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Abstract

In this paper, we present a multigrid framework for constructing implicit, yet interactive solvers for the govern-
ing equations of motion of deformable volumetric bodies. Wehave integrated linearized, corotational linearized
and non-linear Green strain into this framework. Based on a 3D finite element hierarchy, this approach enables
realistic simulation of objects exhibiting an elastic modulus with a dynamic range of several orders of magnitude.
Using the linearized strain measure, we can simulate 50 thousand tetrahedral elements with 20 fps on a single
processor CPU. By using corotational linearized and non-linear Green strain, we can still simulate five thousand
and two thousand elements, respectively, at the same rates.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Over the last decade, interactive, yet physics-based simula-
tion of deformable volumetric bodies has received increasing
attention in a number of applications. Especially in medical
applications there is an ongoing demand for ever realistic
simulations of such objects. Popular examples include plas-
tic and reconstructive surgery, breast augmentation or virtual
training simulators. In these scenarios, physical correctness
is often sacrificed for efficiency, resulting in approximatebe-
havioral simulations or in the restriction to non-realistic ma-
terial properties and small deformations.

The reason why interactive and physics-based simula-
tion of reasonably sized volumetric bodies is still difficult
to achieve is twofold: First, the most efficient techniques
known so far require ever smaller simulation time steps
with increasing material stiffness. For the simulation of real-
world volumetric bodies, which exhibit an elastic modulus
with a dynamic range of several orders of magnitude, these
techniques in general can not fulfill both the requirements on
frame rate and numerical stability. Second, even for simple
abstractions, calculations involved in stable techniquesare
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usually too expensive as to allow for real-time simulations
of such bodies.

In this work, we present a multigrid framework for con-
structing implicit and stable solvers for the governing equa-
tions of motion of deformable volumetric bodies. This
framework provides an interactive means for simulating the
dynamic behavior of an elastic solid under external forces,
and it is open to a variety of different formulations of strain
(see Figure 1). Independent of the formulation used, by tak-

Figure 1: Deformations of a tetrahedral model under the
same external forces are shown. From left to right, lin-
ear Cauchy strain, corotational linear Cauchy strain, and
non-linear Green strain is simulated. Because the Cauchy
strain is not invariant under rotations, it introduces artificial
forces. Very close results are obtained using the corotational
and the non-linear formulation of strain.
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ing advantage of a finite element hierarchy the proposed
solvers are significantly faster than previous solution meth-
ods. If the linear strain measure is used, about 50 thousand
tetrahedral elements can be simulated at 20 fps on a sin-
gle processor CPU. At the same rate, up to five thousand
elements can be deformed using the corotational multigrid
simulation of the linear Cauchy strain. Even the simula-
tion of non-linear Green strain can be performed interac-
tively for a few thousand elements. The latter alternative is
of particular interest in applications where internal stress be-
comes large and the corotational formulation of strain tends
to produce artificial forces, e.g. if immediate or abrupt forces
are applied. Due to the linear asymptotic complexity of the
multigrid solvers proposed, with increasing problem size an
ever increasing performance gain compared to previous ap-
proaches is achieved.

The implicit nature of the presented framework makes it
amenable to the simulation of heterogeneous volumes ex-
hibiting a wide range of stiffness characteristics. An example
is shown in Figure 2.

Figure 2: Both images show a tetrahedral horse model un-
der the influence of gravity. The model on the left is simu-
lated using an elastic modulus of5 ·1010N/m2 (aluminium)
for all elements. On the right, the abdomen of the horse was
soften using an elastic modulus of104N/m2 (organic mat-
ter), while all other parts of the model remain stiff.

This property makes the framework amenable to the de-
formation of real-world objects, in which an elastic modulus
with a dynamic range of several orders of magnitude is not
unusual to be found. These parameters considerably affect
the objects dynamic behavior, which makes them important
in a number of applications ranging from surgery simulation
and image registration to solid mechanics. Besides physical
realism, such parameters also provide a plausible means for
controlling the behavior of arbitrary bodies as they allow for
a flexible and realistic setting of deformation characteristics.

2. Related Work

To study the motion of a mechanical system caused by exter-
nal forces, physics-based simulation is needed. For a set of
connected rigid or flexible parts exhibiting material depen-
dent properties the equations of motion can be formulated
and solved to predict the dynamic behavior of such systems
[Bra01]. In computer graphics and medical applications, a

variety of interactive approaches for simulating such sys-
tems have been derived. From a large scale perspective, these
techniques can be classified according to the underlying ob-
ject discretization, the object’s intrinsic deformation behav-
ior, i.e. strain measure, and the method employed to integrate
the equations of motion over time (see [GM97, NMK∗05]
for thorough overviews of the state of the art in this field).

In this work, we employ finite element methods [Bat02]
to derive numerical solvers for the governing equations of
motion of deformable volumetric bodies. Based on a dis-
cretization of the body into a set of elements, e.g. linear
tetrahedral elements, boundary elements [JP99] or finite vol-
umes [TBHF03], the solution of the equations to be solved
on the domain is then characterized by parameters of these
elements.

Implicit solution methods require the assembling of
all element equations into a large system of algebraic
equations, which can then be solved using matrix pre-
inversion [BNC96] or the conjugate gradient method
[MDM ∗02, EKS03, HS04, MG04]. An acceleration method
was proposed in [CDA99], where a precomputed linear elas-
tic model is interpolated at run-time. Besides the use of im-
plicit methods in finite element simulations, they have also
been employed in finite difference and mass-spring models
[TPBF87, LTW95, BW98, DSB99] to enable stable simula-
tions even for large time steps.

While the mentioned approaches consider the linear strain
measure, i.e. the Cauchy strain, in [MG04, EKS03] a corota-
tional formulation of the linear strain was used, which elim-
inates artifacts typically introduced by the Cauchy strain.
In this method, the rotational part of the deformation is ex-
tracted for each finite element and the forces are computed
with respect to the initial reference frame. In this way, sta-
ble and fast simulation results can be obtained. In contrastto
an earlier approach, where the rotational part was extracted
per vertex [MDM∗02], the global stiffness matrix has to be
reassembled at every time step.

Explicit finite element methods avoid the construc-
tion and solution of a large system of equations. There-
fore, the non-linear Green strain can be integrated much
more efficiently into these methods. Interactive simula-
tion techniques using this measure have been presented
in [ZC99, WDGT01, PDA01, DDBC01, ML03]. However,
methods based on explicit time integration are limited due
to the Courant condition, which significantly restricts the
largest possible time step for very stiff materials.

To accelerate finite element methods, multiresolution
techniques based on adaptive refinements have been pro-
posed [CGC∗02, DDBC01, GKS02]. An explicit multigrid
scheme for the simulation of surface deformations was pre-
sented in [WT04]. To the best of our knowledge, an implicit
yet interactive multigrid solver for volumetric bodies hasnot
yet been developed.
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3. Elasticity Theory

The motion of a deforming volumetric object can be simu-
lated by a displacement field in an elastic solid. Given such
a solid in the reference configurationx ∈ Ω, the deformed
solid is modeled using a displacement functionu(x),u :
R

3
→ R

3. This function describes the displacement vec-
tor at every point∈ Ω, yielding the deformed configuration
x+u(x).

3.1. Lagrangian Equation of Motion

Driven by external forces, the dynamic behavior of the de-
formed solid is governed by the Lagrangian equation of mo-
tion

Mü+Cu̇+K(u) = f (1)

whereM, C, andK are respectively known as the system’s
mass, damping, and stiffness matrix.u consists of the lin-
earized displacement vectors of all vertices andf is the lin-
earized force vectors applied to these vertices.

By discretization ofu,u̇ andü with respect to time, the dif-
ferential equation can be transformed into a set of difference
equations. To avoid artificial damping typical to implicit Eu-
ler integration, a second order accurate Newmark scheme is
used for time integration:

u̇t+dt = u̇t +
(

0.5üt +0.5üt+dt
)

dt

ut+dt = ut + u̇t dt+
(

0.25üt +0.25u̇t+dt
)

dt2

By discretizingu as well as the partial derivatives ofu with
respect to time, and by replacing ˙ut+dt andüt+dt in equation
(1), the system of algebraic equationsK̃(ut+dt) = f̃ t+dt is
derived.

3.2. Finite Element Method

If a finite element method is used to model the system, sys-
tem matrices are built by assembling all element matrices.
Since each element in the finite element discretization only
has a very small number of neighbors, this system is very
sparse. We are using tetrahedral elements with linear nodal
basis functions [Bat02]. Displacements are expanded in a ba-
sis of shape functionsΦ as

u(x) = Φ(x)ue, (2)

whereue = (uT
1 , . . . ,uT

4 )T contains the single node displace-
ments. The matricesM andC are derived from simple mass
lumping and Rayleigh damping.

The stiffness matrixK accounts for the strain energy as-
sociated with the displacement field, and it is thus depen-
dent on the elastic energy stored in the solid and on the work
done by body forces and tractions applied through the dis-
placement fieldu. The Green strain tensorE describes the

non-linear relation between deformation and displacement:

Ei j =
1
2

(

∂ui

∂x j
+

∂u j

∂xi

)

+
1
2

3

∑
k=1

∂ui

∂xk

∂u j

∂xk
(3)

In an isotropic and fully elastic body, stress (S) and strain
tensors are coupled through Hooke’s law (linear material
law)

S = λ

(

3

∑
i=1

Eii

)

· I33+2µE , (4)

with the Lamé coefficientsλ andµ.

Given the nodal basis functions as well as per-node strain
and stress, the potential energy

V =
1
2

Z

Ω
∑
i, j

Ei jSi j dx

of every element can be computed. For a solid element to
be in equilibrium, the first variation ofV with respect to
the per-node displacements has to vanish. The resulting sin-
gle element equations are finally assembled into a system of
non-linear equations.

3.3. Corotational Linear Strain

A common simplification is to neglect the quadratic terms
in the definition of the strain tensor (3), yielding the (lin-
earized) Cauchy strain tensor. Then, the assembling process
results in a system of linear equations, where the matrix
does not change during the simulation. While this approx-
imation is appropriate for small deformations, for large de-
formations it leads to non-realistic displacements. Further-
more, as the Cauchy tensor is not invariant under rotations,
incorrect forces are very likely to occur in the linear setting
(see Figure 1 and 6).

A rotational invariant formulation of the Cauchy strain
tensor is obtained using the so-called corotational strain
of linear elasticity [MG04]. In this formulation finite el-
ements are first rotated into their initial configuration be-
fore the strain is computed. In this way, although strain is
still approximated linearly, artificial forces as they are com-
puted using the Cauchy strain are significantly reduced. Ro-
tations are calculated per element using a polar decomposi-
tion of the deformation gradient∇(x+u(x)) as proposed in
[EKS03, HS04]. Once the rotationOe of all finite elements
are calculated, the element stiffness matrixKe is replaced by
OeKe(Oe)T , and the global stiffness matrix is reassembled.
A solution to equation (1) is then found by solving a system
of linear equations with the updated system matrixK.

In the following we present a multigrid framework that
significantly speeds up the simulation of all three different
strain measures. In particular we show, that the solution of
the system of linear equations with fixed and changing sys-
tem matrix as in the linear and corotational setting, as well
as the solution of a system of non-linear equations as in the
non-linear setting take advantage of such a framework.
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4. Multigrid Method

Multigrid methods provide a general means for construct-
ing scalable linear solvers. Such methods exploit the fact
that a problem can be solved on different scales of resolu-
tion. At the core of such approaches two observations are
of major importance. First, a basic property of many itera-
tive solvers for linear or non-linear systems of equations is
smoothing. Many relaxation methods like Gauss-Seidel re-
duce high frequencies in the error very quickly, while low
frequencies are damped rather slowly. Second, the remaining
low-frequency errors can be accurately and efficiently solved
for on a coarser grid. Both observations can be combined
into a multigrid strategy that enables improved convergence
at the same time avoiding any loss in accuracy, because only
the smoothed error is transferred to the coarser grid. Recur-
sive application of this basic idea to each consecutive system
on a hierarchy of grid levels leads to a multigrid V-cycle.

For the efficient simulation of an elastic deformable solid
we have developed a geometric multigrid method. In partic-
ular, this method includes geometry-specific relaxation, re-
striction, and interpolation operators. These operators form
the essential multigrid components, as they are used to trans-
fer quantities along the object hierarchy.

In this work, we define an appropriate finite element hi-
erarchy, which allows for an efficient implementation of
multigrid components. The result is a method that uniformly
damps all error frequencies with a computational cost that
depends only linearly on the problem size.

4.1. Unstructured Hierarchy

The geometric multigrid method requires a mesh hierarchy
that represents the deformable object at different levels of
resolution. On this hierarchy, appropriate transfer operators
to map quantities between different levels have to be de-
signed. Starting with a finite element mesh at the coars-
est resolution level, a common way to construct the hier-
archy in a top-down approach is to split each tetrahedron
as shown in Figure 3. The octahedron is subsequently split
into four tetrahedra, such that eight children are generated
overall. This approach results in a nested hierarchy, which
allows the transfer operators to be defined in a straight for-
ward way, but it requires the initial mesh to be fine enough
to achieve a proper representation of the object’s boundary
at ever finer resolution levels. Furthermore, subsequent sub-
divisions might lead to a fine mesh which contains ill-shaped
tetrahedra that are not suited for finite element simulation.

To avoid these drawbacks, we propose linear transfer op-
erators that do not require a nested hierarchy and can be inte-
grated efficiently into the multigrid scheme. These operators
establish relations in a multilevel hierarchy of unstructured
and unrelated meshes by means of barycentric interpolation
as illustrated in Figure 3.

Initially, we start with a coarse meshH and a fine mesh

Figure 3: Left: tetrahedral subdivision lends itself directly
to a nested hierarchy. Right: geometric relations between el-
ements in the non-nested hierarchy are illustrated (the 2D
case is shown for simplicity). Dotted and solid lines indicate
the coarse and the fine mesh respectively. Barycentric inter-
polation weights are highlighted by dotted red lines.

h. For every tetrahedron inH, all vertices ofh inside this
tetrahedron are determined. The barycentric coordinates of
these vertices with respect to the circumscribed element are
calculated, and they are used as interpolation weights to map
values from the coarse grid to vertices on the fine grid via the
interpolation operatorRT

h . Each fine grid vertex stores the
respective coarse grid vertices and corresponding weights.
For vertices inh that lie outside the coarse mesh, barycen-
tric coordinates to the closest tetrahedron in the coarse mesh
are computed. The restriction operator that is required in the
multigrid method to gather values from a finer resolution
level is realized by inverse interpolationRh.

We should also note that during the construction of the
matrix hierarchy the Galerkin property [BHM00] is en-
forced. In particular, for all but the finest hierarchy levelthe
system matrices are computed as

KH = RhKhRT
h .

The Galerkin property guarantees a consistent calculationon
different levels of resolution, and it assures optimal conver-
gence of the multigrid scheme.

It should be evident that the multigrid method computes
the correct FEM solution on the entire mesh at the finest
level. This is in contrast to other multiresolution techniques,
e.g. [DDBC01], where the solution is computed adaptively
for sub-meshes at different resolutions. This can lead to in-
consistent deformations on different hierarchy levels, which
is entirely avoided by the multigrid approach.

4.2. Linear Elasticity Multigrid

Given the linear transfer operatorRh, as well as an initial
approximation ˆuh of the displacement values on the fine grid
h of the deformable solid, a new approximationuh can be
computed as follows (eh andeH denote the error):

① compute residual rh = f h
−Khûh

② restrict residual to coarse grid rH = Rhrh

③ solution on coarse grid KHeH = rH

④ transfer correction eh = RT
h eH

⑤ correction uh = ûh +eh
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The algorithm extends to a complete 2-grid approach by
relaxation of ˆuh prior to stage① to avoid the transfer of quan-
tities from theh-grid that can not be reduced on the coarse
H-grid, and by relaxation of the resultuh after stage⑤ to
avoid high frequencies introduced by numerical inaccura-
cies. In general, 1−2 Gauss-Seidel steps are sufficient for
both pre- and post-smoothing. By recursive application of
the coarse grid correction to stage③ and by using a pre-
conditioned conjugate gradient method to compute the solu-
tion on the coarsest grid, a full multigrid V-cycle is derived.

4.3. Corotational Elasticity Multigrid

Because the integration of corotational strain leads to a sys-
tem of linear equations, the multigrid method is essentially
the same as for the Cauchy strain tensor. However, as the sys-
tem matrixK on the finest level changes in every time step,
the coarse grid matrices have to be rebuilt, too. Fortunately,
asK is very sparse, a row-based index data structure can be
utilized to significantly speed up this process. In addition,
such a data structure reduces the number of numerical and
memory access operations to ensure the Galerkin property
on every hierarchy level.

4.4. Non-linear Elasticity Multigrid

The simulation of deformations based on the Green strain
tensor using an implicit time integration scheme requires a
non-linear equation system to be solved. To calculate a solu-
tion to this system we employ the Newton method, which is
based on the first order Taylor approximation of the system
of equations:

K(u+e) ≈ K(u)+K′(u)e

Here,K′ is the Jacobian matrix ofK. Given an initial solu-
tion u, this solution can be corrected by solving the equation
for e, which only requires a system of linear equations based
on the Jacobian matrix to be solved:

K′(u)e= f −K(u),

For this system, the multigrid approach as described in chap-
ter 4.2 is used.

To construct the non-linear system of equationsK(u),
we utilize symbolic algebra operations in the preprocessing
step. The set of all non-linear element stiffness equationsis
assembled symbolically into a system of non-linear equa-
tions. From equation (3) one can see, thatSi jEi j can be ex-
pressed in terms of nodal basis functionsΦ(x). By first ap-
plying the material law to expressS in terms ofE , E can
then be expressed by the partial derivatives ofu, whereu is
interpolated as shown in equation (2). Symbolic calculation
of Si jEi j results in a polynomial in the unknown variablesui .
These polynomials, which share a large number of monomi-
als, can then be assembled into a global system of symbolic
equations. The number of monomials to be evaluated in this

system is significantly smaller (about a factor of 3) than the
number of monomials contained in the set of element equa-
tions. Consequently, multiple evaluations of monomials can
be avoided at run-time.

In the same way, the Jacobian matrix can be expressed
symbolically, and then calculated using the current parame-
ter values. The multigrid solver then updates the hierarchy
taking into account the current evaluation of the Jacobian
matrix. Although building the matrix hierarchy in every step
is expensive both in terms of numerical and memory access
operations, the multigrid solution is still up to 10 times as
fast as a preconditioned conjugate gradient method.

To further improve the evaluation of polynomials at run-
time, all required monomials∏i, j u j

i are computed from the
current displacement vectoru. As these monomials occur in
several equations of the system as well as in the Jacobian ma-
trix, an additional speed-up of about a factor of 2 is achieved.

5. Results

In the following, we give several examples that demonstrate
the efficiency of the proposed multigrid method. The mod-
els used in these examples are shown in the Figures below.
All experiments were run on a Pentium4 3.0 GHz processor
equipped with 1GB RAM. As shown in Table 1, the multi-
grid method scales linearly with the number of elements, and
it achieves excellent performance rates even for large mod-
els. Tetrahedral meshes with about 50k elements can be sim-
ulated interactively using the linear strain measure. Particu-
larly in the last example, where a larger hierarchy allows the
multigrid approach to deploy it’s full potential, for the num-
ber of elements used the method is considerably faster than
implicit approaches utilizing the conjugate gradient method.
The star∗ in all tables denotes the use of a non-nested grid
hierarchy.

tps tps
Model # level # tet # vert mgrid CG

Liver 2* 1467 464 720 30
Bridge 3 3072 825 460 2.4

Liver 3* 8078 1915 140 4.3
Breast 3* 10437 2542 120 1.5
Horse 4* 49735 12233 18 -

Table 1: Timing results in time steps per second (tps) for dif-
ferent models using the linearized Cauchy strain measure.
The multigrid solver is compared to a preconditioned conju-
gate gradient solver (CG).

Compared to previous approaches, the implicit multigrid
solvers enable much larger integration time steps of up to
one second. Even more importantly, the time step does not
depend on material stiffness. This property enables stable
simulations of heterogeneous bodies with an elastic modulus
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varying from 103 N/m2 to 1011 N/m2. Figure 5 shows the
influence of wind forces and gravity to bars of different den-
sity and stiffness. As the force is constant everywhere, softer
bars are deformed much more significantly than stiffer ones.

As it is shown in Figure 6, the artifacts introduced by the
linear strain measure can almost entirely be avoided by using
the corotational formulation of linear strain. However, the
performance gain of the multigrid approach is not as high as
in the linear setting. This is due to the extra cost involved in
updating the system matrices. As updating these matrices for
a non-nested hierarchy (marked by a∗ in the Tables) is much
more costly than for a nested hierarchy, in case of a non-
nested hierarchy only for larger meshes a significant speed
up compared to [MG04] is achieved (see Table 2 and Figure
4). However, for stiffer materials the performance gain gets
ever better as illustrated on the right of Figure 4. If a nested
hierarchy is employed, however, matrix updates only require
linear interpolation along element edges. As a matter of fact,
a performance gain of up to 10 compared to the conjugate
gradient method is achieved. Table 4 shows the time it takes
to reassemble the system matrix in the corotational setting
and to built up the matrix hierarchy used by the multigrid
approach.

tps tps
Model # level # tet # vert mgrid CG

Bridge 2 384 153 150 110
Liver 2* 1467 464 21 18

Bridge 3 3072 825 19 1.9
Liver 3* 8078 1915 3.6 1.2

Breast 3* 10437 2542 2.8 0.7
Breast 3 10432 2541 6 0.7

Table 2: Timings statistics for different models using the
corotational simulation of linear strain. The multigrid solver
is compared to a preconditioned conjugate gradient solver
(CG)

Compared to the linear setting, in the non-linear strain
setting real-time can only be achieved if the number of el-
ements is significantly reduced. However, compared to the
corotational setting the performance is only about a factorof
2 lower (see Table 3). Explicit timings of the reassembling
step in the non-linear setting are given in Table 4.

The efficiency and effectiveness of the non-linear solver is
also demonstrated in Figure 7, where large and global defor-
mations of about 3K tetrahedral elements including collision
detection and response to static objects is performed in real-
time. Figure 8 shows the application of the proposed simu-
lation engine for breast augmentation. Deformations due to
gravity as well as additional implants that are inserted into
the breast can be simulated very realistically in real-time. In
Figure 9 it is shown, that even the deformation of very large
tetrahedral meshes is feasible on consumer class hardware
by means of the proposed multigrid approach.
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Figure 4: Left: on a double logarithmic scale, timings are shown
for the corotational simulation using the multigrid methodinclud-
ing matrix reassembling and matrix hierarchy update (solidlines)
and the CG method (dashed lines). Timings were measured using
an increasingly refined tetrahedral cube model (elastic modulus =
2 ·106N/m2, integration time step =0.02sec).
Right: performance measures for a bridge model (3k tetrahedra).
For ever stiffer materials, the CG method requires more steps to be
performed to achieve the same relative error of10−4 as the multi-
grid method. The elastic modulus affects the performance ofthe CG
method significantly, while it does not affect the performance of the
multigrid method.

tps tps
Model # level # tet # vert mgrid CG

Bridge 2 384 153 95 60
Liver 2* 1467 464 13 8

Bridge 3 3072 825 12 1
Liver 3* 8078 1915 1.8 1.2

Breast 3 10432 2541 4.8 0.7

Table 3: Timings statistics for different models using the
non-linear Green strain measure. The multigrid solver is
compared to a preconditioned conjugate gradient solver
(CG)

corot. non-linear rebuild
Model # level reassemb. reassemb. mgrid

Bridge 2 4 9 1
Liver 2* 22 35 30

Bridge 3 42 72 17
Liver 3* 95 209 198

Breast 3 115 255 65

Table 4: Timings in milliseconds for the most time-
consuming parts of the multigrid solvers using the corota-
tional and the non-linear formulation of strain.

6. Conclusion

In this work, we have presented an implicit multigrid frame-
work for interactive and physics-based simulation of de-
formable volumetric bodies, which is open to a variety of dif-
ferent strain measures. The proposed solvers effectively ben-
efit from coarse grid correction in that they produce numer-
ically stable results yet minimizing the number of iterations
to be performed until convergence. The proposed multigrid
solvers allow for the simulation of heterogeneous materials,
i.e.,, materials exhibiting varying stiffness and density, with-
out sacrificing speed or quality. Therefore, they have the po-

c© The Eurographics Association 2005.



J. Georgii & R. Westermann / A Multigrid Framework for Real-Time Simulation of Deformable Volumes

tential to be integrated into real-time scenarios such as sur-
gical simulators or virtual environments.

As the described multigrid framework benefits extremely
from a nested hierarchy, in the future we intend to integrate
more advanced meshing strategies into this framework. In
particular, our goal is to generate nested tetrahedral meshes
that are amenable to multiresolution finite element simu-
lations at the same time adapting to the object boundaries
[MBTF03].

To integrate the proposed simulation framework into prac-
tical applications, collision detection as well as topology
changes, i.e cutting, has to be supported. Challenging ap-
proaches to detect self-collisions between parts of a deform-
ing object have been presented recently [TKZ∗04]. It will
be of particular interest in the future to evaluate the integra-
tion of these methods into the multigrid framework. Topol-
ogy changes, on the other hand, require the multigrid matri-
ces to be recomputed. Although this is possible in general, it
remains to be shown that these updates can still be done in
real-time.
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Figure 5: A visualization of the internal states (i.e.,von
Mises stress) of three towers exhibiting different stiffness is
shown. A standard approach for direct volume rendering is
used to generate the images. A constant wind force is applied
to all models. Stress values are color coded ranging from red
(high) to blue (low).

Figure 6: Comparison of the linear, corotational and non-
linear strain measure. The deformation of the latter one are
shown as reference in blue color. While the linear Cauchy
strain (red color) fails to approximate the deformation prop-
erly, only very small differences can be observed in case of
the corotatational strain (green color).

Figure 7: A simple example demonstrates the potential of the
proposed non-linear simulation engine. The bridge is dis-
cretized into 3K tetrahedral elements. Simulation and colli-
sion detection with static obstacles is run at 12 fps.

Figure 8: Breast augmentation as one potential application
of the proposed multigrid simulation framework is demon-
strated. The simulation of gravity, different material proper-
ties as well as additional forces induced by implants can be
simulated interactively at high physical accuracy.

Figure 9: Iso-surface visualization from a deformed CT data
set. A tetrahedral simulation mesh was adaptively refined
along the surface and bone structures in the 3D medical
data set. This mesh consists of 1.1M tetrahedra, and it was
deformed using the linear strain measure at 0.5 fps.
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