
Kompressions- und Darstellungsmethoden
für hochaufgelöste Volumendaten
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PREFACE v

Preface

In this work the following symbols will be used.

Sets and Classes

N: The set of natural numbers, beginning with 1.

R: The set of real numbers.

�: An alphabet on which a vector quantizer will operate. Usually � ⊂ R.

�: A countable index set. Usually � ⊂ N.

I: An ordered input set to a vector quantizer.

C: A codebook (an ordered, countable set of vectors).

V : An ordered set with V ⊆ I .

O: Order of magnitude.

Functions, special vectors

δ: A distance metric. Usually δ ≡ ‖ · ‖2
2.

X: n-dimensional vector taken from I .

Y : n-dimensional vector taken from C.

Operators

◦: Concatenation of functions. Read a ◦ b as “apply a before b”.

<, >: Standard dot-product.

�: Convolution between functions.
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Fidelity metric

In order to measure the fidelity of a lossy compression process, throughout this
document the scalar signal to noise ratio (SNR) will be used. Despite the fact
that many publications use the peak signal to noise ratio (PSNR), the SNR gives
a more intuitive and reliable measurement of the perceived fidelity. The reason
may be seen in the fact that the SNR takes into account all input data, whereas the
PSNR only accounts for the peak value. The SNR is defined as follows.

Given an input data set I = {xi}n
i=1 and a reconstructed data set I ′ = {x′

i}n
i=1.

Then

SNR(I, I ′) := 10 log10
σ2

I

σ2
I′

dB,

where σ2
I is the variance of the input set I , and σ2

I′ is the mean squared error (mse):

mse(I, I ′) = 1
n

∑n
i=1 ‖xi − x′

i‖2
2.

Other Conventions

By convention, scalar entities will be lowercase, such as c, d, etc, while vector
valued entities will be uppercase, such as X, Y, etc. When not stated otherwise,
vectors are interpreted as column-vectors. Matrices will be written calligraphic:
M, N, etc.

Discretely sampled entities will usually have a subscript s, such as Φs, Δs, etc, in
contrast to continuous ones: Φ, Δ, etc.

All implementations were done using the OpenGL API [OGLb] and an ATi Radeon
9700 graphics card [ATi]. Only extensions with multi-vendor support were used,
in order to guarantee the resulting code to run with any graphics card support-
ing the functionality provided by the ARB multitexture, ARB vertex program,
ARB fragment program and either an OpenGL version of 1.4 or EXT texture3D.
A specification of these extensions can be found in [ARB].
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Chapter 1

Introduction

1.1 Abstract

Even with today’s amount of memory rapidly increasing, the size of scientific data
is growing at least at the same speed. New data acquisition techniques and storage
media are the reason for the fact that the amount of data currently surpasses the
famous Moore’s Law, which states that speed and memory capacity of computers
double every 18 months1. As a consequence, there is an increasing need of visu-
alization techniques that can efficiently handle datasets that are gigabytes or even
terabytes in size.

On the other hand the speed of graphic processing units (GPUs) is currently sur-
passing Moore’s Law as well, doubling processing power about every 12 months.
This makes the usage of graphics hardware very appealing for visualization pur-
poses, and consequently great effort has been taken to either map existing algo-
rithms to graphics hardware, or to design entirely new algorithms able to benefit
of current graphics hardware. In contrast, video memory is not doubling every 12
months, as very expensive special purpose RAM’s are commonly needed to cope
with the GPU’s sheer processing speed.

As a logical consequence, even with todays computers having more than a giga-
byte of main memory and up to 256 megabytes of video memory, compression is
mandatory.

The main focus of this diploma thesis is to present an efficient compression scheme
for scalar valued volume data that allows for rapid decoding on the GPU itself,

1Paradoxically enough, in the field of CFD faster processors produce larger datasets, preventing
the data from being displayed at interactive framerates on the very same processor.
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2 Introduction CHAPTER 1

thus virtually expanding video memory by a factor of 20 and more.

1.2 Zusammenfassung in deutscher Sprache

Trotz des berühmten Moore’schen Gesetzes, welches besagt, daß sich Speicherka-
pazität und Geschwindigkeit von Computern alle 18 Monate verdoppeln, scheint
sich die Größe wissenschaftlicher Daten mit mindestens derselben Geschwindig-
keit zu entwickeln2. Als logische Konsequenz ist das Interesse an Visualisierungs-
techniken groß, die fähig sind Datensätze zu verarbeiten, die Gigabytes oder sogar
Terabytes groß sind.

Auf der anderen Seite überholen derzeit auch Grafikprozessoren (GPUs) Moore’s
Law, hier kann man eine Verdoppelung der Rechenleistung alle 12 Monate be-
obachten. Diese Tatsache macht den Einsatz aktueller Grafikhardware für Visua-
lisierungszwecke äusserst attraktiv. Im Gegensatz dazu verdoppelt sich die Spei-
cherkapazität von Grafikkarten jedoch nicht alle 12 Monate, da üblicherweise
schneller Spezialspeicher eingesetzt werden muß, um mit der immensen Rechen-
geschwindigkeit der GPU Schritt halten zu können.

Daher ist auch bei heutigen Rechnern, die leicht über ein Gigabyte Arbeitsspei-
cher und bis zu 256 Megabytes Grafikspeicher verfügen, ein sinnvolles Kompres-
sionsverfahren angeraten.

Das Hauptziel dieser Diplomarbeit ist es, einen effizienten Kompressionsalgorith-
mus für skalarwertige Volumendaten zu präsentieren. Dieser erlaubt eine schnelle
Decodierung auf der GPU selbst, und vergrössert somit die effektive Kapazität
des Grafikspeichers um einen Faktor 20 und mehr.

2Paradoxerweise führen schnellere Prozessoren im Bereich der CFD zu größeren Daten, die
dann auf eben jenen Prozessoren nicht mehr interaktiv dargestellt werden können.

Jens Schneider - Kompressions- und Darstellungsmethoden für hochaufgelöste Volumendaten
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1.3 Contributions

Most approaches made during the last years in the field of volume compression
suffer from at least one of the following three problems.

• Datasets of reasonable size take hours, if not days, to compress.

• It is not possible to render the compressed data at interactive framerates.

• The image fidelity is too low to be competitive in any way.

In this thesis previous approaches are combined and extended in order to over-
come all three of the above problems. The major novel contributions of this work
are

• Implementation of an extremely fast vector quantizer.

• Compression of large data in reasonable time using a novel hierarchical
vector quantization scheme.

• Interactive rendering of the data right from the compressed representation.

• Rendering of large time-varying volume data at interactive framerates.

1.4 Contents

The following chapter is intended to provide an overview of common state of the
art rendering techniques for scalar valued, uniformly sampled volume data. Over
that, an extended model of the OpenGL rendering pipeline will be presented, as
introduced by latest consumer class graphics processing units (GPUs). Last but
not least algorithms will be discussed that take full advantage of this extended
rendering pipeline.

In chapter three, several possible compression methods for volumetric data will be
discussed, and it will be motivated why a hierarchical vector quantization scheme
was chosen as the back bone for this thesis.

Vector quantization algorithms commonly encountered in the literature are im-
practical for reasonably sized data due to the associated computational burden.
In contrast, chapter four demonstrates how vector quantization can be made fast
enough to efficiently encode large data sets. Specifically, is shown that by careful
analyzation performance bottlenecks of previous algorithms can be avoided, re-
sulting in a speedup of at least a factor 30.
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4 Introduction CHAPTER 1

Chapter five merges the results from chapter three and four and presents a hier-
archical vector quantizer that can be used to compress arbitrary volume data sets.
For the case of scalar valued volumes it is over that demonstrated that the data can
be rendered directly and at interactive framerates from the compressed represen-
tation using graphics hardware with programmable fragment processing units.

In chapter six, the results of chapter five will be extended to the compression and
rendering of time-varying data. It is shown that by application of a progressive
encoding scheme an additional speedup of factor 2 can be achieved, without con-
siderable loss in fidelity.

Chapter seven finally presents conclusions and discusses the results.
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Chapter 2

Volume Rendering

2.1 Introduction

Volume rendering is the task of obtaining meaningful images from data sampled
on a three-dimensional domain. In this thesis, only scalar valued volumetric data
sampled on a regular grid will be regarded, though the compression algorithm
presented in chapter 4 extends naturally to vector valued data. The reason for this
restriction is that such data can be handled very efficiently by graphics hardware
using textures mapping capabilities.

To provide the background necessary to understand the methods presented in this
chapter, the next section reviews the latest OpenGL rendering pipeline model,
while section 2.3 contains the definitions needed to describe scalar valued volume
data. Section 2.4 gives a compact introduction to the volume rendering equation,
as far as it is needed for the remainder of this document. The gap between theory
and practise is closed in section 2.5 by presenting raymarching as one method to
solve the rendering equation. In the final section of this chapter, methods to ex-
ploit texture mapping hardware are presented.

2.2 The OpenGL Rendering Pipeline

CPU

Scene Traversal and Lighting
Transform

CPU / GPU GPU

Rasterization
Fragment
Processing

GPU GPU

Framebuffer

Figure 2.1: The OpenGL Rendering Pipeline.
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6 Volume Rendering CHAPTER 2

In order to discuss implementations of the techniques presented in the remaining
document, it is necessary to understand the rendering pipeline of the OpenGL
API. The unextended version is depicted in figure 2.1 and is also referred to as the
Fixed Function Pipeline, since its functionality is only configurable, as opposed
to programmable. During scene traversal the CPU processes the input scene and
converts it to rendering primitives. Depending on the capabilities of the graphics
hardware these primitives are either transformed and lit on the CPU and then sent
across the graphics bus1 or sent directly across the graphics bus. If they are sent
directly to the GPU, transform and lighting takes place on the graphics hardware
itself2. In either case the transform and lighting step processes each vertex as
follows.

• Transform the vertex to world space.

• Evaluate an user-configurable lighting term.

• Perform perspective correction.

• Clip against the viewing frustum.

• Perform the projection to screen space.

The rasterization step performs scan conversion as well as interpolation of colors,
texture coordinates etc. Fragment processing consists out of the steps texturing,
fragment testing and texture compositing (not necessarily in that order). The frag-
ments passing the tests are then written to the framebuffer.

GPU

Rasterization

CPU

Scene Traversal Intermediate
Pixelbuffer

GPU

Framebuffer

GPU

Programmable
Vertex Processing

GPU

Programmable
Fragmnent Processing

GPU

Figure 2.2: The programmable OpenGL Pipeline. The fixed function pipeline from
figure 2.1 is extended by programmable vertex and fragment processing.

On current consumer class hardware this pipeline model may be extended in var-
ious ways. A common trend, however, is to substitute programmability for con-
figurability. Current hardware is quickly developing towards the OpenGL 2.0
pipeline model that will be fully programmable [OGLa]. At an abstract level
the standard transform and lighting step is subsumed by a programmable vertex
processing unit, and the configurable fragment processing step is subsumed by a

1Usually the Advanced Graphics Port (AGP) for consumer class hardware.
2Virtually all consumer class graphics hardware supports transform and lighting by now.
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CHAPTER 2 Volume Rendering 7

programmable fragment processing unit. These functionalities are exposed to the
API by the ARB vertex program and ARB fragment program extensions. Both
extensions allow for loading a program written in an assembly language to the
graphics hardware by providing an ASCII-string containing that program. The
driver then parses and compiles the program to native instructions that will be ex-
ecuted by the GPU. Since current fragment processors are still subject to strong
limitations when compared to conventional CPUs, intermediate pixel buffers were
introduced that allow for feedback loops of arbitrary length. These pixel buffers
are exposed to the API by the ARB pbuffer extension. All programmable parts
perform calculations using high precision up to IEEE 32bit float. Thus the ne-
cessity arises for some applications to have high precision texture and buffer for-
mats as well. These are supported via the GL NV half float, GL NV float and
GL ATI texture float extensions, that are likely to become promoted to EXT or
ARB status in the near future. Fragments are only quantized down to 8bits prior
to writing them to the framebuffer.

Vertex
Processor

Position

Normal
Colors

TexCoords
etc.

Vertex Weights

Vertex Attributes

Position

Normal
Colors

TexCoords
etc.

Vertex Weights

Vertex Attributes

Matrices

etc.

Lighting Params
TexGen Params
Material Params

OpenGL States

User−defined
Parameters

with early
Z−test (opt.)

User−defined
Parameters

Fragment
Processor

Position
Colors

Interpolators

Fragment Attribs

Color
Depth

Fragment

Discard

Matrices

etc.

Lighting Params
TexGen Params
Material Params

OpenGL States

Samplers

Texture Images

Rasterizer

Figure 2.3: The programmable OpenGL Pipeline in detail.

At a more detailed level, the vertex and fragment processing parts of the pipeline
look as depicted in figure 2.3. Both vertex and fragment processors can access
various user-defined parameters that are constant during a glBegin/glEnd pair (see
[SA]). Over that, certain OpenGL states are accessible from within each program.
These states are needed, since, when enabled, the extended pipeline completely
bypasses the standard pipeline. The consequence is that for example transfor-
mations to world and screen space have to be performed manually by the vertex
program.

Both the vertex and fragment processing units operate on attributes. These are
similar to usual processor registers, some being read- or write-only, with the ex-
ception that they are written by the user for each vertex or fragment respectively.
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8 Volume Rendering CHAPTER 2

The vertex processor takes one set of input vertex attributes and transforms it to a
set of output vertex attributes in a way described by the vertex program. For each
input vertex exactly one output vertex is generated, there is no way to spawn or
to delete vertices, though each vertex may be moved outside the viewing frustum,
effectively discarding it when clipping occurs.

During rasterization the set of output vertex attributes becomes converted to a se-
ries of fragment attributes. These include fragment position, colors and the so
called interpolators. The term interpolator refers to any per vertex entity that is
interpolated across rendering primitives. This includes the classical texture co-
ordinates, but since the user chooses the semantics of such interpolators they are
not limited to just texture coordinates. Current hardware supports up to 8 user-
definable interpolators.

The fragment processor subsumes texture fetching and texture compositing of the
fixed function pipeline, transforming fragment attributes to a RGBα output color
and optionally a depth-value. A fragment program may even choose to discard
the fragment based on custom computations. If a fragment program chooses to
modify the input fragment depth value, the early depth test that is otherwise per-
formed during the rasterization step is not available.

The classical notion of texture units has proven itself to be too restrictive in the
presence of fragment processors, and has been consequently substituted by the no-
tion of samplers and texture images. Current hardware supports up to 16 texture
images that may be accessed by sending texture coordinates to a sampler. This
also releases hardware designers of the burden to implement exactly the same
number of samplers as there are texture image units. Over that it is a logical im-
provement of dependent textures, as texture coordinates may be arbitrarily com-
puted - including results from earlier texture fetches.

Limitations of Programmable Graphics Hardware

While the model of having vertex and fragment processors is very powerful, it has
some limitations and restrictions that are worth noting.

First, everything that was performed automatically in the fixed function pipeline
has now to be programmed by hand. This is only a minor restriction, since pro-
grammability offers a lot more flexibility, but it requires some of the instruction
slots to be filled with standard transformations.
Second, the length of both vertex and fragments programs is restricted. Vertex

Jens Schneider - Kompressions- und Darstellungsmethoden für hochaufgelöste Volumendaten



CHAPTER 2 Volume Rendering 9

programs currently support up to 65536 instructions, fragment programs up to
1024, either one depending on vendor specifications.
Third, only vertex programs support loops by now. However, these may be un-
rolled by the driver before translating them to native instructions.
Fourth, branching and conditionals are supported by both vertex and fragment
programs, but usually all branches will be evaluated. This also includes that frag-
ment programs do not terminate when the current fragment is being discarded, but
are instead fully executed.
Fifth, development of vertex and fragment programs in the assembly language
itself is a combinatoric nightmare and very prone to errors. It is thus an important
direction to develop a high level shading language. For about two years nVidia
performs very active research in this area that led to the development of the Cg
Shading Language. Cg was inspired by DirectX’s HLSL3 and is itself an influence
for GLslang4. The Cg and GLslang projects are still under active development
[CSF, nVia, OGLa].
Sixth, the alpha test will not be hardware accelerated when using fragment pro-
grams. The discard option has to be used instead.
Seventh, access to neighboring vertices and fragments is non-trivial due to pipelin-
ing issues.

Besides these general restrictions other vendor specific limitations may exist. For
example the ATi Radeon 9700 has a fragment instruction limit of 64. This limit
refers to native instructions, however, and a single assembler instruction may be
mapped to several native instructions. On the other hand the restriction was alle-
viated on the Radeon 9800 model. ATi cards also have a texture indirection limit
of 4. A texture indirection is any texture access in a chain of dependent texture
fetches. A single texture fetch has a texture indirection level of 1. These vendor
specific limits can be queried along with the program requirements in order to
determine if a program will be executed hardware accelerated.

2.3 Scalar valued Volume Data

Scalar valued volume data can be seen as sampling of a three-variate function:
Φs : N

3 → R. In the case of a regular grid serving as sampling domain,
the volume is partitioned into cubical voxels5 that contain one scalar sample at
each corner6. The respective samples can thus be accessed at discrete positions

3High Level Shading Language.
4GL shading language, part of the OpenGL 2.0 proposals.
5The term voxel is an artificial abbreviation for “volume element” in analogy to “pixel”.
6By convention, others such as staggered grids may assign one sample per voxel.
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10 Volume Rendering CHAPTER 2

(i, j, k) ∈ N
3. Such data can be either acquired by measurement using computer

tomography (CT), positron emission tomography (PET) or magnetic resonance
imaging (MRI) devices, or by physical simulation such as computational fluid dy-
namics (CFD). To approximate values inside each voxel, an interpolation kernel
κ is needed. Usually κ will be a nearest neighbor or trilinear filter. The original
data Φ(X) can then be reconstructed approximately by (κ � Φs)(X).

For scalar valued data the two most common options are either to render the entire
volume semi-transparently, assigning an opacity value o to each node depending
on properties either known a priori or extracted from the data itself, or to render
a so-called iso-surface, i.e. to render the set of points {X : Φs(X) − s = 0} and
discard others [Bli82]. The parameter s is called the iso-value corresponding to
the iso-surface. The first method is a strict superclass of the second, since a binary
opacity function of the form

o (Φ(x)) =
{

1 if Φ(X) − s = 0
0 else

(2.1)

can be applied that sets all points on the iso-surface to maximum opacity, while
all others remain fully transparent. Application of such an opacity function can be
extended to the notion of a transfer function. A transfer function τ : R →RGBα
is commonly defined to map any given scalar sample to a full color vector, where
α ≡ 1 − o is called the transparency. During rendering, the transfer function
is evaluated at each sample, and the resulting color is substituted for the sam-
ple. Since the data is reconstructed using an interpolation kernel, there are two
possible ways to evaluate the transfer function. These are called pre-shaded or
post-shaded, depending on whether the transfer function is evaluated first:

RGBαpre(X) = (κ � τ(Φ)) (X) (2.2)

or the interpolation kernel:

RGBαpost(X) = τ(κ � Φ)(X) (2.3)

In the case of using a nearest neighbor filter for κ, these functions converge to a
single one. Usually a post-shaded application of τ results in better visual fidelity,
as interpolation errors can be corrected to some extend by a cleverly chosen trans-
fer function.

Designing an appropriate transfer function can be a tedious task, and it is regarded
very important by the visualization community that changes to the transfer func-
tion can be applied interactively in order to speed up the design process.
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CHAPTER 2 Volume Rendering 11

2.4 The Volume Rendering Equation

Figure 2.4: Over versus Under Operator. The left image of the skull dataset was
rendered using back to front ordering (Over operator), while the right one was rendered
using front to back ordering (Under operator). Both images were made using 400 slices
and the same transfer function. Obviously more structures are visible in the right image.

Once color and opacity is computed for each voxel, these values have to be pro-
jected and composited in order to calculate an image on the viewing plane. This is
done by solving the Volume Rendering Equation that was derived by Kajiya based
on physical transport theory in [Kaj86]. Under the assumption that scattering can
be neglected, the radiance can be expressed for the post-shaded case as

L(λend) =

∫ λend

0

τc(Φ(X(λ))) · e−
∫ λ
0

τo(Φ(X(λ′)))dλ′
dλ (2.4)

where

X: {X} describes a ray that is parametrized by λ.

Φ: The reconstructed data, Φ(X) = (κ � Φs)(X).

τc: The color part of the transfer function, τc : R → RGB.

τo: The opacity part of the transfer function, τo : R → α.

More general optical models can be found in [Max95]. Approximating equation
2.4 by a Riemann sum yields

(
e

∑
... ≡ ∏

e...
)

L(λend) =

n∑
i=1

τc(Φ(Xi))ΔX ·
i∏

j=1

e−τo(Φ(Xj))ΔX (2.5)
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Substituting
αi ≡ 1 − e−τo(Φ(Xi))ΔX

Ci ≡ τc(Φ(Xi))
αi

ΔX

(2.6)

in equation 2.5 yields

L(X) =
n∑

i=1

αi · Ci ·
i∏

j=1

1 − αj (2.7)

By traversing each ray X(λ) back to front, this results in the Over Operator
[PD84]:

Cn+1 = αin · Cin + (1 − αin) · Cn (2.8)

where αin and Cin refer to transparency and color of the current ray segment. If
the ray is traversed in front to back direction, the Under Operator is obtained:

Cn+1 = (1 − αn) · αin · Cin +Cn

an+1 = (1 − αn) · αin +αn

(2.9)

Krüger notes in [Krü02] that if C and α are each quantized using 8 bits, the Over
and Under Operators no more yield the same result. This is due to the fact that
the Under Operator accumulates quantization and roundoff errors at the back end
of the volume, while the Over Operator accumulates its inaccuracies at the front.
Another reason for preference of front to back compositing is the fact that it uses
a higher precision, as an alpha buffer is utilized. Since no term αn occurs in
equation 2.8, the Over operator can not take advantage of an alpha buffer. See
figure 2.4 for a comparison.

2.5 Raymarching

In the last section the Volume Rendering Equation was discretized and the Over
and Under operators were derived. These describe how a single ray segment con-
tributes to the final image. Rendering the volume can now be reformulated as the
task of evaluating either one of these operators. The simplest solution is called ray-
marching, as formulated for volume densities in [KvH84]. Raymarching is very
similar to raytracing. But instead of discretizing each ray only at ray/geometry
intersection points, the presence of participating media requires each ray to be
discretized based either on some error metric while accumulating L(X), or on a
fixed step size. While raymarching itself is relatively slow, it yields superior image
quality, and can be significantly sped up, especially when rendering iso-surfaces.
This was impressively demonstrated in [WS01, Sev03], where texture mapping
hardware was applied to speed up searches for ray/volume and ray/iso-surface
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intersections. In addition, raymarching is not necessarily restricted to the Over
and Under operators that effectively solve the Volume Rendering Equation using
a simple Euler integrator. Since the integration step of the raymarching algorithm
is usually executed on the CPU, arbitrary numerical integration schemes can be
applied, offering good potential for quality/speed tradeoffs. Recent graphics pro-
cessing units (GPUs) have just reached a level of programmability that allows for
performing the entire raymarching algorithm on the GPU. A description and im-
plementation of such a technique can be found in [nVib].

2.6 Hardware Assisted Volume Rendering

Most of the time interactive frame rates are more important than excessively high
image fidelity. Hence it is not surprising that a lot of research was done in or-
der to speed up the rendering process. The probably most promising direction
is slice-based direct volume rendering [CCF94, WVGW94, CN93, WE98]. This
class of approaches is based on the fact that if the Over or Under operator is used
to obtain images, ends of ray segments with a fixed step size lie either on concen-
tric, equidistant shells around the camera position 7 or equidistant planes8. Either
case requires resampling the data on these intermediate slices by convolving the
sampled data with an appropriate interpolation kernel κ. If only lower order in-
terpolation kernels are needed, this can be efficiently done using either 2D or 3D
texturing hardware.

Spherical Sampling Planar Sampling

Figure 2.5: Spherical versus Planar Sampling. Only spherical sampling results in
equal intervals on the blue and red rays.

The shells needed to apply perspective correct projections are expensive, since

7If a perspective corrected projection is applied.
8If an orthographic projection is applied.
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they have to be triangulated9, possibly resulting in a large geometry processing
overhead. While volume rendering speed is clearly bound by the available fill-
rate, it is still a very undesirable effect. On the other hand, perspective correction
is a very important feature when interactively changing the camera position, be-
cause it gives an additional depth cue. As a consequence it has become common
practise to approximate the shells by slices even when perspective correction is
applied (see figure 2.5).

2.6.1 Rendering using 2D Textures

If only 2D textures are supported on the target platform, the rendering algorithm
bears some resemblance of image based rendering. The sampled volume is rep-
resented by three axis-aligned stacks of 2D textures, each one containing slices
parallel to the YZ, XZ and XY planes respectively. During rendering, the stack
whose normal forms the smallest angle with the viewing direction is chosen, ro-
tated, and its slices are sorted either back to front or front to back depending on
which compositing operator is to be applied. Each slice is then rendered as a
texture mapped quad and blended together with previous ones. The advantage
of this method is its sheer speed, since the gaming industry has successfully en-
forced the development of efficient 2D texturing hardware during the last years.
The drawback is that valuable texture memory is wasted, since three copies of
the volume have to be stored. In addition artifacts that are due to the switching
of stacks can be observed [Krü02], and trilinear interpolation requires additional
slices [RSEB+00].

2.6.2 Rendering using 3D Textures

If 3D textures are supported, the rendering algorithm becomes a lot more elegant.
The 3D texture contains the entire sampled data set, and can be rotated to arbitrary
positions. The 2D image is then constructed by blending a fixed number of tex-
tured clip polygons together (see figure 2.6). These clip polygons are obtained by
clipping planes parallel to the viewing plane against the boundaries of the volume
(usually a cube). The resulting polygons are convex, and can thus be efficiently
triangulated and rendered as a triangle fan10. While it is possible in general to cal-
culate these clip polygons on the graphics hardware, a CPU-based approach yields

9Virtually all graphics hardware breaks rendering primitives down to triangles.
10A triangle fan refers to a series of triangles connected in a special manner. By removing

connectivity redundancies fans can rendered very efficiently.
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Figure 2.6: Rendering using 3D textures. From left to right, 5,10 and 20 clip polygons
are blended together with constant opacity.

better performance [Krü02]. Using 3D textures has several advantages. First, it
does not waste any texture memory. Second, the resulting image fidelity is higher
when compared to a 2D based approach. Third, real trilinear interpolation can be
used without requiring additional slices. The drawback is that 3D texture mapping
is usually slower than 2D texture mapping by about 20% to 40% on average.

2.6.3 Applying the transfer function

Application of the transfer function can also be realized using graphics hardware.
In the OpenGL API several extensions exist that allow for both post-shaded and
pre-shaded transfer functions. This is very important, since evaluating the trans-
fer function on the CPU would result in wasting performance and memory, as
each voxel had to contain a RGBα-vector instead of a single opacity. On nVidia
hardware pre-shaded application is possible via so called paletted textures. Palet-
ted textures store an index into a 1D color lookup table for each voxel. These
lookup tables are currently restricted to 8bit indices. The hardware then fetches
colors from that lookup table in advance to filtering. While being virtually free
when it comes to rendering performance, paletted textures are supported via the
EXT paletted texture extension that is not available on all hardware11. On all
cards supporting at least pixel shaders 1.312 post-shaded transfer functions can be
realized using so called dependent textures. Dependent textures use the result of a
previous texture fetch as texture coordinates, hence the name. With the recent ad-
vent of higher texture and pipeline precision of up to IEEE 32bit float, dependent
textures are no longer limited to 8bit indices, allowing for higher resolution post-
shaded transfer functions. In either case only a small color table has to be sent to

11For example it is not supported by current ATi GPUs.
12All DirectX 8.0 compliant cards such as nVidia since GeForce3 and ATi since Radeon 8500.
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the graphics subsystem when the transfer function was changed, thus providing
interactivity. The advantages of multi-vendor support and high precision make
post-shaded transfer functions the first choice in state-of-the-art volume render-
ing. They have been successfully applied even for high quality hardware assisted
rendering in [EKE01].
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Chapter 3

Compression Methods for Volumes

3.1 Introduction

In this chapter several compression schemes will be presented and the choice of
vector quantization as a general purpose compression tool will be motivated. At
the current time, only the s3tc standard is supported natively by most hardware
vendors, though vector quantization was supported by the now discontinued Pow-
erVR2 chip [Pow], that was the graphics core of SEGA’s Dreamcast. All other
methods rely on a decoding step on the CPU or, with the recent advent of fragment
programs, on the GPU. Since the complexity of algorithms that can be executed
on the GPU is currently restricted, a careful analysis of the decoding step is also
necessary.

3.2 S3 Texture Compression Standard

The demand for saving valuable texture memory was already recognized a while
ago, and consequently current consumer class graphics hardware supports decod-
ing of compressed textures. This lead to the S3 texture compression standard
(s3tc), that eventually became a part of the DirectX API and is available via the
GL EXT s3tc and GL ARB texture compression extensions to the OpenGL API
[ARB]. The intention was to offer a simple compression scheme to fit either
more or larger textures into texture memory. However, a significant degradation
in image fidelity can be easily observed. This lead to the consequence that most
applications chose either to use texture compression and higher texture resolutions
or to use no texture compression at all. From a numerical point of view the S3
texture compression scheme is catastrophic, and accordingly it is no secret in the
community that it is not suited at all to compress normal maps (see figure 3.1).
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S3tc implements a special form of so called block truncation codes. During the
encoder process, the image is decomposed into blocks of 4×4 pixels. S3tc supports
five formats specifying how these pixels are treated.

DXT1 Format

The DXT1 format supports compression of RGB-data with an optional binary α
support. The 16 pixels of each block are interpreted as 3D-vectors in RGB-space,
and a straight line is fitted to them. On this line two points are chosen and stored
as 16bit values C0 and C1 (565-RGB). Now each block may be stored using one
of two modes that can be identified by either1 (a) C0 > C1 or (b) C0 ≤ C1.

In mode (a), four static interpolation weights
(
0, 1, 1

3
, 2

3

)
are used to describe a

total of four colors C0 through C3 on the line C0C1. For each pixel X in that
block, the color Ci is chosen that minimizes the metric δ(X, Ci) = ‖X − Ci‖2

2,
and the respective index of that color is stored as 2bit value per pixel. In this mode
if alpha support is enabled the alpha value is always set to 1.

In mode (b), three static interpolation weights
(
0, 1, 1

2

)
are used to describe three

colors C0 through C2 on the line C0C1. C3 is set to black. If alpha is supported it
is set to 0 if and only if C3 was encoded, otherwise it is set to 1.

Obviously each block is stored using 64bits, and consequently the compression
ratio is 6:1 for RGB and 8:1 for RGBα.

DXT3 Format

The DXT3 format supports only compression of RGBα-data. Compression of the
RGB part proceeds as described for the DXT1 format. The alpha part is stored in
64bits per block as 4bit per pixel uncompressed alpha values. The compression
ratio is 4:1.

DXT5 Format

This format also supports only RGBα-data. The RGB part is compressed as de-
scribed for the DXT1 format. The alpha part is compressed similar to the RGB
part. First two 8bit alpha values are selected and stored as α0 and α1. Each alpha
block may be stored using either mode (a) α0 > α1 or mode (b) α0 ≤ α1.

1Interpreting C0 and C1 as 16bit scalar value each.
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In mode (a) eight interpolation weights
(
0, 1, 1

7
, 2

7
, 3

7
, 4

7
, 5

7
, 6

7

)
are used to describe

values α0 through α7 on the line α0α1. For each pixel the closest value is chosen
and encoded using 3bits.

In mode (b) the interpolation weights are
(
0, 1, 1

5
, 2

5
, 3

5
, 4

5

)
. α6 is set to 0 and α7 is

set to 1. Each value is also encoded using 3bits.

The compression ratio for the DXT5 format is the same as for the DXT3 format.

DXT2 and DXT4

The DXT2 and DXT4 formats are the same as the DXT1 and DXT3 formats, re-
spectively, but store premultiplied alpha values. They are currently not supported
by the EXT texture compression s3tc and ARB texture compression extensions.

Conclusions

Figure 3.1: S3tc Examples. The two images to the left show a Blinn-Phong shaded
iso-surface of the 2562×128 engine dataset. For the first one the engine was rendered
uncompressed, while for the second one gradients were stored in a RGB texture and com-
pressed using the s3tc DXT1 format. The two images to the right show a smoothly varying
texture. The left one is uncompressed while the right one is encoded using s3tc DXT1.

As a consequence to the linear fitting process, data not closely scattered along a
line will not be reproduced correctly. This is especially true for unit normals (see
figure 3.1), since in that case the data is distributed on a sphere. However, s3tc was
designed with 2D texture maps in mind, for which the method works quite well,
as long as textures show no smooth color gradients. A serious drawback is the
fact that only very specific compression ratios are supported, making reasonable
fidelity/compression tradeoffs impossible. The advantage of s3tc is that encoding
can be done on the fly by the driver, and is usually very fast. The decoding step is
virtually free. It might even sometimes be faster to render from a texture in s3tc
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format since both blocking and compression lead to better cache coherences.

Though it seems intuitively clear how s3tc can be extended to 3D2, a series of
problems arise. First, this extension to 3D textures is only supported through
the NV texture compression vtc, that is no multi-vendor extension. Even worse,
since all s3tc modes require at least an RGB mode, they are completely unusable
for the compression of scalar volume data. Though when extracting iso-values a
lighting model is commonly evaluated and thus gradients are needed, the com-
pression artifacts are so severe that it has become common practise to offer s3tc
at most as an option in current volume visualization tools.

3.3 Transform based Methods

Transform based methods derive their name from the fact that prior to quantization
the input data is transformed from one space into another. The most popular trans-
forms are orthonormal and linear, making a matrix formulation of the transform
process very simple:

forward transform : Θ = A · X
inverse transform : X = At · Θ

(3.1)

where A is the matrix of transform coefficients. Since A orthonormal, At = A−1.
X is the vector containing the input sequence, while Θ contains the transformed
sequence.

The motivation of such a transform is to achieve as much energy compaction as
possible. The energy ξ of a real-valued input sequence is defined to be the summed
squares of the sequence:

ξ := X t · X (3.2)

However, orthonormal transforms are energy preserving, that is

ξ′ = (A · X)t · A · X = X t · At · A · X = X t · X = ξ (3.3)

Hence the efficacy of these transforms does not depend on the total energy ξ,
but on how ξ is distributed in the sequence. Thus a meaningful measurement
of the energy compaction of a given transform can be defined as the ratio of the
arithmetic to the geometric mean of the variances σ2

i of the transformed sequence.

2Namely by using 4 slices of 4×4 texel blocks.
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This entity is called the transform coding gain gTC [JN84]:

gTC =
1
n

∑n
i=1 σ2

i

(
∏n

i=1 σ2
i )

1
n

(3.4)

The transform coding gain does not depend solely on the choice of the trans-
form, but also on the characteristics of the input sequence to be transformed.
The Karhunen-Loéve transformation (KLT) [AR75] can be shown to result in the
best energy compaction of all linear transforms, minimizing gTC for any input se-
quence [JN84]. Obviously the KLT needs to perform some analysis of X before it
can be applied in order to adapt to the characteristics of the data. More precisely,
the KLT matrix is the eigenvector basis of the auto-covariance matrix of X . These
terms will be made clear in section 4.2.1.

Other popular transforms include the discrete cosine transformation (DCT) and
discrete sine transformation (DST):

[ADCT ]j,k :=

⎧⎪⎨
⎪⎩

√
1
n

cos (2k)(j−1)π
2n

j = 1, k = 1, 2, . . . n

√
2
n

cos (2k)(j−1)π
2n

j = 2, 3, . . . , n, k = 1, 2, . . . n

[ADST ]j,k :=
√

2
n+1

sin jkπ
n+1

j, k = 1, 2, . . . n

(3.5)

Both can be seen as an approximation to the KLT, the DCT assuming high auto-
correlation of X and the DST assuming low auto-correlation of X . Often they are
used as complementary transforms. Since the KLT can be shown to be optimal,
it has to be motivated why DCT and DST are so popular. From equation 3.5 it is
clear that both do not depend on the input data, and can be represented by fixed
matrices for fixed dimension n. As consequence only the dimension and not the
matrices have to be transmitted to the decoder, saving valuable bits. In addition
there exist efficient evaluation schemes that exploit periodic recurrencies of the
sine and cosine terms. They are very similar to the Fast Fourier Transform (FFT)
[PTVF02], and need only O(n log n) instead of O(n2).

Conclusions

A general problem with transform based approaches is that it is impractical to
compute a single n×n matrix for the entire sequence. Even if the resulting ma-
trix is sparse, it will not necessarily be diagonal, preventing the transform from
being computed in linear time. All practical transform methods thus split the in-
put sequence into blocks of m neighboring input values, hoping that those blocks
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share similar characteristics. It can hence be argued that arbitrary input sequences
are transformed into sequences of m-dimensional vectors. These vectors are then
transformed, resulting in only a few components being significantly large3. The
compression then proceeds by assigning more bits to larger coefficients than to
smaller ones. The transformation has been successful if it tends to produced large
coefficients at same components of the m-vectors, producing patterns of high en-
ergy content that can be compressed well.

Transform methods can be used as a de-correlation step for both lossless and lossy
compression, though they are definitely more popular in the context of lossy com-
pression. Especially the DCT and DST decompose the input sequence into bands
of different wavelength, similar to the Fourier transform, making it very easy to
employ psycho-visual models to accommodate for the fact that the human visual
system is less suited to determine lots of small details. This is for example ex-
ploited in the jpeg image format [JPEG].

3.4 Vector Quantization

Vector quantization is a very vast field. Though this work is as much self-contained
as possible, a more general introduction can be found in [Say00, GN98].

A vector-quantizer is commonly introduced as an encoder mapping αC : �n → �
and a decoder mapping βC : � → �′n, where � is the input alphabet4 and �′

is the output alphabet of the quantizer. These alphabets need not to be identical,
though it is appropriate for most applications to assume that � ≡ � ′ ⊂ R. �
specifies some index set, usually a subset of N, and C a codebook that may ei-
ther be generated during the computation of the encoder or may be known a priori.

Obviously, αC takes a n-dimensional vector as input and maps it to a single index
from �, whereas βC reverses this process, at least to some extent, since vector
quantization is usually a lossy process. Restricting vector quantization to the case
where no codebook is known a priori, encoding an ordered input set of vectors is
the task of partitioning the input set with respect to αC and to calculate a code-
book C. To maintain as much fidelity as possible of the input data, the encod-
ing process should also be designed to minimize the quantization error inherent
to αC ◦ βC . This suggests treating vector quantization as a non-linear data fit-
ting process to minimize the residual distortion with respect to some error metric
δ : �n × �n → �. The most common distortion metric used for data fitting

3This is the practical result of energy compaction.
4Since input and output will be represented discretely.
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CHAPTER 3 Compression Methods for Volumes 23

processes is the squared-distance metric δ(X, Y ) �→ ‖X − Y ‖2
2, that provides an

intuitive measurement of distortion. The residual distortion of an encoder/decoder
pair is then given by

d =
∑
X∈I

δ(αC ◦ βC(X), X) (3.6)

It has been known for long that vector quantization is an useful tool in many ap-
plication areas, including computer graphics, and accordingly there exists a vast
amount of literature dealing with theoretical issues as well as practical ones. How-
ever, computer graphics and scientific visualization applications limit the number
of usable approaches in several ways. First, such applications are usually very
time critical. Thus, the decoding step should be as fast as possible and it should
take place on the graphics chip itself in best case, to save valuable bandwidth
across the graphics bus and to increase cache coherences. Second, regarding the
huge amount of data to be processed, the encoding step should be fast, too, since
many applications are sensitive even to preprocessing time.

While the first criterion can be easily met by requesting that the encoder produces
a fixed bitrate r, such that |�| = 2r, several shortcomings of previous approaches
become obvious in the context of the second criterion. These will be discussed in
chapter 4.

Obtaining higher Dimensions

While encoding 3D-vectors in RGB-space is intuitive enough, it does not result
in the desired fidelity. Encoding scalar values from volumetric data would even
be less efficient, as a scalar quantizer would have been sufficient for this task. In
contrast it is known from other coding schemes, for example those presented in
section 3.3, that grouping adjacent pixels into blocks and treating each block as
new input element can be very effective, as these pixels usually show high correla-
tion. The same is true for adjacent voxels in the case of volumetric data. It is thus
reasonable to block n3 voxels together to form a new input vector of dimension n3

in the case of scalar data and 3n3 in the case of RGB-data. Since for RGBα-data,
such as pre-segmented RGB images, the RGB channels are usually uncorrelated
with the α channel, these two have to be encoded separately.

By such dimension elevation, dramatically better fidelity can be achieved using
the same bitrate. This is demonstrated in figures 3.2 and 3.3.
Figure 3.2 shows a 768×512 RGB picture of a parrot. For the middle image, 3D
RGB-vectors were quantized using a codebook of 4 RGB-vectors, thus resulting
in 2 bits per pixel. For the right image, 2×2 3D RGB-vectors were blocked to-
gether to form 12D-vectors that were quantized afterwards using a codebook of
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Figure 3.2: Comparison between per Pixel and per Block Quantization (I). Orig-
inal parrot image (left), compressed using 3D RGB-vectors (middle) and using 12D 2×2
RGB blocks (right). The bitrate was 24bpp (1152KB), 2bpp (96KB) and 2.06bpp (99KB)
respectively.

Figure 3.3: Comparison between per Pixel and per Block Quantization (II). Orig-
inal confocal microscopy scan (left), compressed using 4D RGBα-vectors (middle) and
32D 2×2×2 RGBα blocks (right). The bitrate was 32bpp (32MB), 2bpp (2MB) and
1.01bpp (1MB) respectively.

256×4 RGB-vectors, resulting in a bitrate of 2.06 bits per pixel.
Figure3.3 shows a 512×512×32 RGB confocal microscopy scan. An α channel was
generated by applying a smooth luminance-based transfer function. The α chan-
nel is thus correlated with the RGB channels and the dataset can consequently
be compressed without the need to encode RGB and α channels separately. The
resulting datasets were rendered using a slice based direct volume rendering ap-
proach. The middle image was quantized as 4D-vectors using a codebook with
4 entries. The right image was quantized by blocking 2×2×2 voxels together
to form 32D-vectors. A codebook of size 256×8 RGBα-vectors was used. The
bitrates were 2bpp and 1.01bpp, resulting in a compression ratio of 31.75:1 for
the right image.

Obviously the fidelity is in both cases dramatically better in the right image. Intu-
itively this can be explained by the fact that in the left image loss of information
automatically means loss in color resolution, while in the right image spatial res-
olution can also be reduced. At a more theoretical level, this phenomenon may
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be seen as part of the famous Bucklew’s high rate vector quantization mismatch
[BW82]:

At high fixed bitrates the Zador rate/distortion theory [Zad66], characterizing the
optimal tradeoff for fixed vector dimension and variable codebook size, converges
with the Shannon rate/distortion theory characterizing the tradeoff for fixed code-
book size and variable vector dimension. This means that generating high vector
dimensions by blocking large groups of pixels together has (for high bitrates) the
same effect as increasing the codebook size for vectors with fixed dimensionality.
Since the parrot was not encoded at a high bitrate, the blocking scheme is supe-
rior to the other, but by increasing the bitrate they will eventually converge. As a
historical remark, Zador’s rate/distortion theory in some way gave birth to prac-
tical vector quantization, as it was believed before that vector quantization could
only yield better results than scalar quantizers at high dimensions (e.g. several
hundreds or thousands) - for which the computational burden of the encoding step
becomes overwhelming compared to scalar quantizers.

Conclusions

Vector quantization offers a very fine fidelity/compression tradeoff. This was
demonstrated by datasets compressed with ratios between 12:1 and 31.75:1. Over
that, vector quantization can result in images with a fidelity comparable to s3tc
at a lower bitrate, or in images showing dramatically better fidelity at the same
bitrate. In addition vector quantization is general enough to handle nearly arbi-
trary data types: scalar-valued, vector-valued, multi-modal, etc., as long as vector
components are correlated one with another. Vector quantization was even used
to compress normal maps and to perform efficient software per pixel-lighting in
[TCRS20].

3.5 Hierarchical Methods

Hierarchical methods perform a decomposition of the data into discrete levels of
detail. This is usually done by convolving the data with a smoothing and a differ-
entiation filter kernel, resulting in a smooth and a detail part of the original dataset.

Smoothing data means to discard high frequency informations, so the smooth part
can consequently be sub-sampled without further loss of information, resulting in
a more compact representation. The differentiation kernel is designed such that
the detail part still contains the information removed from the smooth part, thus
making it possible to reconstruct the original data exactly. However, the detail
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part has a more compact energy spectrum, making it amenable to compression.

In the field of data compression, hierarchical methods are successfully used to
de-correlate the data prior to the application of either lossless or lossy coding
schemes. Over that they naturally offer very good opportunities for performance/
fidelity tradeoffs during the encoding step, since entire levels of detail can be
skipped depending on the desired reconstruction fidelity.

The most popular hierarchical decompositions are wavelet transforms and the
Laplace decomposition. For reasons that will become obvious in section 3.6
wavelet transforms are not further discussed. Refer to [Say00] for a good intro-
duction to the applications of wavelet transforms in the field of data compression.

Figure 3.4: Gaussian and Laplacian Pyramids in 2D. The Gaussian (top)is obtained
by repeated application of the reduce2 operator, while the Laplacian (bottom) is obtained
by calculating the errors Δ(n)

s (blue encodes positive values, red negative ones).

The Laplace decomposition was successfully applied to volume compression in
[GY95]. In the presence of data sampled on a regular grid Φs = Φ

(1)
s (k1, k2, k3)

the Laplace decomposition is based on two discrete filter operations:

Φ(n+1)
s = reducem

(
Φ(n)

s

)
(K) :=

m∑
k′
1=1

m∑
k′
2=1

m∑
k′
3=1

gm (K ′) · Φ(n)
s (m · K + K ′)

(3.7)
where gm is a normalized Gaussian or a box filter kernel with support m3, and

expandm

(
Φ(n)

s

)
(k1, k2, k3) := Φ(n)

s

(⌊
k1

m

⌋
,

⌊
k2

m

⌋
,

⌊
k3

m

⌋)
(3.8)
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Repeated application of reducem yields the Gaussian pyramid

Gm =
{
Φ(i)

s

}n

i=1
(3.9)

The expandm operation may be seen as a pseudo inverse, since it reconstructs
each next higher level in the Gaussian pyramid with a residual reconstruction
error of Δ

(n)
s = Φ

(n)
s − expandm(Φ

(n+1)
s ). The set of these Δ

(n)
s together with

the smoothest level of the Gaussian pyramid form the Laplacian pyramid

Lm =
{
Δ(i)

s

}n−1

i=1
∪ {

Φ(n)
s

}
(3.10)

Same levels of the pyramids have same resolutions, that is if Φ
(1)
s and Δ

(1)
s have a

resolution of (r, s, t), then level j has a resolution of (� r
mj−1 �, � s

mj−1 �, � t
mj−1 �).

This is an important fact, because a full pyramid will have logm(min{r, s, t}) + 1
levels, and can be constructed in O(n · logm n), where n = r ·s · t. A full Gaussian
and Laplacian pyramid for the 2D case can be seen in figure 3.4.

The reconstruction of data given by a Laplacian pyramid then proceeds by evalu-
ating

Φs = expandm(n−1)

(
Φ(n)

s

)
+

n−1∑
i=1

expandm(i−1)

(
Δ(i)

s

)
(3.11)

Conclusions

The Laplace decomposition is very attractive as a data de-correlation method,
since it can be computed very efficiently. Over that, it offers a rather intuitive level
of detail structure that can be exploited for various multi-resolution approaches.
As was demonstrated in [GY95], it is possible to assign less bits for higher fre-
quency levels in the Laplacian pyramid than for lower frequency ones. Since
the smooth levels contain less samples, such a scheme can result in impressive
compression ratios. However, it is not clear how these bits have to be assigned.
Possible solutions include scalar and vector quantizers for the case of lossy com-
pression, as well as Huffman codes for lossless compressions. The assignment of
bits, and thus the compression of data stored in a Laplacian pyramid representa-
tion, is further discussed in chapter 5.
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3.6 Decoder Algorithms Reviewed

S3 Texture Compression

For the s3tc, the decoding algorithm can be executed entirely on the hardware. For
each texel to be reconstructed the corresponding 4×4 block is fetched. The values
C0 and C1 are decoded to 24bit RGB-vectors, and the interpolation specified by
the 2bit index of the current texel is evaluated. The resulting vector is then applied
as RGB color for this texel. The alpha value is decoded similarly.

Obviously, each 4×4 block may be cached, as it is very likely that the next texel
rasterized also falls into the same block. Linear interpolation, however, may be
expensive because up to 4 blocks have to be accessed for texels lying on a corner.
On the other hand, at least two of the four blocks are good caching candidates,
as the raster scan will sweep them in the near future. For the case of 3D textures
the decoder must only be extended in the presence of a three-linear interpolation
kernel, since up to 8 blocks have to be accessed. Due to the fact that the 3D vtc
format does not encode 4×4×4 3D-blocks, but rather 4 4×4 2D-blocks, no other
changes have to be made.

The specification of the EXT texture compression s3tc makes no statement about
MIP5 mapping support, which might be expensive to support.

Transform based Methods

The problem with decoding transform coded data is that a m-block has to be ac-
cessed each time a texel is sampled. While this is also true for the s3tc, transform
methods rely on a full matrix-vector product for each texel in the block to be ex-
ecuted, thus making it necessary to access any entry in the respective block while
st3c only accesses one entry. This makes transform methods very expensive to de-
code in hardware, regardless of the actual coding scheme that introduces certain
additional processing requirements.

It is thus no surprise that only very specific transforms are handled at all by the
hardware. Namely only the DCT and inverse DCT are supported by the hardware,
but only for video playback and recording purposes. They have not yet made
accessible from within the OpenGL or DirectX APIs for general purpose trans-
formation. It is over that not clear, how the video functionality of current graphic
hardware interacts with the fragment processors that are needed to perform the

5Multum In Parvo. A filtering method to avoid aliasing during texture minification.
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actual decoding of each block before the inverse transform occurs.

Regarding the computational burden that transform methods impose on fragment
processors, it should be mentioned that a fast Fourier Transform (FFT) can be
implemented using fragment processors [Hea]. The resulting algorithm needs
log2 width + log2 height + 2 passes. Heart states that it runs in real-time on a
512×512 domain, but the algorithm is not applicable to volume compression,
since the associated decoding cost would become overwhelming.

Vector Quantization

From a theoretical standpoint the decoding step of vector quantization is etraor-
dinary easy. As is demonstrated in section 3.4, the decoder only has to apply βC

to the encoded sequence, essentially performing a single lookup into the code-
book C. However, in the context of texture compression, dimension elevation is
very important, resulting in high dimensional codebooks that are no longer repre-
sentable by 1D RGBα textures. For example in the case of 2×2×2 RGB block
encoding, the codebook has a dimension of 8×RGB=24D. On the other hand, the
codebook may still be loaded as a 2D texture, for example 256×8×RGB for a
codebook with 256 entries. This codebook has then to be accessed using 2D tex-
ture coordinates, one component of which specifies the quantization region, and
the other one the relative component of the 24D-vector. This can be implemented
efficiently using fragment processing capabilities of current hardware. The com-
plete GPU-based decoding algorithm is discussed in chapter 5.

Hierarchical Methods

For hierarchical methods, the hierarchy itself can be decoded very efficiently by
the straight-forward approach of sampling a series of differently sized textures
(compare to equation 3.11). The cost of this procedure is only one texture fetch
per level. But this does not yet make a statement about how the fetched coeffi-
cients have to be decoded. This was exactly the reason not to discuss wavelets as
decomposition method further. Wavelets can be formulated as transform method,
and consequently they require a full transform to be applied that was already ar-
gued to be too expensive to compute on the GPU.

3.7 Results

To conclude several results from this chapter, a decoding algorithm can only be
ported to current GPUs if only a very compact support of the underlying com-
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Figure 3.5: Comparison between S3tc and Vector Quantization (I). Original 2562×
128 engine dataset (left) is 32MB (RGBα). Gradients were compressed using s3tc DXT1
(middle) to yield a total size of 12MB, and using a blocked 24D-vector quantizer (right)
resulting in only 9MB.

Figure 3.6: Comparison between S3tc and Vector Quantization (II). Original con-
focal microscopy scan (left) is 32MB (RGBα). The entire volume was compressed using
s3tc DXT5 (middle) to 8MB and using a 32D block quantizer (right) to 1MB.

pression domain is needed in order to reconstruct a single texel. Over that the
amount of arithmetic operations that have to be executed before the sample is re-
constructed is strictly limited at the time being.

Thus, s3tc and vector quantized textures can be efficiently decoded on the GPU,
while transform coded textures can not, as they require both a large support and
lots of arithmetic instructions. In the case of hierarchical methods it depends on
the choice of the actual compression method. If the compression method allows
for GPU based decoding, then hierarchical methods might be as well decodable
on the GPU, depending on the amount of levels present.

Since s3tc is too inflexible and totally unsuited to obtain high compression ratios,
the use of a vector quantizer is mandated, optionally making use of hierarchical
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methods to obtain both better fidelity and better compression runtimes. Figures
3.5 and 3.6 demonstrate that vector quantization applied to 2×2×2 blocks of voxels
usually results in both better compression ratio and image fidelity when compared
to s3tc.
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Chapter 4

Making Vector Quantization Fast

4.1 The LBG Algorithm revisited

The compression method proposed in this work is based on a modified version
of the Linde-Buzo-Gray-Algorithm (LBG) [LBG80]. This algorithm extends the
work on scalar quantizers by Max [Max60] and Lloyd [Llo82] and is also referred
to as the Generalized Lloyd-Algorithm (GLA). As a historical remark, the same
algorithm had been used earlier by Hilbert [Hil77], who called it Cluster Com-
pression Algorithm.

The LBG Algorithm

1. Start with an initial codebook C =
{
Y

(0)
i

}m

i=1
⊂ �n. Let I ⊂ �n be the set

of input vectors. Set k = 0, d(0) = 0 and select a threshold ε.

2. Find quantization regions V
(k)
i = {X ∈ I : δ(X, Yi) < δ(X, Yj) ∀i �= j},

where j = 1, 2, ..., m.

3. Compute the distortion d(k) =
∑m

i=1

∑
X∈V

(k)
i

δ
(
X, Y

(k)
i

)
.

4. If d(k−1)−d(k)

d(k) < ε or k > kmax stop, otherwise, continue.

5. Increment k. Find a new codebook
{

Y
(k)
i

}m

i=1
by calculating the centroids

Y
(k)
i = 1∣∣∣V (k−1)

i

∣∣∣ ·
∑

X∈V
(k−1)
i

X of each cell V
(k−1)
i . Go to (2).
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The final output of the LBG algorithm is a codebook

C =
{

Y
(k)
i

}m

i=1
(4.1)

and a partition

I =
⋃̇ 2r

i=1
V

(k)
i (4.2)

of I , where r is the fixed bitrate of the quantization. Each input vector X is then
replaced by the index i : X ∈ V

(k)
i of the associated quantization cell V

(k)
i .

Obviously, r bits are needed to encode i, but additional bits are needed to encode
the codebook. Thus the compression ratio that can be achieved is limited from
above by rinput

r
:1, where rinput specifies the bits needed to encode each input vec-

tor. To achieve that limit it has to be assumed that the number of bits needed
to encode the codebook may be neglected. The logical consequence is that the
LBG offers most room for compression/fidelity tradeoffs at high input bitrates - a
fact that is commonly exploited by blocking smaller vectors together, as already
described in section 3.4.

4.1.1 Obtaining an initial Codebook

The initial codebook for step (1) of the LBG algorithm is usually obtained by
means of a so called splitting technique originally described in [LBG80]. First,
the centroid of the entire input set is placed as single entry into the codebook.
Then a second entry is generated by adding a random offset to the first entry, and
the LBG algorithm is executed until convergence. This procedure is repeated, un-
til the desired bitrate is achieved. If the desired number of codebook entries is not
a power of two, the final step does not perturb all codebook entries by a random
offset, but only enough to reach that number of entries. To see that the quantiza-
tion becomes better with each step, Sayood notes in [Say00] that by including the
codebook from the last step it is guaranteed that the new one will be at least as
good as the previous one.

Another approach is due to Equitz [Equ89] and is called the pairwise nearest
neighbor (PNN) algorithm. In the PNN algorithm, each input vector is added to
one large codebook, and those codebook-entries that are “closest” to another are
subsequentially merged. To be more specific what “closest” means, as codebook
entries will eventually represent many input vectors, the PNN algorithm produces
clusters of input vectors that increase in size during the process. In each step,
the two clusters that result in the smallest increase in distortion are merged. Any
desired number of codebook entries can be reached very easy with this procedure,
as the codebook size decreases by exactly one in each step.
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4.2 Performance Issues

When talking of vector quantization, it may be regarded as common sense that the
encoding process is very slow, in contrast to the decoding process which is virtu-
ally free. While being basically true, it is exactly this asymmetry that is useful in
the context of hardware supported decoding. However, by carefully analyzing the
performance requirements of the encoding step, several very costly subroutines
can be clearly identified, and subsequently be substituted by more sophisticated
ones.

4.2.1 Routines for the initial codebook

While being reasonably fast, the splitting technique suffers from the so called
empty cell problem. Empty cells are the result of collapsing codebook entries dur-
ing refinement steps. These entries are not detected automatically by the LBG
algorithm, and as a consequence many codebook entries might be wasted. While
it is possible to detect and delete such empty cells explicitly, this results in more
LBG steps, because the number of codebook entries is not being doubled in each
splitting step. One method to overcome this problem is to randomly select an
input vector from the cluster with the largest distortion, but this does not guaran-
tee stable entries during the rest of the process. Over that, even detecting empty
cells may be expensive, as the entire input vector set has to be scanned for un-
used codebook entries in the worst case. This usually prohibits rapid encoding of
reasonably sized input data, though the runtime is O(n · log2 m), where n is the
number of input vectors and m the desired number of codebook entries.

The pairwise nearest neighbor algorithm suffers even more from nearest neighbor
searches. As a matter of fact the runtime is O(n2), where n is the number of input
vectors. This entirely prohibits the use of the PNN algorithm with reasonably
sized data, no matter how fast each search can be made.

4.2.2 The PCA Split

Figure 4.1: PCA Splits. A series of PCA splits to obtain a first codebook.
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As a logical consequence, a technique very similar to the splitting technique was
chosen to obtain a first codebook. But instead of random perturbation a principal
component analysis (PCA) of the underlying input data was chosen to drive the
split. This even allows to apply LBG steps as post-processing only, i.e. when a
first codebook was already obtained. In contrast the original splitting technique
relies on LBG steps even to obtain the first codebook.

The PCA split (see figure 4.1) allows to choose an optimal splitting plane in each
step with regard to the variances of the disjunct clusters already produced. The
exploitation of such a splitting process has been described in various applications
ranging from data clustering to load balancing, and it is essentially the technique
used in [PGK02] and [LKHS01] for the hierarchical clustering of point sets and
scanned BRDFs. The method is quite similar to the Karhunen-Loéve transforma-
tion (KLT) introduced in section 3.3.

The splitting technique proceeds as follows.

Initializing the PCA Split

1. Generate a first quantization cell V1 = I containing the entire input set I .

2. Calculate a first codebook entry Y1 = 1
|V1| ·

∑
X∈V1

X .

3. Calculate the initial distortion d1 =
∑

X∈V1
δ(X, Y1).

4. Initialize a double-linked to-do list by inserting the new group defined by
(d1, Y1,�1 := {i ∈ � : Xi ∈ V1}) into this list.

The idea behind the to-do list is to keep it sorted in descending order with respect
to the distortion dj . In each following PCA step the group j with the largest
distortion dj is selected to be split further on. This highest error selection is
actually a heuristic to predict the highest gain in fidelity that can be achieved by
splitting the respective group. An accurate calculation of this gain would require
to perform one split in advance, but the heuristic performs very good and is fast.
In tests the heuristic yielded only insignificantly lower signal to noise ratios when
compared to the highest gain selection, but was almost twice as fast.

The PCA Split

1. Pick the group j with the largest residual distortion dj from the to-do list.

2. Calculate the auto-covariance matrix M =
∑

i∈�j
(Xi − Yj) · (Xi − Yj)

t.
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3. Calculate eigenvector Emax corresponding to the largest eigenvalue of M.

4. Split the original group into a left and a right group with following indices:

�left = {i ∈ �j : < (Yj − Xi), Emax > < 0}
�right = {i ∈ �j : < (Yj − Xi), Emax > ≥ 0}

5. Calculate new centroids Yleft and Yright and new distortions dleft and dright.

6. Insert the two new groups into the to-do list.

7. If number of groups equals 2r, stop, else go to (1).

Figure 4.2: LBG steps. A series of post-refining LBG steps applied to the codebook from
figure 4.1. Current centroids are marked with a dark point, while the lighter ones mark
the previous centroids. Only a few steps are needed to establish stable Voronoi regions.

This procedure adds exactly one codebook entry per split. Since the splitting hy-
perplane passes through the old centroid, the sum of the new distortions will be
small compared to the old one. This was the reason for choosing a double-linked
list for the to-do list. Such a list allows for scanning the list starting with the
last element, while offering constant access to the first element. Though there is
some overhead associated with maintaining a double-linked list, the probability
that only a small fraction of the list has to be scanned in each step is very high.

Once the splitting procedure terminates, the codebook along with the residual dis-
tortion can be directly obtained from the to-do list. This initial codebook can then
be refined using a series of LBG steps (see figure 4.2).

Calculation of the largest eigenvector is best implemented using an iterative solver.
Knowing from linear algebra that the sequence

En+1 =
M · En

‖M · En‖2

(4.3)
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will converge towards the largest eigenvector Emax very quickly if the initial vec-
tor E1 is sufficiently close to Emax, a solid guess is necessary for E1. Such a guess
can be obtained by choosing the column1-vector of M that has the largest length.
This can be motivated by interpreting the resulting guess E1 as the vector E0 of a
standard basis for which M ·E0 results in the largest increase in length. Obviously
that vector is the standardvector minimizing < Emax, E0 >. This simple iterative
scheme is easy to implement and outperformed Jacobi rotations [PTVF02] both
in speed and precision. The iteration terminates when

En+1 − En

En
< ε or n > nmax , (4.4)

generating an error in the second case.

The benefits of the PCA approach are manifold.
First, a cell with low residual distortion will never be split, since it is always ap-
pended to the end of the list. In particular this includes cells that contain only one
data point and thus have a residual distortion of 0. This is an important fact, since
empty cells are only generated by the PCA split if the input sequence is exactly
represented by the codebook entries already generated. Second, if a cell is split it
is divided into two sub-cells of roughly equal residual distortions. Third, applying
some LBG steps as post-refinement to relax the centroids quickly converges to
stable Voronoi regions. Fourth, during the examples that were done for this thesis,
empty cells during the LBG post-refinement could not be observed. This is worth
mentioning, since the PCA split only guarantees that the initial codebook is free
of empty cells. But the PCA split places centroids always into densely populated
clusters, thus heuristically avoiding empty cells. Fifth, the algorithm is extremely
fast, because it avoids expensive LBG steps during the splitting process. It even
retains the runtime of O(n · log2 m) of the original splitting technique. Sixth,
the algorithm is easy to implement and can handle any dimension. Moreover,
since profiling sessions indicate that more than 80% of the total execution time are
spend during distortion evaluations, the algorithm offers huge potential for further
optimizations based on latest SIMD-technology, such as SSE/SSE2 and 3DNow.
Though these optimizations were not implemented in the current version, using
an optimizing compiler with SSE-support, such as the GNU C++ compiler [Gcc],
showed an increase in speed of about 15%.

4.2.3 Fast Searches

Regardless of the mentioned improvements the total run-time of the algorithm
is still dominated by the LBG steps, which are employed to relax the codebook

1M is symmetrical.
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entries. On the other hand, these refinements are necessary, because they sig-
nificantly increase the resulting fidelity. By carefully analyzing the LBG perfor-
mance, it becomes obvious that the LBG algorithm spends nearly all of its execu-
tion time during nearest neighbor searches.

Nearest neighbor searches are originally performed taking the entire codebook
into account. Obviously the procedure can be sped up by cleverly picking only
relevant entries and performing a nearest neighbor search that is restricted to these
entries. By further observing that it is very likely for each input vector either not
to leave the associated quantization cell or to migrate only to neighboring cells,
in the current implementation the search is restricted to a k-neighborhood of the
original cell. All k-neighborhoods are pre-calculated for each LBG step and are
then used during the nearest neighbor searches. To do so, mutual distortions are
calculated for each pair of centroids, and references to the k nearest neighbors are
established for each entry. Once the mutual calculations are done, the k nearest
neighbors are found by means of a modified QuickSort algorithm. This algorithm
is essentially the same to find the kth largest element of a list. In contrast to the
original QuickSort, this sorting procedure only recurses for the partition that over-
laps the kth entry, and consequently runs in linear time. Now the nearest neighbor
search is performed as before, but restricted to the list of adjacent centroids. Be-
cause this procedure will converge to sub-optimal distortions for small ks, the
search radius is continuously increased by some value whenever the rate of con-
vergence2 drops below 5%. In the current implementation the radius is increased
by 1 to 5, depending on how much the rate of convergence dropped below 5%
since the last step. This seems to be a reasonable choice, as it allows to save up
to 85% of the time that is needed to perform an exhaustive search. In any case
the algorithm may be terminated when a search radius kmax is reached or when an
user defined distortion ε is reached (whatever happens first).

4.2.4 Partial Searches

For high vector dimensions, evaluating a single distortion term δ(X, Y ) of the
form (X − Y )2 can easily consume a huge amount of computation time. Be-
cause each distortion term is basically a scalar product < X − Y, X − Y >=∑dim

i=1 (Xi − Yi)
2, and each term of that sum is positive, the computation can be

stopped whenever the next contribution (Xi − Yi)
2 leads to a higher value than

an initial distortion δ(X, Yinit). Obviously, the correct selection of Yinit is very
important because it triggers the number of computations to be performed. Since
it is very likely for a data point not to change the associated quantization cell, the

2The rate of convergence was defined in step 4 of the LBG algorithm: d(k−1)−d(k)

d(k)
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distortion is initialized with respect to the quantization cell the point was previ-
ously associated with. Even for 3D-vectors about 50% of the computations could
be saved. But on the other hand, on current processors this does not necessar-
ily mean a speedup, since a conditional has to be inserted at the innermost loop.
As a consequence only for large dimensions (greater than 20), an actual speedup
could be observed. These so called partial searches are enabled in the current
implementation via an optimization flag set by the user at compile time.

4.3 Results

Figure 4.3: Comparison to Gamasutra Quantizer. The Lena and grass images were
obtained from [Iva]. From left to right: original image, 2×2 block encoding using the
vector quantizer from [Iva] and the method suggested in this work.

The implementation of a fast vector quantizer is the back bone of this work. All
methods in the next chapter rely on a vector quantizer, that is fast and general
enough to quantize data sets containing millions of vectors with arbitrary dimen-
sionality.

The described method was implemented using C++, and was compared against
previous implementations, such as the vector quantizer available from the Gama-
sutra webpage [Iva] and QccPack [Fow]. The Gamasutra Quantizer and the one
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presented here were compiled using gcc for CygWin [Red] on a Celeron 600MHz
with SSE. Optimization for SSE was done automatically by gcc. The 2D Lena-
image and the 2D grass texture were obtained from [Iva]. Both images have a
resolution of 5122 and 2× 2 RGB-pixels were grouped in order to form 12D-
vectors. The results, using a codebook with 256 entries, can be seen in figure 4.3.
In the Lena image both zoomed areas show how much an increase of only one dB
in the SNR can affect the visual fidelity, while the three grass textures are nearly
indistinguishable.

The Gamasutra quantizer took about 128 seconds to quantize the grass texture,
and 173 seconds to quantize the Lena image, while the method presented in this
work took under 4 seconds in both cases. The signal to noise ratio that could be
achieved with the Gamasutra quantizer was 30.10dB for the grass and 34.77dB
for the Lena image. The implementation presented here produces signal to noise
ratios of 30.13dB and 35.74dB respectively. It is over that worth noting that the
Gamasutra quantizer produced codebooks containing empty cells in both cases.
These cells are detected and consequently removed, at the expense of speed.

To compare the described method against the QccPack, a scalar 1283 volume con-
taining a distance volume of the famous Stanford Bunny was blocked to 2×2×2
voxels in order to form 8D-vectors. Quantization using QccPack was performed
on a R12000/R12010 processor running at 400MHz, and took about 22 minutes.
The fast vector quantizer described in this thesis took under 35 seconds on a
Celeron 600MHz. The SNR was nearly identical in both cases.

As a preliminary résumé, the vector quantization method described in this thesis
is at least of a factor 30 faster than other general purpose implementations while
producing at least the same fidelity. For some data sets the fidelity may be by far
superior, as the LBG algorithm converges towards a local minimum, and is thus
sensitive to the choice of the initial codebook.
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42 Making Vector Quantization Fast CHAPTER 4

Jens Schneider - Kompressions- und Darstellungsmethoden für hochaufgelöste Volumendaten
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Chapter 5

Hierarchical Vector Quantization

5.1 Introduction

Combining the results from the previous chapters, in this chapter the L3VQ com-
pression scheme is presented. The L3VQ compression scheme is a rapid hierarchi-
cal vector quantizer that can be used to compress various data types. In the next
section the encoding procedure is presented, while section 5.3 covers the basic
decoding algorithm. Section 5.4 shows how decoding of L3VQ encoded volume
data can be done on the GPU. The results of this chapter are discussed in section
5.5, while in section 5.6 extensions such as the application of L3VQ to RGB-data
or 2D images are proposed.

5.2 L3VQ Encoding Algorithm

The L3VQ encoder for the case of scalar valued volume data is depicted in fig 5.1.
All numbers in braces in the text refer to the circled numbers in that figure. The
levels of the encoded pyramid are also referred to as L3 (bottom), L2 (middle) and
L1 (top) in analogy to MIPmap level enumeration.

First, the original volume Φs is decomposed into a Laplacian pyramid

L =
{

Δ
(1)
s , Δ

(2)
s , Φ

(3)
s

}
(see (1), enumerated from top to bottom)

as described in section 3.5. To do so, the reduce4 operator is applied using a 43

box-filter, resulting in the lowest resolution level Φ
(3)
s . In [GY95] a 53 Gaussian

kernel was used to perform the Laplace decomposition, but this is not necessary,
since the unweighted average of the samples results in the optimal approximation
with respect to the metric δ. The lowest resolution volume is then quantized to
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Figure 5.1: The L3VQ Hierarchical Vector Quantizer. See text for description.

8bits, yielding L3 (2).

The difference
Δ(2)

s = reduce2(Φs − expand4(L3)) (5.1)

is calculated1 and its scalar values are normalized. Normalization is done to fully
exploit 8bit texture channels, and to avoid negative values. The intention is to fit
the resulting quantization L2 into 8bit textures without problems. It is proceeded
by calculating a biasL2

biasL2 = min
(
Δ(2)

s

)
(5.2)

and a scaleL2

scaleL2 =

⎧⎨
⎩

max
(
Δ

(2)
s

)
− min

(
Δ

(2)
s

)
if max

(
Δ

(2)
s

)
�= min

(
Δ

(2)
s

)

1 else

(5.3)
Δ

(2)
s can then be normalized by

Δ(2)
s (i, j, k) �→ Δ

(2)
s (i, j, k) − biasL2

scaleL2

(5.4)

As a consequence, each value of Δ
(2)
s will be in the range [0, 1]. Now Δ

(2)
s is sent

to an 8D-vector quantizer (3) as described in chapter 4. The result is the scalar
volume L2 and a 8bit luminance 2D-codebook containing 256×8 entries.

To obtain L1, it is proceeded similarly. First

Δ(1)
s = Φs − expand2(decode(L2)) − expand4(L3) (5.5)

1Since essentially Φ(3)
s ≡ L3, L3 does not have to be decoded.
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is calculated, where decode has to reverse the normalization of L2 by application
of a scale and bias step. Δ

(1)
s is normalized exactly like Δ

(2)
s , using equations 5.2

through 5.4. In order to obtain the scalar volume L1 and a 8bit luminance 2D-
codebook, Δ

(1)
s is sent to a 64D version of the vector quantizer (4). The respective

codebook has a resolution of 256×64.

L1, L2 and L3 have the same resolution, resulting in Δ
(1)
s being encoded at the

lowest bitrate, while Φ
(3)
s is encoded at the highest. Now the three levels can be

interleaved to form a 8bit RGB-volume (5). This RGB-volume is then stored to-
gether with the two 2D-luminance codebooks and a header containing the two
scale and bias scalars and the data resolutions.

It is important to note that the L3VQ compression scheme accumulates neither
roundoff nor quantization errors. This is clear from equations 5.1 and 5.5: Each
time a difference level is calculated, a full decoding step is performed, preventing
quantization error accumulation. Roundoff errors are avoided by subsampling
the input data each time a level of the Gaussian pyramid is needed rather than
applying the reduce2 operator successively. As a result, the image fidelity that can
be achieved by the L3VQ scheme is quite high. The compression ratio is limited
from above for scalar valued data by 64:3≈21.33:1. Both codebooks together are
exactly 18KB in size, such that even compression of 1283 volumes results in a
compression ratio of nearly 18:1. This is substantially better than the any of the
compression ratios offered by s3tc.

5.3 L3VQ Decoding Algorithm

Decoding of the hierarchy basically proceeds as formulated in equation 3.11, but
reversion of the normalization step has to be performed:

Φs ≈ expand2(n−1)(Ln) +

n−1∑
i=1

scaleLi
· βCi

(Li) + biasLi
(5.6)

where βCi
was the decoding process of the vector quantizer using codebook Ci

(see section 3.4).

Since C1 and C2 are a mappings � → �64 and � → �8 respectively, the neces-
sary expansion of L1 and L2 is performed implicitly by the decoder. Accordingly,
the decoding algorithm has to be modified.

The modified decoder then proceeds as follows to decode the sample at (i1, i2, i3).
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1. Fetch samples s3, s2, s1 from L3, L2 and L1:

s3(i1, i2, i3) = L3(i1 mod 4, i2 mod 4, i3 mod 4)
s2(i1, i2, i3) = L2(i1 mod 4, i2 mod 4, i3 mod 4)
s1(i1, i2, i3) = L1(i1 mod 4, i2 mod 4, i3 mod 4)

2. Obtain a scalar value v3 = s3.

3a. Calculate the correct component o2 of the 8D C2-codevector:

o2 =
⌊

i1−(i1 mod 4)
2

⌋
+ 2 ·

⌊
i2−(i1 mod 4)

2

⌋
+ 4 ·

⌊
i3−(i1 mod 4)

2

⌋

3b. Decode sample s2 to obtain a scalar value v2:

v2 =< βC2(s2), Eo2 >,

where Eo2 defines the oth
2 standard vector.

4a. Calculate the correct component o1 of the 64D C1-codevector:

o1 = (i1 − (i1 mod 4)) + 4 · (i2 − (i1 mod 4)) + 16 · (i3 − (i1 mod 4))

4b. Decode sample s1 to obtain a scalar value v1:

v1 =< βC1(s1), Eo1 >

5. Perform scale and bias operations:

v2 �→ scaleL2 · v2 + biasL2

v1 �→ scaleL1 · v1 + biasL1

6. Sum up the values v1, v2 and v3:

Φs(i, j, k) ≈ v1 + v2 + v3

5.4 Compression Domain Volume Rendering

5.4.1 GPU based Decoder

The GPU based L3VQ decoder proceeds just as described in the previous section.
The RGB-volume containing the interleaved levels L1 through L3 is loaded as a
3D RGB texture, and the two codebooks are each loaded as 2D luminance tex-
tures. In order to save the expensive modulo and remainder operations2 from the
previous approach, a 3D RGBα decoder texture is issued as fifth texture image.
The decoder texture is 43 voxels in size and contains pre-calculated codevector

2A modulo operation requires at least 3 native fragment instructions at the time being.
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Figure 5.2: The GPU based L3VQ Decoder. See text for description.

components as in steps 3a and 4a. To be more precise, the R- and B-channel hold
values

r(i1, i2, i3) =
(i1 − 1) + 4 · (i2 − 1) + 16 · (i3 − 1)

63
, i1, i2, i3 = 1, 2, 3, 4 (5.7)

and

b(i1, i2, i3) =
(i1 − 1) + 2 · (i2 − 1) + 4 · (i3 − 1)

15
, i1, i2, i3 = 1, 2, 3, 4 (5.8)

The modulo operation can then be performed by mapping this texture using a
mode of GL REPEAT for GL WRAP S, GL WRAP T and GL WRAP R. In or-
der to overlap each voxel of the RGB-volume with exactly one voxel of the de-
coder texture, texture coordinates (0, 0, 0) (lower left) through

(
n1

4
, n1

4
, n2

4

)
(up-

per right) have to be issued for all fetches made from the decoder texture. The
RGB-volume is still mapped using cardinal texture coordinates from (0, 0, 0) to
(1, 1, 1). Both the decoder texture and the RGB-texture must only be accessed us-

Jens Schneider - Kompressions- und Darstellungsmethoden für hochaufgelöste Volumendaten
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ing GL NEAREST filtering, as interpolation is invalid in the compression domain 3.

The GPU based decoding strategy is depicted in figure 5.2.
First, a RGB sample is fetched from the RGB-volume using standard texture co-
ordinates. Then the decoder texture is accessed, using special texture coordinates
as described above. The obtained RGB sample contains a triple (s3, s2, s1), as
described in the previous section. s3 can be immediately used as a reconstruction
value v3, while the other two are indices into the respective codebooks (called
“L1index” and “L2index” in the figure). The fetch made from the decoder texture
contains the associated “L1offset” and “L2offset” specifying the component of
the codevector. The L1index and the L1offset are then combined to a set of 2D
coordinates, and the same is done for the L2index and the L2offset. The rationale
behind storing the offsets in the R- and B-channels of the decoder texture was
to allow a single instruction to perform both combinations. Using these texture
coordinates, a dependent texture fetch is made from the L1- and L2-codebooks,
resulting in two scalar values v1 and v2. A scale and bias operation is then applied
to v1 and v2, using the scale and bias values obtained before. They can be issued
as program parameters and are accessible as a constant from within the fragment
program. The three values v1, v2 and v3 are then added up, and a last texture fetch
from the transfer function (stored as a 1D RGBα texture) is made, resulting in a
full RGBα sample.

If front to back rendering is used, the RGB channels have to be multiplied by the
alpha value (see equation 2.9), since separate color and alpha blending functions
are not supported in OpenGL as a multi-vendor extension. Another option would
be to supply premultiplied colors in the transfer function, but it is strongly advised
against it. The reason is that the result of such a premultiplied transfer function
are small color values that suffer a lot from 8bit quantization. The fragment pro-
gram on the other hand supports full float precision, and usually colors get only
quantized to 8bit after blending.

For front to back ordering of the clip polygons, the Under operator (equation 2.9)
is applied, requiring an OpenGL blending function of

(GL ONE MINUS DST ALPHA,GL ONE)

as well as an alpha buffer. For back to front ordering of the clip polygons, the
Over operator (equation 2.8) is applied, requiring a blending function of

(GL SRC ALPHA,GL ONE MINUS SRC ALPHA)

3The compression domain is related to the cardinal 3D-domain by a non-affine transformation.
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For the Over operator no alpha buffer is required.

The final fragment program in Cg syntax [nVia] looks as follows.

CG PROFILE ARBFP1

void main(uniform float4 scalebias : C0,
float3 StdCoord : TEXCOORD0,
float3 DecCoord : TEXCOORD1,

uniform sampler3D RGBvol : TEXUNIT0,
uniform sampler3D Decoder : TEXUNIT1,
uniform sampler2D L2code : TEXUNIT2,
uniform sampler2D L1code : TEXUNIT3,
uniform sampler1D transfer : TEXUNIT4,
out float4 color : COLOR0)

{
float L2,L1;
float3 indices;
float4 offsets;

// Fetch indices from RGB-volume using standard coordinates.
indices=tex3D(RGBvol,StdCoord).rgb;

// Fetch offsets from the decoder texture (in r and b components).
offsets=tex3D(Decoder,DecCoord);

// Combine indices and offsets for L1 and L2 simultaneously.
offsets.ga=indices.rg;

// Decode L2 and L1 values. Perform scale and bias operations.
L2=scalebias.x∗tex2D(L2code,offsets.ba)+scalebias.y;
L1=scalebias.z∗tex2D(L1code,offsets.rg)+scalebias.w;

// Add the three values together. Apply transfer function.
color=tex1D(transfer,saturate(L1+L2+indices.r));

// Front to back only: multiply rgb channels with alpha.
color.rgb∗=color.a;

}
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5.4.2 Deferred Decoding

Rendering volumes generates a tremendous amount of fragments. Even if the vol-
ume is rendered using as few as 200 clip polygons, for a 512×512 viewport as
many as 22.4 millions of fragments may be generated. If the number of poly-
gons is increased to a value that avoids undersampling the volume (450 slices and
more), the amount of fragments grows linearly. This limits interactive decoding,
as the fragment program has to be executed for each generated fragment. A tech-
nique commonly applied in cases where an expensive fragment program is present
is called deferred fragment processing. The basic idea is to discard as much frag-
ments as possible by a cheap fragment program first, and to apply the expensive
fragment program only to those fragments surviving the first one.

Obviously, the fragments that result in an alpha value of 0 can be safely discarded,
since they do not contribute to the final image. But these fragments are not easily
identified, as the entire decoding step has to be performed before the alpha value
is known. Luckily, for some transfer functions entirely transparent 43 blocks can
be identified using only a single texture fetch. Based on the fact that the lowest
level Φ

(3)
s of the Laplacian pyramid was subsampled using the reduce4 operator,

it will contain values of 0 only where the input data Φs contained a 43 block with
very low values. More precisely, only blocks with

4∑
i,j,k=1

block(i, j, k) <
32

43
· 1

28
=

1

16

will result in a value of 0 in the Φ
(3)
s level, since the average of these blocks will

be rounded down. This is based on the fact that the level is quantized uniformly
using 8bits per block. That means that whenever a value of 0 is encountered in L3,
it can be safely assumed that not much structure is lost, if any at all, by the predic-
tion that the final reconstruction of Φs will be 0 as well. In most datasets a value
of 0 corresponds to free space, and consequently the entire block can be discarded.

It is thus tested by the rendering application wether the first entry of the transfer
function maps to an alpha value of 0. If so, deferred decoding is activated, and
a cheap discard program is executed prior to the full decoder. If not, deferred
decoding is disabled. This has the additional nice property that for dense data
the deferred decoding can be disabled very easily in order to avoid the overhead
of having two fragment programs executed. If deferred decoding is enabled, the
algorithm proceeds as follows.
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For each clip polygon:
Enable depth mask and disable depth test.
Disable color mask.
Render the clip polygon.
For each fragment:

Fetch a sample from the RGB-volume.
If the R-channel of that sample is not 0, discard the fragment.

Now the depth buffer contains the current depth where decoding is obsolete.
Enable depth test and set the depth function to GL GREATER.
Enable the color mask.
Render the clip polygon with the full decoder program enabled.

This procedure relies on the early Z-test (see figure 2.3) to be present on the tar-
get architecture. The deferred decoding has proven itself to be very effective for
sparse data. For example in frames of the shock-wave simulation (see figure 6.1)
structures are present in approximately one third of the entire dataset. As a con-
sequence a speedup of roughly a factor 3 could be observed. For dense data the
deferred decoding simply becomes an unnecessary overhead, and consequently a
performance loss of 10% to 15% could be observed. The user may then chose
to disable the test by assigning an alpha value other than 0 to the first transfer
function entry.

5.5 Results

A L3VQ encoder and a decoder were implemented in C++. The encoder imple-
mentation is based on the fast vector quantization method provided in chapter 4.
The GPU based decoder was implemented in C++/Cg as part of a slice-based vol-
ume renderer. The renderer supports uncompressed as well as L3VQ compressed
volumes, post-shaded transfer functions and both front to back and back to front
compositing. While it would have been possible in general to apply a trilinear
interpolation kernel for both uncompressed and compressed volumes, this would
have been expensive in the case of the compressed volume, since 8 decoding steps
would have to be performed. The renderer is consequently restricted to nearest
neighbor interpolation for compressed volumes. In order to provide comparable
images, the uncompressed volumes were rendered using nearest neighbor inter-
polation as well.

Encoding performance as well as compression domain rendering performance
were extensively tested. The results are documented in figures 5.3 through 5.5.
The engine dataset has a resolution of 2562×128 voxels, while the skull has a
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resolution of 2563. Encoding times for the L3VQ compression were 89 and 250
seconds on a Celeron 600MHz. While the 2×2×2 block quantization is roughly of
a factor 4 faster than the L3VQ, considerable gains in the compression ratio can be
made without too much loss in fidelity by application of the hierarchical method.
In case of the engine 1.4dB were lost, while in the case of the skull approximately
3.2dB were lost. However, for noisy data such as the skull the perceived image
fidelity is a lot better than the low SNR would suggest. The reason may be seen
in the fact that the noise is mainly contained in the highest frequency level of
the Laplacian pyramid, that is encoded using the fewest bits. As a consequence,
the noise can only be unsufficiently reconstructed, resulting in an increase of the
mean square error and a decrease in the SNR. This can also be seen an additional
benefit of the hierarchy, since noise in the data will be automatically removed by
the L3VQ scheme to some extend. If the amount of noise becomes too large,
it may be appropriate to apply an additional noise removing operation such as a
thresholding or Wiener filtering [PTVF02] to the data prior to encoding.

All rendering performances were measured on a 512×512 viewport with 200 slices
and front to back compositing. For the L3VQ compressed data deferred decoding
was enabled. This is no option for the uncompressed and block quantized ver-
sions, since in both cases only the transfer lookup can be saved by such a method.

For the engine rendering performance was about 19fps for uncompressed, 14fps
for block quantized and 16fps for L3VQ compressed data.The skull was rendered
at 14fps (uncompressed), 10fps (block quantized) and 11fps (L3VQ).

While this indicates that 20% to 40% performance are lost when rendering from
L3VQ data, there are also some datasets for which rendering from a L3VQ com-
pressed representation actually speeds up the process. This usually happens when
the dataset is sparse enough to discard about 50% of the fragments prior to de-
coding. The shock-wave dataset (see fig. 6.1) is such an example that results in a
performance gain of nearly 20%.

5.6 Possible Extensions to the L3VQ Scheme

Since the L3VQ scheme is based on a general purpose vector quantizer, some in-
teresting extensions can be implemented.

First, the scheme could be modified to compress 2D RGB images by building a
2D Laplacian pyramid, effectively based on 42 blocks of pixels. The Φ

(3)
s level

then contains RGB-vectors at 24bit per block resolution. The Δ
(2)
s and Δ

(1)
s lev-
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Figure 5.3: Comparison between per Block Quantization and L3VQ (I). From left
to right: original engine dataset, encoded by 2×2×2 block quantization and encoded by
L3VQ. Compression ratios are 1:1, 7.99:1 (SNR=24.29dB) and 20.38:1 (SNR=21.87dB)
respectively. Encoding took approx. 25 seconds for the block quantization and 89 seconds
for the L3VQ.

Figure 5.4: Comparison between per Block Quantization and L3VQ (II). From left
to right: original engine dataset, encoded by 2×2×2 block quantization and encoded by
L3VQ. Compression ratios, SNRs and encoding time as in figure 5.3.

els contain RGB-vectors as well, essentially resulting in a dimension of 24D- and
192D-vectors respectively. The resulting codebooks would then store RGB in-
stead of luminance values. The maximum compression ratio that can be achieved
by this scheme is 48:5=9.6:1 for the case of 8bit codebook indices. If the images
do not have to be decoded on the GPU, higher compression ratios are achievable,
as the number of bits per index can be reduced. For the case of RGB-volumes the
maximum compression ratio is 192:5=38.4:1. To demonstrate the effectiveness
of 2D RGB-L3VQ, figure 5.6 shows a series of images showing that RGB-L3VQ
offers the best image fidelity at low bitrates. This becomes especially clear for
the red zooming area. Only the RGB-L3VQ compressed image and the origi-
nal show correct colors. Encoding took 11 seconds for the 3D RGB encoding
(SNR=16.25dB), 24 seconds for the 2x2 block encoding (SNR=25.97dB), and 50
seconds for the RGB-L3VQ (SNR=26.02dB). All timings were done on a Celeron
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Figure 5.5: Comparison between per Block Quantization and L3VQ (III). From left
to right: original engine dataset, encoded by 2×2×2 block quantization and encoded by
L3VQ. Compression ratios are 1:1, 8.0:1 (SNR=14.86dB) and 20.84:1 (SNR=11.70dB)
respectively. Encoding took approx. 61 seconds for the block quantization and 250 sec-
onds for the L3VQ.

600 processor. In the case of the RGB-L3VQ each level was encoded using 3bits
per block. The image was decoded on the CPU.

Second, since the alpha channel of the RGB index-volume is unused, a 4 level
Laplacian pyramid could be computed, essentially operating on 83 blocks of vox-
els. This would add another codebook with resolution 256×512 for the case of
8bit codebook indices. Since 512 entries can not be encoded using only 8bits, the
decoder texture would have to use one channel for L2 and L3 respectively, and
two for L1. The fragment program would have to be modified to calculate an ad-
ditional 2D texture coordinate and to perform an additional texture fetch from the
new codebook. This would make a “L4VQ” scheme considerably more expensive
to decode on the GPU, but the compression ratio could be as large as 512:4=128:1.
This could be especially interesting for very large volumes, as the combined code-
books would be 146KB in size for scalar valued volumes. L4VQ has not yet been
implemented.
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Figure 5.6: One Slice of the Visbile Human Project [VHP] encoded using RGB-
L3VQ. Left to right, top to bottom: original 24bpp RGB image, image encoded using
2bpp by 3D RGB-vector quantization, 2×2 block quantization at 1.25bpp and RGB-L3VQ
using 1.11bpp.
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Chapter 6

Time-varying Volume Data

6.1 Introduction

Time-varying data results from sampling a four-variate function Φ(x1, x2, x3, t)
and is commonly generated by CFD applications. It is of utmost importance to
scientists working in that field to obtain a feeling for how a certain velocity or pres-
sure field evolves over time. Thus the underlying space-time domain is discretized
both spatially and temporally, and a solution for each timestep is calculated. The
result is a series of volumetric data sets that have to be displayed in some way in
order to get insights from the data. Here a major problem arises. Volumetric data
sets that are tens or hundreds of megabytes in size are not uncommon, and pro-
ducing one such volume for each timesteps even multiplies that amount of data.
The result are datasets with overwhelming storage requirements that can not be
displayed interactively on most consumer class workstations. Even on today’s su-
percomputers providing interactive investigation of such datasets is a non trivial
task, since large amounts of data have to be transferred to the graphics subsystem.

6.2 Compression of Time-varying Volume Data

To solve the storage requirement problem, compression has been proposed for
time-varying volume data before. Both hierarchical data structures and difference
encoding schemes have been proposed, for example in [Wes95, SJ94, SCM99].
But none of these techniques applied a GPU based decoding technique. Conse-
quently these methods do not solve the bandwidth problem, as each timestep has
to be decoded on the CPU prior to being sent to the graphics subsystem. Though
current graphics busses have bandwidths of up to 2GB/s, the conversion to inter-
nal texture formats severely limits the interactivity of systems transferring large
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amounts of data to the GPU.

This bottleneck was recognized and GPU based decoding scheme for time-varying
data was supposed not so long ago by Lum in [LMC01]. The approach applies a
DCT to the original dataset, quantizing the tansformed data and encoding it into
hardware assisted color tables. These color tables can then be reloaded at interac-
tive rates in order to generate animations. The drawback of this method besides the
need for hardware accelerated color tables is the fact that either good compression
ratios or high image fidelity could be achieved. The reason is that graphics hard-
ware did not offer enough flexibility to support fine compression/fidelity tradeoffs
at that time.

Vector quantization on the other hand is suited very well to compress time varying-
volume data. First, because it is general enough to handle arbitrary dimensions,
making both spatial and temporal encoding of the data possible. Second, vec-
tor quantization automatically calculates a reduced set of coefficients that best
fits the data. In general it performs a lot better than the DCT when used to
obtain representative coefficients of the data, since the DCT does not adapt to
intrinsic data characteristics. Third, vector quantization provides good compres-
sion/fidelity tradeoff possibilities.

In order to use the hierarchical L3VQ vector quantization scheme to compress
time-varying volume data, a straight-forward approach is to encode each single
frame without taking temporal coherences into account, producing a compressed
volume and two codebooks each timestep. While this already solves both the
storage requirement and bandwidth problems, the encoding process can be sped
up considerably by applying a progressive encoding scheme.

6.3 Progressive Encoding

Progressive encoding introduces I-,P- and B-frames, similar to the MPEG com-
pression standard. I-frames are independent of other frames, while P-frames are
predictively encoded, meaning that they depend on prior frames. B-frames are
bidirectionally predictive, depending on a fixed number of previous and future
frames. B-frames usually result in the best compression, but are most expensive
both to encode and decode, as they must rely on the largest support of all three
types. Since for vector quantization the encoding step is still expensive when
compared to MPEG, it is reasonable to support only I- and P-frames.

There are two ways to extend the vector quantizer to accommodate for I- and P-
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Figure 6.1: Comparison I- and P-frames. Both images show the 85th timestep of the
shock-wave sequence. The left image was encoded as an L3VQ compressed I-frame, while
the right one is the 30th in a sequence of P-frames.

frames. First, for each I-frame a codebook is calculated by performing both PCA
split and LBG relaxation. This codebook is then re-used for the next P-frames
simply by fitting each P-frame vector to the codebook. Second, instead of predict-
ing the final codebook, only the initial codebook for the LBG step is predicted.
For each I-frame both PCA split and LBG relaxation are executed, but the result-
ing codebooks and indexsets are not discarded. Instead they are treated as entry
point for the next P-frame that only performs LBG relaxation. Since even the in-
dexset of the previous frame is re-used for P-frames, fast and partial searches can
be applied as well.

Obviously the second method results in the better fidelity, since each frame has an
own codebook. Over that, random access becomes especially easy, as each frame
is essentially a volume of its own. Furthermore, since the fully converged solution
of the previous step is used, exceptionally long sequences of P-frames (see figure
6.1) can be generated, as long as the volume does not show rapid changes. These
however do rarely occur in scientific data, since in contrast to movies no cutting
is applied.

6.4 Results

The hierarchical L3VQ vector quantization scheme was extended by the progres-
sive encoding method described in the last section. Two 8 bpp test datasets were
used, a 2563×89 shock-wave simulation (1.4GB) and a 1283×99 vortex dataset
(200MB). Both were first quantized using the L3VQ method described in chapter
5, and then using the progressive encoder.

In both cases using only a single I-frame resulted in no perceivable performance
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Figure 6.2: Shock-wave dataset (2563×89). From left to right timesteps 65, 75 and
85 are shown. The top row was rendered using the original dataset (1.4GB), while in the
second row L3VQ compressed data was used (70GB).

loss. This is due to the facts that neither data set shows rapid changes and that
each P-frame yields a fully converged quantization. The only reason that some
loss may occur is that the LBG is sensitive to the input codebook, as it converges
towards a local minimum.

On a Celeron 600 the shock-wave simulation could be encoded in approximately
3 hours, while encoding of the vortex data took 54 minutes. If the progressive
encoder was used, the shock-wave sequence took 1 hour 22 minutes while the
vortex data took only 24 minutes. The maximum difference in the SNR between
the two methods was in both cases under 0.15dB. SNRs were between 23.46dB
and 43.68dB for the shock-wave frames and between 19.98dB and 20.32dB for
the vortex frames. Compression was 20.84:1 for the shock-wave and 17.98:1 for
the vortex data, resulting in roughly 70MB and 11MB. Rendering performance
was about 22fps for the shock-wave and 13fps for the vortex dataset. Rendering
from the uncompressed data achieved roughly 18fps in both cases. All rendering
performance was measured on a 512×512 viewport using front to back composit-
ing and 200 slices. See also figures 6.2 and 6.3.

In order to merge the many single frames into a single file, they were additionally
packed into a gzipped tarball archive. Interestingly enough, for the shockwave
this lossless compression step resulted in an output file of 3.5MB in size, as the
volume is very sparse. The vortex data set did not compress well, resulting in a
file of 10.5MB in size. This can be explained by the interesting property of vector
quantization to substitute similar patterns of voxels by the same indices. Thus if
large scale regularity was present in the input file, it is also likely to be present
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Figure 6.3: vortex dataset (1283×99). From left to right timesteps 1,5 and 9 are shown.
The top row was rendered using the original dataset (200MB), while in the second row
L3VQ compressed data was used (11MB).

in the compressed file. While vector quantization only implicitly profits of such
structures, zip algorithms must rely on it to provide good compression ratios. The
relatively rapid encoding of the shockwave when compared to the vortex can be
explained by the fact that large empty spaces are quantized exactly during one of
the first PCA splits, consequently never being touched again for the remainder of
the PCA algorithm. The LBG algorithm also profits of such large empty spaces,
as these areas show excellent cache coherence. The reason lies within the inter-
nals of the LBG algorithm, that maintains lists of indices. These lists get more
and more fragmented during the encoding process. The exception are those lists
that contain same indices at adjacent positions.
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Chapter 7

Results and Discussion

7.1 Results

In this diploma thesis it was demonstrated that vector quantization can be used
as a general purpose compression tool for scientific data, not necessarily limited
to scalar valued volume data. For reasonably sized data an efficient implementa-
tion that avoids common performance bottlenecks of previous vector quantization
tools is needed. An implementation that is by a factor of 30 faster than previous
ones was described in chapter 4.

In chapter 5 it was shown that the Laplace decompostition can serve as an efficient
de-correlation step prior to sending the data to the vector quantizer. Furthermore,
data available in such a representation can be rendered directly from the compres-
sion domain at interactive framerates. Over that, since the Laplacian pyramid is
a hierarchical decomposition, various approaches that require a multi-resolution
representation of the data, become possible. This was demonstrated by the de-
ferred shading algorithm that discards entire blocks of voxels based only on the
lowest level of the hierarchy.

Application to time-resolved volume sequences as well as an efficient progressive
encoding scheme was demonstrated in chapter 6. The approach solves both the
storage requirement and bandwidth problem associated with large time-resolved
datasets, virtually increasing graphics memory by a factor of 20. In addition se-
quences encoded in the proposed format allow for easy random access.

The methods proposed in this thesis have been implemented in C++ using OpenGL
and Cg. The sourcecode may be obtained by contacting the author.
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7.2 Future Directions

In chapter 4, the performance analysis of the LBG algorithm showed that approx-
imately 80% of the runtime was spend computing averages and mean squared
errors. An important direction to additionally speed up the encoding would thus
be the mapping of these operations to SIMD technology such as SSE or 3DNow.
However, the GPU is currently approaching a general purpose SIMD processor
very quickly. It might consequently be interesting to employ graphics hardware
even to the task of compressing datasets.

As was shown in this thesis, the hierarchical vector quantizer can be extended
in order to handle vector valued volume data. However, it is not clear how such
volumes should be rendered in order to obtain meaningful images. A successful
framework for rendering time-resolved vector valued data thus needs to employ
novel rendering algorithms that could be based on implicit data analyzation1 prop-
erties of the vector quantization tool.

For the compression of time-varying data, it has not yet been investigated how
temporal coherences can be exploited in order to achieve higher compression ra-
tios. It might be viable to re-use lowest frequency levels as well as codebooks
of I-frames for some number of consecutive P-frames, thus reducing storage re-
quirements. Another way to improve compression ratios would be to calculate the
hierarchical compression directly on the underlying space-time domain, using a
4D Laplacian pyramid.

1Vector quantizers classify the data into blocks sharing similar characteristics. From a mathe-
matical point, quantization cells are discretely sampled Voronoi regions.
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