High Quality Real-Time Volume Rendering for Time-Dependent Medical Data

J. Schneider, J. Krüger, R. Westermann Computer Graphics and Visualization Group

S. Nekolla, M. Schwaiger Klinik und Poliklinik für Nuklearmedizin

TU München

Motivation

- Medical Data Acquisition
 - Large datasets
 - e.g. Visible Human (512²x1877)
 - Time resolved datasets
 - e.g. Heart (512²x202x10 steps)
 - Used for
 - Diagnosis
 - Pre- / Intra-operative planning
 - Computer Aided Surgery
 - ...

Courtesy University of Utah

- → Need for interactive display techniques
 - Amenable to gigabyte datasets and high quality

Consumer Class Graphics Hardware

- Cheap
 - Less than 600€
- Fast
 - Processor (25+ GFlops)
 - Memory bandwidth (35+ GB/s)
- Flexible
 - programmable
 - Floating point precision
 - 16bit Texture formats
 - 2x performance each year
- Natural choice

Drawbacks

Low graphics memory – usually 256MB

Compression Domain Volume Rendering [Schneider, Westermann 2003]

Slice artifacts of texture-based approaches

On-Chip Ray-casting
[Krüger, Westermann 2003]

High computational burden

Acceleration Techniques for GPU-based Volume Rendering [Krüger, Westermann 2003]

Compression

- Lossy compression on CPU
 - High quality (16bit precision) off-line processing
- Real-time reconstruction on the GPU
 - Significantly saving graphics memory

- Flexible compression ratio (20:1 ... 64:1)

Ray-Casting

- Texture based volume rendering
 - deFacto standard for interactive applications
 - Very fast, but artifacts
- Ray-Casting
 - Expensive, but very high quality
 - Directly on graphics hardware

computer graphics & visualization

Acceleration Techniques

- Empty space skipping
 - Most of the volume may be transparent
- Early ray termination
 - Large parts of volume may be occluded / totally opaque
- Combine both approaches
 - Retains high quality, achieves interactivity

Conclusion

- Compression mandatory
 - Fast preview
 - Datasets otherwise not tractable
- Ray-casting for high quality images
 - Avoids slice artifacts
 - Possible on current graphics hardware
- Acceleration techniques
 - Great speed-up
 - Enable interactive framerates (15+ fps)

Movie / Discussion

Video available from our webpage

Download (55MB)

