512 grid. The flow is induced by micro-biological structures, which are displayed in the
background image. From left to right, transparent elipsoidal sprites, enlarged transparent ellipsoidal sprites, transparent arrows and stream lines are shown.
In regions of low velocity, multiple sprites overlap and produce a more dense appearance. On a1K × 1K viewport and by advecting 250K particles using
a RK3(2) integration scheme in the leftmost image, the animation runs at 28 fps on the ATI X800 XT graphics card.

Fig. 16. On the left, the turbulent flow around a block is visualized using shaded lines. The data is given on a rectilinear grid. Construction and rendering
of 512 stream lines can be performed 35 times per second. On the right, the flow transition in a boundary layer is visualized. Red(green) depictsλ2 values
less(greater) than zero. Transparency is fading out with increasingλ2 magnitude. Using 250K particles, the particle probe can be positioned interactively at
30 fps.

Fig. 17. Hurricane Isabelle is visualized using different visualization options. From left to right, transparent point sprites, λ2 color coded points, stream
balls and stream ribbons are shown.


