
GPU-PIV

Thomas Schiwietz, R̈udiger Westermann

Siemens Corporate Research, Inc.
755 College Road East, 08540 Princeton, NJ

Email: thomas.schiwietz@scr.siemens.com

Technische Universität München, Institut f̈ur Informatik
Computer Graphics & Visualization Group
Boltzmannstr. 3, 85748 Garching, Germany

Email: westerma@in.tum.de

Abstract

Digital Particle Image Velocimetry (PIV) is an op-
tical technique used to measure the velocity of
seeded particles in real flow. A CCD camera
captures the flow field twice under exposure to a
short duration laser flash. Recorded image pairs
are cross-correlated to extract velocity information
from these records. Time resolved PIV technology
can capture images with some hundreds of frames
per second.

In this paper, we present a PIV-system that imple-
ments vector field reconstruction and visualization
on programmable graphics processing units (GPUs)
thus providing a high-speed back-end for time re-
solved PIV technology. We propose an efficient
FFT implementation on such hardware, which is
used to cross-correlate multiple pairs of interroga-
tion windows. To visualize extracted vector fields
we employ functionality to create and to render ge-
ometry data on the GPU. In this way, not only can
any data transfer between the CPU and the GPU be
avoided, but spatial information derived from PIV
as well as the time history of points in the flow can
be combined instantaneously.

1 Introduction

Over the last decades, Particle Image Velocimetry
(PIV) has positioned itself as a reliable technique
for the measurement of particle velocities in real
flow [5, 8, 9, 10]. In principle, PIV is a planar
laser light sheet technique which records images of
seeded tracer particles in these sheets on a video
camera. The sheet is pulsed twice, and recorded im-

Correlation

Double
pulsed
laser

Ät

Light
sheet

Target
area

Imaging
optics

CCD

Cylindrical
lens

Measurement
volume

Flow of
seeding particles

Image frame
from pulse 1

Image frame 2

Interrogation
window 1

Interrogation
window 2

Figure 1: PIV Overview.

age pairs are processed to determine the displace-
ment of particles in this sheet. The displacement
combined with the time delay between consecutive
images give the velocity information for a small
subregion of the flow area.

To compute particle displacements, the image
plane is divided into small disjoint or overlapping
interrogation windows, and corresponding window
pairs in consecutive recordings are cross-correlated.
The spatial displacement that produces the max-
imum cross-correlation statistically approximates
the average displacement of particles in the interro-
gation window. This displacement, divided by the

VMV 2004 Stanford, USA, November 16–18, 2004



time between laser pulses, yields the velocity that
is associated with each interrogation window (see
Figure 1).

The cross-correlation function for two discretely
sampled interrogation windows is defined as:

Cfg(m, n) =
∑

i

∑
j

fi,j × gi+m,j+n (1)

with fi,j andgi,j denoting the image intensity dis-
tribution of the first and second image,m and
n the pixel offset between the two images and
Cfg(m, n) the two dimensional cross-correlation
function. Given the size of a square interrogation
areaM , O(M4) operations have to be computed.

The cross-correlation between two image pairs
can be normalized to prevent false correlation peaks
arising from changes in the search area local means.
In addition, any local additive bias differences can
also be removed. This is achieved by removing
the mean from both interrogation windows up front,
and by dividing each correlation sample by
√∑

ij

(fi,j − µF )2 ×
√∑

ij

(gi+m,j+n − µG̃)2

(2)
whereµG andµG are the mean of the first and the
shifted second interrogation window, respectively.

To overcome the high numerical complexity of
direct cross-correlation, in time-critical applications
it is usually implemented by means of the dis-
crete Fast-Fourier-Transform (FFT). The Wiener-
Khinchin Theorem states that the cross-correlation
f ? g between two signalsf andg can be computed
in the frequency domain as

f ? g = F−1(FfF ∗g ) (3)

whereFf andF ∗g denote the Fourier transform of
the first interrogation window and the complex con-
jugate of the Fourier transform of the second in-
terrogation window, respectively.F−1 denotes the
inverse Fourier transform. The overall complexity
now reduces toO(M2lnM).

Mainly because of the periodic domain assump-
tion, FFT based cross-correlation is supposed to
produce less accurate results compared to the direct
approach. On the other hand, due to its numeri-
cal efficiency it is suitable for high-speed applica-
tions as well as for multi-pass approaches, where
less accurate velocity estimates are used to predict
the search direction in upcoming passes.

Once the correlation function has been com-
puted, the position of its maximum in the domain
is used to estimate the movement of structures from
the first to the second interrogation window. Ade-
quate fitting procedures are used to determine the
maximum within sub-pixel accuracy. The relative
position of the maximum with respect to the center
of the interrogation window is finally used to esti-
mate the velocity.

Nowadays, high-speed CCD cameras allow for
the recording of image pairs at frame rates of some
hundred frames per second. In this respect, one of
the challenges is to develop techniques for vector
field reconstruction and visualization which can be
integrated instantaneously into the recording pro-
cess.

In this paper, we present the implementation of
such a system on programmable graphics hardware.
The system performs both the reconstruction of vec-
tor fields from image pairs and the visualization of
these fields on the graphics chip. In this way, by di-
rectly connecting the CCD camera to a frame grab-
ber on the graphics card, data transfer between the
CPU and the GPU can be avoided entirely. We
describe an efficient implementation of the FFT
on programmable GPUs, and we exploit this im-
plementation for simultaneous cross-correlation of
multiple pairs of interrogation windows. Further-
more, a novel technique to visualize vector data is
proposed, which exploits new functionality to cre-
ate and to render line segments on the GPU.

The remainder of this paper is organized as fol-
lows: In the following sections we first review the
basics of the discrete FFT, and we outline an effi-
cient GPU implementation of this transform, both
in 1D and 2D. We then describe how to use this
technique to compute the cross-correlation between
multiple interrogation windows, and we give addi-
tional information concerning the reconstruction of
vector field data from 2D correlation signals on the
GPU. Finally, we present a new technique for GPU-
based visualization of vector field data.

2 FFT

The Fourier-Transform (FT)F (n) of a discrete sig-
nalf(k), with k ∈ (0, N − 1) represents the signal
as a superposition of sinusoids of different frequen-

666



cies:

F (n) =

N−1∑
k=0

f(k)e
−i2πkn

N (4)

The FFT, as described in [2], reduces the numer-
ical complexity of the discrete FT toO(n log n). It
is derived from the observation that equation 4 can
be written as a matrix-vector product



F (0)
F (1)
F (2)

...
F (n)


=




r0 r0 r0 · · · r0

r0 r1 r2 · · · rn−1

r0 r2 r4 · · · r2n−2

...
...

...
. . .

...

r0 rn−1 r2n−2 · · · r(n−1)2







f(0)
f(1)
f(2)

...
f(n)




(5)

whererk = e
−i2πk

N = cos
(

2πk
N

)
+ i · sin

(
2πk
N

)
.

By symmetry considerations, i.e. rnk =
rnkmod(N), the matrix can be split into a chain
of log N sparse matrices (FFT matrices), each of
which contains exactly two non-zero entries. Note
that one of these entries is always 1 and does not
need to be stored explicitly. Below, this kind of fac-
torization is illustrated for a four-component input
signal. Finally, the output signal has to be rear-
ranged to yield the Fourier coefficients in the right
order.




F (0)
F (2)
F (1)
F (3)


 =




1 r0 0 0
1 r2 0 0
0 0 1 r1

0 0 1 r3


 ·




1 0 r0 0
0 1 0 r0

1 0 r2 0
0 1 0 r2







f(0)
f(1)
f(2)
f(3)


 (6)

The 2D discrete FFT can be computed by con-
secutive 1D discrete FFTs along the rows and the
columns, respectively. Assuming a 2D signal of
sizeN×N , the discrete FFT is computed by means
of 2 · log N multiplications of a sparse-matrix and
N 1D vector. For any possibleN , the FFT ma-
trices, or more precisely the non-zero elements in
these matrices, can be pre-computed.

3 GPU-FFT

The implementation of the discrete FFT on graphics
hardware exploits the fact that linear algebra opera-
tions can be performed very efficiently on this kind

of parallel streaming architecture [1, 6]. On cur-
rent GPUs, fully programmable parallel geometry
and fragment units are available providing power-
ful instruction sets to perform arithmetic and log-
ical operations on multi-component (RGBA) data.
In addition to computational functionality, fragment
units also provide an efficient memory interface to
server-side data, i.e. texture maps and frame buffer
objects. By representing matrices and vectors as
texture maps, arbitrary operations between such ob-
ject can be performed very efficiently.




r0
real

r0
imag

1
0







r2
real

r2
imag

1
0







r1
real

r1
imag

3
2







r3
real

r3
imag

3
2




Table 1: Texture layout for the pre-computed FFT
table for the 1st matrix withN = 4

In regard to the particular structure of matrices in
the FFT computation, we employ a special internal
representation of these objects on the GPU. Every
FFT matrix is represented as a 1D RGBA texture
map, which contains in the i-th component the value
of the complex non-zero entry in the i-th row of the
matrix, and the absolute positions of both non-zero
entries in this row (see table 1). These values are
stored in the RG and BA components, respectively.
The position of the vector component that has to be
multiplied with the complex entry is stored in the B
component.

Figure 2: FFT shader inputs.

Without loss of generality, let us assume input
images of sizeN ×N throughout the remainder of

666



this paper. The 2D signal to be transformed is stored
as a 2D texture map. To perform the matrix-vector
multiplication at a particular FFT stage, a quadri-
lateral coveringN × N fragments is rendered. To
this quadrilateral, both the 2D texture containing
the signal (TEX2) and the 1D texture containing the
FFT matrix (TEX1) are bound (see Figure 2). Then,
a fragment shader program performs the following
operations, where× and+ indicate complex multi-
plication and addition: To avoid binding a different

Column-Wise FFT-Matrix-Vector Operation
1 OP1 = TEX1[s]
2 OP2 = TEX2[r, OP13]
3 OP3 = TEX2[r, OP14]
4 output =OP2×OP11,2 + OP3

1D texture (TEX1) in every FFT stage, all these tex-
tures are combined into one single 2D texture. The
respective row to be accessed in each stage is spec-
ified in a constant parameter to the shader program.
In every pass, results are written to a texture render
target, which becomes TEX2 in the following pass.
After log N passes, the column-wise FFT has been
performed, and results are going to be reordered us-
ing a reorder texture. This texture stores for every
element the counter component to swap with. The
same passes are then repeated, but now the quadri-
lateral is rendered with transposed texture coordi-
nates to perform the FFT in row-wise order. At the
end, the RG components of the most recent render
target carry the Fourier coefficients.

The FFT performance can be doubled by stor-
ing pairs of consecutive columns in the RG and
the BA components of TEX2, respectively. Fur-
thermore, arithmetic operations can be calculated in
parallel due to the internal RGBA-pipeline. This ef-
fectively halves the number of texture fetches to be
performed during column-wise FFT. In an interme-
diate pass, the output texture is reorganized to store
pairs of consecutive row entries in a single RGBA
texture element. Then, the row-wise FFT can be
accelerated by a factor of two as well.

3.1 Performance

To verify the effectiveness of the proposed FFT im-
plementation, we investigate the performance for
different image sizes. All our experiments were
run under WindowsXP on a P4 3.0 GHz proces-

sor equipped with an ATI 9800 XT graphics card.
In particular, we compare the performance of the
GPU-FFT to the FFTW [3], an efficient CPU imple-
mentation of the discrete FFT leveraging various ac-
celeration strategies like SSE parallelization, cache
optimization and pre-computed FFT tables. To con-
duct a fair comparison, the FFTWMEASURE set-
ting was enabled and the code was run in 32-bit
floating point precision. In all our experiments, the
time it takes to perform the FFT of a discrete com-
plex 2D signal is measured.

1282 2562 5122 10242

GPU-FFT 1083 296 67 16
FFTW 1500 448 65 15

Table 2: GPU-FFT performance measures fps.

Table 2 essentially shows the GPU-FFT to be
able to process even high resolution images at inter-
active rates. The implementation, on the other hand,
does not yield a significant speed up compared to
the FFTW. This is due to the many floating point
texture fetches that have to be performed to look
up the FT table and the complex operands in each
of the2 · log N transform stages. We should note
here that we also measured the loss of performance
introduced by the two dependent texture fetches in
lines 2 and 3 of the pseudo code above. In the cur-
rent setting, however, they only make about 5% of
the overall time.

Compared to the GPU-FFT proposed by More-
land et. al [7], our implementation runs at sig-
nificantly faster rates. From the timings presented
in the aforementioned paper (including four for-
ward transforms, a complex multiplication stage
and backward transforms on a10242 grid), we find
our solution to be about a factor of 11 faster.

4 GPU-PIV

Based on the proposed GPU-FFT, we now outline
a strategy to exploit this implementation in digital
PIV. Note that compared to the FFTW, the results
already reside in video memory and can be directly
visualized.

666



Figure 3: Pairs of input images are combined into
one texture map.

4.1 Image Combiner

Once the two images captured by the CCD camera
have been received on the GPU, they are combined
into one texture as depicted in figure 3. This al-
lows upcoming operations to be performed on inter-
rogation window pairs in parallel, and it essentially
halves the number of texture fetches in these oper-
ations. The intensities of the first and the second
image are interpreted as the real parts of two com-
plex input signals. They are stored in the R and B
color channel, respectively. Both the G and the A
channel, which store the corresponding imaginery
parts, are initially set to zero.

4.2 Block Average Removal

To normalize the intensity distribution in the inter-
rogation windows, for each window average inten-
sities have to be computed and subtracted from in-
tensity values. If the difference gets negative, the
value is set to zero.

To calculate block averages, we employ a re-
duce operation as proposed in [6], which recur-
sively combines texture samples in multiple render-
ing passes. Starting with the 2D texture that is made
of a set of interrogation windows of sizeM×M , in
log M) stepss a quadrilateral coveringM/2s pix-
els in screen space is rendered. The texture value
that is mapped to the current fragment position is
combined with the three adjacent texture elements
in positive (u,v) texture space direction. The output
is written to a new texture render target of a factor
of two smaller in each dimension than the previous

Figure 4: Reduce operation to calculate average in-
tensities in each interrogation block

one. This procedure is repeated until for each block
one single average value is left.

In a final pass, the block average texture is ren-
dered over the original image texture as to allow
the pixel shader to access average values. At every
pixel the block average is subtracted and the result-
ing value is clamped to zero.

4.3 Block FFT

Once input images have been normalized, the GPU-
FFT carries out the FFT stages for all interrogation
windows at once. Therefore, a slightly different
FFT table is built. At first, a table of sizeM is built,
which is then extended periodically until its size is
equal toN . Absolute positions that are stored in
the table need to be changed accordingly. Images
containing sets of interrogation windows can now
be transformed using the core FFT implementation
as described. The difference simply is that less FFT
stages have to carried out compared to a transfor-
mation of the entire image. The table forN = 8
andM = 4 is illustrated in Figure 5.

Figure 5: Table layout for Block-FFT.

666



4.4 Cross-Correlation

The cross-correlation in frequency domain is sim-
ply a complex conjugate multiplication of corre-
sponding values in both images. Since both trans-
formed images are stored in one texture map, a pixel
shader program samples the texture and computes
the multiplication using real and imaginary parts
in the RB and the GA color components, respec-
tively. As a result, a single complex value is com-
puted and stored in the RG components of an output
texture. In a final pass, pairs of interrogation win-
dows are packed into RGBA samples of a smaller
texture, thus enabling the inverse transformation of
two blocks simultaneously. The inverse FFT trans-
forms the content of each block into two real valued
signals that are encoded in the RB components of a
texture map.

4.5 Peak Finding

In each block the relative position of the maximum
value, i.e. the correlation-peak, determines the ve-
locity of that block within the current time interval.

In order to find that maximum, we exploit the re-
duce operation described in 4.2. Instead of comput-
ing averages, the pixel shader now combines adja-
cent samples by computing their maximum. In ev-
ery stage, the position of this maximum is kept, and
it is updated according the position of maxima that
are found in upcoming passes.

4.6 Sub-Pixel Displacement

To determine the correlation peak at sub-pixel accu-
racy, a function is fitted to a set of samples including
the one where the maximum was found as well as a
ring of neighbors.

In this work, we have implemented the two esti-
mators below (the 1D case is illustrated), wherecj

is the correlation value at positionj. Both can be
evaluated straight forwardly in a pixel shader pro-
gram.
• Center-Of-Mass: ci−1−ci+1

ci−1+ci+ci+1

• Gauss-Fit: ln ci−1−ln ci+1

2·(ci−1−2·ci+ci+1)

4.7 Outlier Removal

Outliers are vectors in the field which have an ori-
entation or length that significantly differs from the
values at adjacent grid points. They are removed

by calculating the average vector within a certain
support, and by replacing a vector by this average
once it diverges too much from it. By replacing ev-
ery vector by the average, the entire field can be
smoothed. Since computing the average only re-
quires a few adjacent texture samples to be fetched,
it can be performed on a per-fragment basis very
efficiently.

4.8 Overlap Sampling

Finally, to increase the resolution of the generated
vector field we increase the number of interrogation
windows by allowing for overlapping windows. In
the implementation this is realized by performing
multiple PIV passes, and by equally shifting the in-
terrogation windows in each pass. The shift is sim-
ply issued as a constant parameter in the respec-
tive shader programs, leaving the core PIV imple-
mentation unchanged. Vector fields constructed in
consecutive passes are finally merged to a field of
higher resolution.

5 Performance

Below, timings are given for differently sized im-
ages and interrogation windows. About 50% of the
computation time is consumed by the FFT. The re-
maining time is mostly required by mean removal
and peak finding. Similar to the FFT implementa-
tion, both operations are also performed recursively
in log M rendering passes. All the other opera-
tions are carried out in one single pass. As can
be seen, typical PIV images having resolution of
about 800x600 pixels can be processed at interac-
tive frame rates using our system.

window/image 2562 5122 10242

82 151 48 13
162 126 34 9
322 105 28 7

Table 3: GPU-PIV performance in fps.

6 Vector Field Visualization

To allow for the analysis of the reconstructed flow
fields, we have implemented several GPU-based vi-

666



sualization techniques. In this way, any data trans-
fer between the CPU and the GPU can be entirely
avoided.

In general, derived flow quantities like vortic-
ity, velocity magnitude, or divergence can be easily
computed in appropriate fragment shader programs.
These quantities are computed at every grid point of
the reduced grid, which consists of the center points
of the interrogation windows. Results are written
to an additional render target, which is finally dis-
played as a background texture covering the entire
domain. In this way, interactive visual analysis of
the flow dynamics is possible, yet providing mul-
tiple visualization options. In the current scenario,
the following quantities have been considered:
• Velocity magnitude is used to index into a

user-specified color map. The color map is re-
alized as a 1D texture map.

• In an analogous manner we display the mag-
nitude of the rotationωz = ∂v

∂x
− ∂u

∂y
, and the

divergenceη = ∂u
∂x

+ ∂v
∂y

.
Figure 3 on the color page below shows differ-

ent visualizations of a flow field generated by our
system. The vector field was derived from moving
micro-biological structures as seen figure 2.

6.1 Visualization Geometry

For the analysis of vector fields, vector plots are still
the most popular visualization technique in the PIV
community. Although easy to implement, this kind
of technique usually requires the vector valued data
to be read back to the CPU, to construct the arrow
primitives and to send them to the GPU again for
rendering purposes.

Especially for high resolution data sets, this ap-
proach puts the burden almost entirely on the bus
connecting the CPU with the GPU. On the other
hand, until recently it was not possible on any
graphics hardware architecture to generate or to ar-
bitrarily manipulate geometric primitives, thus pro-
hibiting the use of vector plots without data transfer.

Nowadays, however, Shader 3.0 [4] available in
DirectX on recent nVidia cards, i.e. the GeForce
6800, allows direct access to texture maps in the
vertex units. In addition, recent ATI graphics hard-
ware provides an extension to OpenGL calledSu-
perBuffers. The interface allows the application to
allocate graphics memory directly, and to specify
how that memory is to be used. This information,

in turn, is used by the driver to allocate memory in a
format suitable for the requested uses. When the al-
located memory is bound to anattachment point(a
render target, texture, or vertex array), no copying
takes place. The net effect for the application pro-
gram therefore is a separation of raw GPU mem-
ory from OpenGLs semantic meaning of the data.
In summary, both Shader 3.0 and OpenGL Super-
Buffers provide an efficient mechanism for storing
GPU computation results and later using those re-
sults for subsequent GPU computations.

As a consequence thereof, it is now possible
to compute intermediate results in the fragment
units on the GPU, drawing these results to invisi-
ble buffers, and then using them either directly as
vertex information or as displacement vectors for
visualization geometry.

6.2 Vector Plots

To construct vector plots on the GPU, we assume
that every vector is represented as a polyline con-
sisting of three line segments, i.e. the tail and the
arrow head. Using Shader 3.0 functionality, a ver-
tex array is built up front, which contains the vertex
information necessary to render as many arrows as
there are grid points in the reduced grid. In this ar-
ray, vertex coordinates are specified as to produce
vertically oriented arrows having unit length.

After the vector field has been derived from
the cross-correlation between pairs of interrogation
windows, an additional rendering pass is carried
out. It produces as many fragments as there are
grid points, and for each grid point it computes the
scaling and the orientation of the respective vector
with respect to the initial (vertically oriented) vec-
tor. Both values (scaling parameter and angle) are
rendered into the RG color components of a texture
render target. In a final rendering pass, the applica-
tion program renders the pre-computed vertex array,
and it enables the geometry units to access the ren-
der target. Now, every vertex can scale and rotate
itself according to the stored values. The modified
line segments are finally rendered to generate the
vector plot.

Note that the same procedure can be performed
using OpenGL SuperBuffers. In this case, the con-
tent of the pre-computed vertex array is stored in
local video memory as a memory object. Semanti-
cally, this object can be interpreted as a texture map,
allowing for the manipulation (scaling and rotation)

666



of entries in the fragment units. Results of these
operations are rendered into a copy of this memory
object, which, semantically is interpreted as a ver-
tex array. This object is then passed to the geometry
processing unit to render the vector plots.

6.3 Performance Evaluation

In the following table we give timings statistics for
the construction and rendering of differently sized
vector plots using Shader 3.0 functionality and the
OpenGL SuperBuffers. As can be seen, compared
to the time needed for vector field reconstruction,
visualization of the vector field does not impose
any significant overhead. In particular, for typical
PIV images between2562 and10242 in combina-
tion with interrogation windows between162 and
322, the visualization process requires less than 2%
of the overall time.

1282 2562 5122 10242

Shader 3.0 1050 321 85 23
SuperBuffers 311 230 97 38

Table 4: Performance measures in frames per sec-
ond for GPU-based construction and rendering of
vector plots.

7 Conclusion

In this paper, we have presented the first digital
PIV system that performs vector field reconstruc-
tion and visualization on programmable graphics
hardware. By combining a GPU implementation
of the discrete FFT with Shader 3.0 functionality
or OpenGL SuperBuffers, the system provides an
efficient back-end for time resolved PIV technol-
ogy. Our timings have shown that the proposed
system has the potential to directly process the out-
put of high-speed CCD cameras. Two images of
size10242, which are split into162 interrogation
windows, can be cross-correlated and visualized by
means of vector plots with about 10 fps.

In the future, we will directly connect our system
to frame grabber hardware on the graphics card. In
this way, any data transfer to and from the CPU can
be avoided. Due to various visualization options,
spatial information derived from PIV as well as the

time history of points in the flow can be analyzed
instantaneously.

8 Acknowledgement

This work was financially supported by the
Deutsche Forschungsgemeinschaft (DFG) in
the Schwerpunktprogramm 1147 ”Bildgebende
Messverfahren f̈ur die Str̈omungsmechanik”.

References

[1] Bolz, J., Farmer, I., Grinspun, E., Schröder,
P.: Sparse Matrix Solvers on the GPU: Conju-
gate Gradients and Multigrid.ACM Computer
Graphics (Proc. SIGGRAPH ’03)

[2] Brigham E.O: The Fast Fourier Transform
And Its Applications.Prentice-Hall, Engle-
wood Cliffs, NJ.

[3] Frigo M., Johnson S.: FFTW: An adaptive
software architecture for the FFT.In Proc.
Acoustics, Speech, and Signal Processing 3
(1998)

[4] Gray K.: The Microsoft DirectX 9 Pro-
grammable Graphics Pipeline.Microsoft
Press 2003

[5] Keane, R. D., Adrian, R. J.: Theory of
cross-correlation analysis of PIV images.In:
Applied Scientific Research 49 (1992), pp.
191215 2

[6] Krueger, J., Westermann, R.: Linear Alge-
bra Operators for GPU Implementation of Nu-
merical Algorithms.ACM Computer Graphics
(Proc. SIGGRAPH ’03)

[7] Moreland K., Angel E.: The FFT on a GPU.In
Proc.. SIGGRAPH/EG Conference on Graph-
ics Hardware ’03(2003)

[8] Raffel, M., Willert, C. E., Kompenhans, J.:
Particle image velocimetry: a practical guide.
Berlin : Springer, 1998 2, 4.

[9] Westerweel J.: Digital Particle Image Ve-
locimetry -Theory and application.Ph.D. The-
sis, Technical University of Delft

[10] Willert, C. E., Gharib, M. : Digital particle
image velocimetry.In: Experiments in Fluids
10 (1991), pp. 181193

666


