Linear Algebra Operators
for GPU Implementation of Numerical Algorithms

Jens Kriiger and Ridiger Westermann
Computer Graphics and Visualization Group, Technical ©rsity Munich

Figure 1: We present implementations of techniques for solving $etyebraic equations on graphics hardware. In this way, etical
simulation and rendering of real-world phenomena, like 28tav surfaces in the shown example, can be achieved at aiteearates.

Abstract

In this work, the emphasis is on the development of strasetgie
realize techniques of numerical computing on the grapHigs. ¢n
particular, the focus is on the acceleration of techniqoesdlving
sets of algebraic equations as they occur in numerical sitonl.
We introduce a framework for the implementation of lineageal
bra operators on programmable graphics processors (GEus),
providing the building blocks for the design of more compiex
merical algorithms. In particular, we propose a stream rhimte
arithmetic operations on vectors and matrices that exptbi in-
trinsic parallelism and efficient communication on modefLG.
Besides performance gains due to improved numerical canput
tions, graphics algorithms benefit from this model in thattitans-
fer of computation results to the graphics processor fquldisis
avoided. We demonstrate the effectiveness of our approaan-b
plementing direct solvers for sparse matrices, and by auppthese
solvers to multi-dimensional finite difference equatidres, the 2D
wave equation and the incompressible Navier-Stokes emsati

Simu-
Three

CR Categories: 1.6.7 [Simulation and Modeling]:
lation Support Systems—; 1.3.7 [Computer Graphics]:
Dimensional Graphics and Realism—

Keywords: Numerical Simulation, Graphics Hardware

1 Introduction

The development of numerical techniques for solving pluitféer-
ential equations is one of the traditional subjects in agpthathe-

*jens.krueger, westermann@in.tum.de

matics. These techniques have a variety of applicationtysips
based simulation and modelling, and they have been frelyuent
employed in computer graphics to provide realistic simatabf
real-world phenomena [Kaas and Miller 1990; Chen and da-Vito
ria Lobo 1995; Foster and Metaxas 1996; Stam 1999; Foster and
Fedkiw 2001; Fedkiw et al. 2001]. Despite their use in nuo@ri
simulation, these techniques have also been applied inietyaif
computer graphics settings, e.g. the simulation of waterayaw-
ings [Curtis et al. 1997], the processing of polygonal megbes-
brun et al. 1999], or the animation of deformable models §ifar
and Witkin 1998; Debunne et al. 2001], to mention just a few.

The numerical complexity of techniques for solving setslgéa
braic equations often imposes limitations on the numeecealracy
or extremely high demands on memory and computing resaurces
As a consequence thereof, parallelization of numericalesslon
multi-processor architectures has been an active reseagehfor
quite a long time.

An alternative direction of research is leading towardsitige-
mentation of general techniques of numerical computingam-c
puter graphics hardware. Driven by the evolution of graplmico-
cessors from fixed function pipelines towards fully prognaable,
floating point pipelines, additional effort is spent on thevelop-
ment of numerical algorithms amenable to the intrinsic felism
and efficient communication on modern GPUs. Recent examples
include GPU implementations of matrix multiplications prhp-
son et al. 2002], multi-grid simulation techniques [Bolz at
2003] and numerical solution techniques to least squa@sgms
[Hillesland et al. 2003]. Particularly in computer gragh@ppli-
cations, the goal of such implementations of numericaln&pfes
is twofold: to speed up computation processes, as they &a of
at the core of the graphics applicati@nd to avoid the transfer of
computation results from the CPU to the GPU for display.

Based on early prototypes of programmable graphics achite
tures [Olano and Lastra 1998; Lindholm et al. 2001], the gtesi
of graphics hardware as a pipeline consisting of highlyrojated
stages providing fixed functionality is more and more abaedo
on modern graphics chips, e.g. the NVIDIA NV30 [Montrym and
Moreton 2002] or the ATI R300 [Elder 2002]. Today, the user
has access to parallel geometry and fragment units, whistbea
programmed by means of standard APlIs. In particular, vextek
pixel shader programs enable direct access to the funttimitz,
and they allow for the design of new classes of hardware stgapho

graphics algorithms. As a representative example for sigd a
rithms, let us refer to [Purcell et al. 2002], where ray-tngcon
programmable fragment processors was described.

In our current work, we employ the Pixel Shader 2.0 API [Mi-
crosoft 2002], a specific set of instructions and capaéeditin
DirectX9-level hardware, which allows us to perform hardsva
supported per-fragment operations. Besides basic arithimger-
ations, instructions to store intermediate results ingtegs and to
address and access multiple texture units are available tatyet
architecture is the ATl Radeon 9800, which supports 32-tsttihg
point textures as well as a set of hardware supported piealesh
Pixel shader provide 24-bit precision internal computzio To
save rendering results and to communicate these resultsasec-
utive passes, rendering can be directed to a 32-bit offedsatfer.
This buffer can be directly bound to a texture map, i.e. theeat
of the buffer is immediately available as 2D texture map.

Until today, the benefits of graphics hardware have maingnbe
demonstrated in rendering applications. Efforts have leemsed
on the creation of static and dynamic imagery including gohal
models and scalar or vector valued volumetric objects. lava f
examples, strategies to realize numerical computatiorggaphics
processors were described, usually implemented by medns/of
level graphics APIs that did not yet provide programmabldexe
and pixel shader.

Hopf et al. [Hopf and Ertl 1999; Hopf and Ertl 2000] de-
scribed implementations of morphological operations aadelet
transforms on the graphics processor. Numerical compuisti
were realized by means of blending functionality, and byl@p
ing the functionality provided by the OpenGL imaging sub&ét-
ing similar coding mechanisms, the simulation of cellulatomata
and stochastic fractals was demonstrated in [nVidia 2002t H
2001]. Strzodka and Rumpf [Strzodka and Rumpf 2001a; Skezod
and Rumpf 2001b] proposed first concepts for the implemiemtat
of numerical solvers for partial differential equations gnaphics
hardware. Therefore, the intrinsic communication and adap
tion patterns of numerical solution techniques for finitéedence
equations were mapped to OpenGL functionality. Non-stahda
OpenGL extensions were employed in [Heidrich et al. 1999; Jo
bard et al. 2000; Weiskopf et al. 2001] to interactively alize 2D
vector fields. At the core of these techniques, vector vatlsgd
is encoded into RGB texture maps, thus allowing for the tgucif
particles by successive texture fetch and blend operations

With the availability of programmable fragment units, thesgi-
bility to implement general numerical techniques on grepluro-
cessors was given. A number of examples have been demeuistrat
since then, ranging from physics based simulation of nhphra-
nomena to real-time shading and lighting effects [nVidi@20ATI
2003]. Weiskopf et al. [Weiskopf et al. 2002] extended tipeavi-
ous work towards the interactive simulation of particlensigort in
flow fields. Recently, Harris et al. [Harris et al. 2002] désed the
implementation of an explicit scheme for the solution of apled

map lattice model on commodity graphics cards. In both exam-

ples, numerical computations were entirely carried out fnag-
ment shader program. GPU implementation of matrix-muégl
based on a particular distribution strategy for 2D text@e®ss a
cube-shaped lattice was described in [Larsen and McAllZ61].

In contrast to previous approaches, which were specificly
signed with regard to the solution of particular problems, goal
is to develop a generic framework that enables the impleatient
of general numerical techniques for the solution of diffeeequa-
tions on graphics hardware. Therefore, we provide the tasid-
ing block routines that are used by standard numerical slBuilt
upon a flexible and efficient internal representation, ttigsetional
units perform arithmetic operations on vectors and matritethe
same way as linear algebra libraries employ encapsulasid\ec-
tor and matrix operations, many techniques of numericalpzgimg

can be implemented by executing GPU implementations okthes
operations in a particular order. One of our goals is to Epkoft-
ware implementations of basic linear algebra operatorsaitable

in widespread linear algebra libraries, i.e. the BLAS (Bdshear
Algebra Subprogram) library [Dongarra et al. 1988; Dongatral.
1990], by GPU implementations, thus enabling more generaét
algebra packages to be implemented on top of these implement
tions, i.e. the LAPACK (Linear Algebra Package) [Anderstale
1999].

In the remainder of this paper, we will first introduce thesimial
representation for vectors and matrices on the graphiasepsor,
and we will describe the syntax and the semantic of the vextdr
matrix routines our approach is built upon. Similar to théation
used in the BLAS library, we outline specific operations ootues
and matrices. Although we use a different syntax than BLAS, a
we also do not provide the many different operators conthiiméhe
BLAS function definition, it should become obvious that byang
of our approach the same functionality can be achieved.

We will also address sparse matrix representation and opera
tions on such matrices as they typically occur in numerigal s
ulation techniques. In this way, we achieve a significanedpe
up compared to software approaches. Next, GPU implementati
of two methods for solving sparse linear systems as the dacur
many numerical simulation techniques are described: thguco
gate Gradient (CG) method and the Gauss-Seidel solver.llysina
we demonstrate the effectiveness of our approach by sothieg
2D wave equation and the incompressible Navier-Stokestieqsa
on graphics hardware, and by directly visualizing the rtssuh the
ATI 9800.

2 Matrix Representation on GPUs

In this section, we describe the internal representatiomatfices
on graphics hardware. The proposed representation ertables-
ficient computation of basic algebraic operations used merical
simulation techniques. The general idea is to store matdsdex-
ture maps and to exploit pixel shader programs to implemethta
metic operations. For the sake of simplicity only column ricat,
i.e. vectors and square NxN matrices are discussed. Genata}
ces, however, can be organized in exactly the same way.

Matrix

2D-Product

L g

0,0)
S L. ©

Figure 2: This illustration demonstrates the computatidnao
matrix-vector product using 1D and 2D textures to repregectors
and matrices, respectively. The 1D texture is continuethdeally
across the rendered quadrilateral.

On the graphics processor, vectors might be represented as 1
texture maps. This kind of representation, however, hasicer
drawbacks: First, limitations on the maximum size of 1D tess
considerably reduce the number of vector elements that ean b
stored in one texture map. Second, rendering 1D texturégrigis
cantly slower than rendering square 2D textures with theesaum-
ber of texture elements. On current graphics cards, the fu8B o
textures yields a performance gain of about a factor of 2rdT i
a 1D vector contains the result of a numerical simulation oara-
putational grid, the data finally has to be rearranged in agXiute

for rendering purposes. Fourth, this representation pitshihe ef-
ficient computation of matrix-vector products. Althoughrbgans
of multi-textures both the matrix and the vector can be rezuisi-
multaneously and combined on a per-fragment basis (sees=2jyu

are handled by that element. Texture handles and the sizachf e
texture can be accessed via public functions.

the computed values are not in place and have to be summegl alon 3.1 Vector Arithmetic

the rows of the matrix to obtain the result vector.

To circumvent the mentioned drawbacks, we represent raatric
as set of diagonal vectors and we store vectors in 2D textamgsm
(see Figure 3). To every diagonal starting at the i-th enfith®first
row in the upper right part of the matrix, its counterpartrtita
at the (N-i)-th entry of the first column in the lower left part
the matrix is appended. In this way, no texture memory is @hst
Each vector is converted into a square 2D texture by the egijmn
program. Vectors are padded with zero entries if they do miredy
fill the texture. This representation has several advastage

e Much larger vectors can be stored in one single texture ele-
ment.

e Arithmetic operations on vectors perform significantlytéas
because square 2D textures are rendered.

e Vectors that represent data on a 2D grid can directly be ren-
dered to visualize the data.

e Matrix-vector multiplication can be mapped effectively to
vector-vector multiplication.

e The result of a matrix-vector multiplication is already iaqe
and does not need to be rearranged.

Most notable, however, the particular layout of matriceset®of
diagonal vectors allows for the efficient representatich@nocess-
ing of banded diagonal matrices, as they typically occurimaeri-
cal simulation techniques. In a pre-process the applic@iogram
inspects every diagonal, discarding those diagonals thadtcarry
any information. If no counterpart exists for one part of agdinal,
it is filled with zero entries.

A nice feature of this representation is, that the transpdse
matrix is generated by simply ordering the diagonals in fedkht
way. Off-diagonals numbered i, which start at the i-th emtiryhe
first row, now become off-diagonals numbered N-i. Entriested
in the former upper right part of the matrix are swapped withse
entries located in the lower left part. Swapping does noehawe
performed explicitly, but it can be realized by shifting ices used
to access these elements. Each index has to be shifted byrtie n
ber of entries in the vector that come from the lower left pthe
matrix. This can easily be accomplished in the pixel shader p
gram, where the indexing during matrix-vector operatiecnper-
formed (see below).

3 Basic Operations

Now, we describe the implementation of basic algebraicatpers
on vectors and matrices based on the proposed internabestiee
tion. In each operation, rendering is directed to a specdicier
target that can be directly bound to a 2D texture for furthesr. uro
update values in a target that is not the current target argjniio
is made the current render target again. Then, its contenbea
modified by consecutive rendering passes.

Vector and matrix containers are defined as clasbésc and

Arithmetic operations on two vectors can be realized in apfm
pixel shader program. The application issues both operasds
multi-textures, which are accessed and combined in thesshad-
gram. On current graphics cards supporting the Pixel Shader
instruction set, arithmetic operations like addition, teattion and
multiplication are available. The product of a scalar timegctor
is realized by issuing the scalar as a constant value in thdesh
program.

The function header for implementing standard arithmepiere
ations on vector elements looks like this:

voi d cl VecOp (
CL_enum op,

float a, float B,
cl Vec x, clVec vy,
cl Vec res

)

The enumeratoop can be one ofCL_ADD, CL_MULT or
CL_SUB. The scalarex and 3 are multiplied with each element
of x andy, respectively. At the beginning of each routine a consis-
tency check is performed to verify that both vectors havesdmae
internal representation. Then, the respective shadergmog ac-
tivated and vectorg andy are issued as multi-textures. Finally, a
square quadrilateral is rendered, which is lined up in scepace
with the 2D textures used to represent the active vectors r@sult
is kept as 2D texture to be used in consecutive computations.

3.2 Matrix-Vector Product

In the following, we consider the product of a matrix timesator.
A second vector might be specified to allow for the computatib
Ax op y whereA is a matrix,x andy are vectors, andp is one
of CL_ADD, CL_MULT, CL_SUB. To computeAx op ywe first
render the result oAx into the render target. Now, the result is
bound as an additional texture, and in a final rendering faiss i
combined with the vectoy and rendered to the destination target.
The header of the function performing matrix-vector opgerst
looks like this (if one ofA or x, ory is NULL, only the respective
component not equal to NULL considered in the operation):

voi d cl Mat Vec (
CL_enum op,
cl Mat A,
cl Vec x,
cl Vec res

)

cl Vec vy,

Because matrices are represented as a set of diagonalsyector
matrix-vector multiplication becomes a multiplicationefery di-
agonal with the vector. Therefore, N rendering passes are pe
formed, in each of which one diagonal and the vector are issue
as separate textures in the shader program. Then, cordisgon
entries in both textures are multiplied. However, to thie ¢lement

clMat, respectively. Both containers assemble C++ arrays in that of a diagonal that starts at the ith entry of the first row ofrtreirix

the array is decomposed into one or multiple vectors. Veaom-
posed of zero entries neither have to be stored nor processed

Upon initialization, for each vector a texture is created hound
to a texture handle. Internally, each class element stbeegetso-
lution of the respective vector or matrix and of all the tegtuthat

corresponds the ((i+j) mod N)-th entry of the vector. Thiggfirst
has to be computed in the shader program before it can be aised t
access the vector.

Valuesiand N are simply issued as constant values in theeshad
program. Index j, however, is directly derived from the frants

Matrix N

N >N

N-i \IlN

y 4
'4

V4

\‘\\ f
N

= O T T T T T T T T T

<

ectors

u H

; B N 2D-Textures

= B 1M o N
i

PN

Figure 3: The representation of a 2D matrix as a set of didg@tors, and finally as a set of 2D textures is shown.

texture coordinates and N. Finally, the destination indes)(mod
N) is calculated and converted to 2D texture coordinates.

After the first diagonal has been processed as describedythe
rent render target is simultaneously used as a texture aadas
der target. Thus, fragments in consecutive passes havesatre
the intermediate result, and they can update this resulich éer-
ation. After rendering the last diagonal, the result veid@iready
in place, and the current render target can be used to itlierap-
resent this vector.

A considerable speed-up is achieved by specifying multigje-
cent diagonals as multi-textures, and by processing tHagermkls

equal to NULL, the combiner operation is carried out on thedpr
uctx timesy rather than only om.

The reduce operation combines the vector entries in meltgi-
dering passes by recursively combining the result of theipus
pass. Starting with the initial 2D texture containing onetee
and the quadrilateral lined up with the texture in screercepm
each step a quadrilateral scaled by a factor of 0.5 is redddre
the shader program, each fragment that is covered by thalshmu
quadrilateral combines the texel that is mapped to it andhtese
adjacent texel in positive (u,v) texture space directidme @istance
between texels in texture space is issued as a constantshaader

at once in every pass. Parameters i and N only have to be issuedProgram. The result is written into a new texture, which ie/iwé a

once in the shader program. A particular fragment has the s&m
dex j in all diagonals, and as a matter of fact it only has todma-c
puted once. Starting with the first destination index, thidei is

successively incremented about one for consecutive dagiofihe

number of diagonals that can be processed simultaneousgnds

on the number of available texture units.

Let us finally mention, that with regard to the described inpl
mentation of matrix-vector products, there is no particakeed to
organize matrices into sets of diagonal vectors. For imgtatgense
matrices might be represented as sets of column vectoisggige
to even more efficient matrix-vector multiplication. Everglumn
just has to be multiplied with the respective vector elemesgult-
ing in a much smaller memory footprint, yet requiring a sienpl
shader program to which only the index of the currently pssed
column is input.

3.3 Vector Reduce

Quite often it is necessary to combine all entries of onearecto

one single element, e.g. computing a vector norm, findingrtae-

imum/minimum element etc. Therefore, we provide a spegal-o
ation that outputs the result of such a reduce operatioretapipli-

cation program:

float cl VecReduce (
CL_enum cnb,
cl Vec x, cl Vec vy,

)

The enumeratotmb can be one ofCL_ADD, CL_MULT,
CL_MAX, CL_MIN, CL_ABS. If the second parametgris not

factor of two smaller in each dimension than the previous dine
entire process is illustrated in Figure 4. This techniquestandard
approach to combine vector elements on parallel computhitac-
tures, which in our scenario is used to keep the memory foutpr
for each fragment as low as possible. For a diagonal vectir th
is represented by a square texture with resolutibnn2rendering
passes have to be performed until the result vaalés obtained in
one single pixel. The respective pixel value is finally ratd to the
application program.

original Texture 1¥ pass
J } [J T
AN

|

1AL

N Ne——
: ?7¥;

2" pass

Figure 4: Schematic illustration of the reduce operation.

4 Sparse Matrices

So far, the operations we have encountered execute verienffic
on current commodity graphics hardware. On the other héay, t
are not suitable to process matrices as they typically arisemer-
ical simulations. For instance, let us assume that theisaltn the

2D wave equation

otz T ' ox2 | 9y?
on a grid of resolution 512 x 512 has to be computed numeyicall
(including boundary points). If first and higher order pairtieriva-

tives are approximated by finite differences, the partitiedénce
equation writes as a set of finite difference equations foh egid

point (ij):
U — 2 u
At?

t t t t t
Uipgj T Uigj Ui g U g — A4

= Axby

Using the implicit Crank-Nicholson scheme, where the aver-
age of the right-hand side is taken, i.e. for all grid points set
Ut = 0.5(u ™ +ul), the difference equation contains more than
one unknown and the system of algebraic equations has tdvezlso
simultaneously.

If initial and boundary conditions are specified, the setqpfae
tions can be written in matrix from asx= b, whereA is a 512
x 5122 matrix, and bottb and the solution vectax are of length
5122. Here,x contains the unknowrﬁj+l to be solved for. In the

particular exampleA is a banded matrix (a triangular matrix with
fringes) with a maximal bandwidth of six. Obviously, stayithe
matrix as a full matrix is quite inefficient both in terms of me
ory requirements and numerical operations. In order toctifely
represent and process general spargeN matrices, in which only
O(N) entries are supposed to be active, an alternative repesgent
on the GPU needs to be developed.

4.1 Banded Matrices

With regard to the internal representation of matrices astaf
diagonal vectors, we can effectively exploit the existentea
banded matrix with only a few non-zero off-diagonals. Zeffe o
diagonals are simply removed from the internal represiemaand
off-diagonals that do not have a counterpart on either sfdbe
main diagonal are padded with zero entries.

offset with respect to the current column. Most effectivéie off-
set is specified in a vertex shader program, by means of which e
vertex compute the exact 2D position in screen space.

vertex array n-1

n vertex array n

EEE

Figure 5: This image illustrates the computation of a sparse
matrix-vector product based on the internal represemtaifama-
trix columns as sets of vertices.

Sparse Matrix

n Iterations

vertex array 1
vertex array 2

color, position, texture coordinate
Y

re
R

bind buffer as texture

Vector

For the multiplication of a matrix times a vector, the coldr o
each vertex has to be multiplied with the color of the coroesiing
entry in the vector. The vector, however, is not static andtbas
not be coded into the vertex array. As a matter of fact, wecatn
with each vertex a texture coordinate, which is used to acties
vector via the 2D textures used to represent it. Fortunatiegse
texture coordinates can also be stored on the GPU, so thattanl
appropriate textures have to be bound during matrix-vesdiorpu-
tations (see Figure 5)

Itis a nice feature of the described scheme, that the reéializaf
matrix-vector operations on the GPU as it was proposed irpCha
ter 3 is not affected by the graphical primitives we use terimally
represent and render matrices. The difference betweesespad
full matrices just manifests in that we render every diagonaol-
umn vector as a set of vertices instead of set of 2D texturethi$
way, a significant amount of texture memory, rasterizatipara-
tions and texture fetch operations can be saved in techsighere
sparse matrices are involved. For instance, to computeribed p
uct between the sparse matrix described above and a vedtor on
512x6 textured vertices have to be rendered.

In the above example, where the 2D wave equation has beeng Examp|es

discretized by means of finite differences, only six diagetave
to be stored internally. As a consequence, the product ftiairix
times a vector costs no more than six vector-vector products

In the general setting, however, were non-zero entries @se p
tioned randomly in the matrix, the diagonal layout of vestdoes
not allow for the exploitation of the sparseness in a stifigfvard
way.

4.2 Sparse Random Matrices

To overcome this problem, we use vertices to render the xnatri
values at the correct position. For each non-zero entry iolam
vector one vertex is generated. The coordinate of eachxveste
chosen in such a way, that it renders at exactly the sameqoag
the respective vector element if it was rendered via the Xiute
used to represent the vector. For each column we thus storaras
vertices as there are non-zero entries. Matrix values aredias
colors associated with the respective vertices.

Vertices and corresponding colors are stored in a vertey am
the GPU. As long as the matrix is not going to be modified, the
internal representation does not have to be changed. Naténth
case of a banded matrix, where apart from start and end aomslit
for each NxN block in the matrix the same band is present inyeve
row, it is sufficient to store one representative set of gestifor in-
ner grid points. Then, this set can be rendered using th@ppate

We will now exemplify the implementation of general techreg
of numerical computing by means of the proposed basis apesat
for matrix-vector and vector-vector arithmetic.

5.1 Conjugate Gradient Method

The conjugate gradient (CG) method is an iterative matrijo-al
rithm for solving large, sparse linear system of equatidrs= b,
whereA € R™". Such systems arise in many practical applications,
such as computational fluid dynamics or mechanical engimger
The method proceeds by generating vector sequences degera
(i.e. successive approximations to the solution), ressduaorre-
sponding to the iterates, and search directions used irtingdae
iterates and residuals. The CG algorithm remedies the ot
ings of steepest descent by forcing the search directihdo be

A-conjugate, that i Ap) = 0, and the residuals to be orthog-
onal. Particularly in numerical simulation techniques enlarge
but sparse finite difference equations have to be solvedCthe
algorithm is a powerful and widely used technique.

In the following, pseudo code for the unpreconditioned izgrs
of the CG algorithm is given. Lower and upper subscriptsaatt
the values of scalar and vector variables, respectivelyherspeci-
fied iteration. For a good introduction to the CG method ad asl

to other solution methods for linear system equations |eefes to
[Press et al. 2002].

Unpreconditioned CG

1 pO =0 —p_AxO
2 for i < Oto#itr

3 pi= r(i)Tr<i)

for some initial guesg(®

4 q(i) = Ap(i)

5 a=p/p) gV

6 x(i+1) — (i) +a p(')
7 p(+1) — () — alq(l)
8 B (DT (i+1)

9 p(+1) — p(i+1) +Bip
10 convergence check

The CG method can effectively be stated in terms of the de-
scribed building blocks for GPU implementation of numeirieah-
niques (Note that using a preconditioner matrix, for inseathe
diagonal part of A stored in the first diagonal vector in ouein
nal representation, only involves solving one more lingatem in
each iteration):

Unpreconditioned GPU-based CG

1 cIMatVec(CL.SUBA, X b,r®) initial guessx(¥)
2 clVecOp(CL.ADD,—1,0,r(@ NULL,r(©)

3 clVecOp(CL.ADD,1,0,r@ NULL, p©)

4 for i «— Oto #itr

5 pi = clVecReduce(CLADD, r(), r())

6 cIMatVec(CL_ADD, A, p),NU |_|_ q®)

7 a. = clVecReduce(CL_ADD, p{), ¢(V)

8 =pi/ a

9

cIVecOp(CL_ADD, 1,05, xM, p® x(+1))
10 clVecOp(CL.SURZ1,aj,rV, g, r(i+1)
11 B = clVecReduce(CLADD, r(i+1) r(i+1)
12 B=B/p
13 clVecOp(CLADD, 1, B, r(+D pl) pli+D)
14 convergence check

In the GPU implementation, the application program onlydsee
to read single pixel values from the GPU thus minimizing bags-
fer. All necessary numerical computations can be directy p
formed on the GPU. Moreover, the final result is already irc@la
and can be rendered as a 2D texture map.

5.2 Gauss-Seidel Solver

Next, let us describe the GPU implementation of a GausseSeid
solver. Denoting with. andU the strict lower and upper triangular
sub-matrices, and with the main diagonal of the matri we can

rewriteAasL +D-+U. In one iteration, the Gauss-Seidel method
essentially solves for the following matrix-vector eqoati
x = x4 (D +u)x(-Y

wherex(¥) is the solution vector at the k-th iteration.
r) = (D+U)x(-1 can be derived from the previous time step

by one matrix-vector product. To computa(), however, updates

of i) have to be done in place. Based on the representation of
matrices as set of column vectors, we sweep through thexoaai
column-wise order, using the result vectdi as the current render
target as well as a currently bound texture. Initially, toatent of

r(i) is copied intax). When the j-th column of is rendered, each
element is multiplied with the j-th element i), and the result is
added tox(). We thus always multiply every column with the most
recently updated value af!).

6 Discussion and Performance Evalua-
tion

To verify the effectiveness of the proposed framework fer itin-
plementation of numerical simulation techniques we havglém
mented two meaningful examples on the graphics processir. A
our experiments were run under WindowsXP on a P4 2.8 GHz pro-
cessor equipped with an ATI 9800 graphics card.

With regard to the realization of methods of numerical cothpu
ing on graphics hardware, limited accuracy in both the irdketex-
ture stages and the shader stages is certainly the Achtléed of
any approach. In many cases, numerical methods have to be per
formed in double precision to allow for accurate and stablamu-
tations. As a matter of fact, our current target architextizes not
provide sufficient accuracy in general. Other graphicssard the
other hand, like NVIDIAs GeForceFX, already provide fullBE
floating point precision in both the shader and texture stagkus,
it will be of particular interest to evaluate this GPU in peutar
as well as other near-future graphics architectures wigarnck to
computation accuracy.

Let us now investigate the performance of our approach as wel
as the differences to CPU implementations of some of therithest
basic operations. In our experiments the resolution oforscind
matrices was chosen such as to avoid paging between texéme m
ory and main memory and between main memory and disk. All our
operations were run on vectors and matrices of sizé §12048.

We have also not considered the constant time to initiathg tex-
tures from main memory to texture memory. The reason isytlat
predominantly focus on iterative techniques, where a latgaber
of iterations have to be performed until convergence. Ssegiy,

in these particular applications the time required to sétephard-
ware is insignificant compared to the time required to penfine
computations. During all iterations the data resides orlzR& and

it has neither to be reloaded from main memory nor duplicated
the CPU. In other scenarios, e.g. if frequent updates of aixnat
happen, this assumption may not be justifiable anymore. ifn th
case, also the time needed to transfer data between diffenés
has to be considered.

On vectors and full matrices the implementation of standard
arithmetic operations, i.e. vector-vector arithmetic andtrix-
vector multiplication, was about 12-15 times faster coragato
an optimized software implementation on the same targéitam:
ture. A considerable speed-up was achieved by internadlynst
vectors and matrices as RGBA textures. Sets of 4 consecertive
tries from the same vector are stored in one RGBA texel. Tinps,
to four times as many entries can be processed simultarye®isl
should note here, that operations on vectors and matricksipan
this particular internal format perform in exactly the sawey as
outlined. Just at the very end of the computation need theorvec
elements stored in separate color components to be readdag
rendering purposes. We can easily realize this task by mefams
simple shader program that for each pixel in the result infeiphes
the respective color component.

On average, the multiplication of two vectors of length 5tdbk
0.2 ms. Performance dropped down t&® ms and B ms for
vectors of length 1024and 2048, respectively. Multiplication of

a 4096 full matrix times a vector was carried out in roughly28
seconds. In contrast, the multiplication of a sparse bamelelix

of the same size, which was composed of 10 non-zero diagonals
took 0.72 ms.

Obviously, only one vector element can be stored in a single
RGBA texel if numerical operations on vector-valued dataeha
to be performed. On the other hand, in this case also therperfo
mance of software implementations drops down due to erdarge
memory footprints. Our current software implementatiohighly
optimized with regard to the exploitation of cache coheeemt the
CPU. In practical applications, a less effective intermgiresenta-
tion might be used, so that we rather expect a relative imgmant
of the GPU based solution. In this respect it is importantrtovk
that also on the GPU access to higher precision texturesslown
performance about a factor of 1.5-2.

The least efficient operation compared to its software ant
part is the reduce operation. It is only about a factor ofeteester
even though we store four elements in one RGBA texture. For in
stance, reducing a 1024ector takes about & ms on the GPU. For
a vector of length 2048 this time is 5.4 ms. The relative loss in
performance is due to the fact, that the pixel shader progoaioe
used for this kind of operation is a lot more complex than dvae t
is used for vector-vector multiplication. On the other haeven a
performance gain of a factor of three seems to be worth areimpl
mentation on the GPU.

In the following, we present two examples that demonstize t
efficient solution of finite difference equations on the GRuboth
examples, a 1024 x 1024 computational grid was employed, and
matrices were represented as set of diagonal vectors.

In the first example, a solution to the 2D wave equation was-com
puted based on the implicit Crank-Nicholson scheme as itbestr
(see Figures 6 and 7 for results). Compared to explicit selsethe
implicit approach allows us to considerable increase the size in
time. To solve the system of equations we employed the GPU im-
plementation of the conjugate gradient solver. The bantfedtare
of the matrix was exploited by reducing the number of diagjvee-
tors to be rendered in one matrix-vector multiplication.eTdom-
putation of one matrix-vector product (1634024 -sparse-matrix
times 1024-vector) took roughly 464 ms. Overall, one iteration of
the conjugate gradient solver was finished indlfs. By perform-
ing only a limited number of iterations, five in the currenample,
interactive simulation at 13 fps could be achieved.

In our second example, we describe a GPU implementation of a
numerical solution to the incompressible Navier-Stokesaéiqns
(NSE) in 2D:

Ju 1 , ap
ov. 1 5, ap

Here,u andv correspond to the components of the velotftin
the x and y direction, respectivelyReis the Reynolds numbep
the pressure, and vif and fy external forces can be specified.

We first discretize partial derivative af andv, resulting in an
explicit scheme to compute new velocities at titrel from values
at timet:

t+1
W= Gl At agx ©)
dpt+l
VI = At 4
A 4
with
G = ut+At(%eD2us-Du+fx) (5)

Ft =

\/‘+At(%eD2va-Dv+fy) ©)

Given current values fan andv at every grid pointsG! andF!
can be directly evaluated. In the current implementatioa,em-
ploy an explicit scheme to resolve f@' andF!. The diffusion
operator is discretized by means of central differences, as pro-
posed in [Stam 1999], we solve for the advection part by higci
the velocity field backward in time. Note that these operetiare
carried out on a 2D grid represented by a 2D texture. Thevexbl
computations are performed at each grid point in a pixel shgub-
gram. Finally, in order to compute updated velocities aeting 1,
we have to solve for the pressure at time1. From the continu-
ity equation for incompressible medidiy(V) = 0), we obtain the
following Poisson equation for the pressyre

aZpt+l
ox2

02 pt+1
ay?

1 9F

1 9Ft oG
TOALY 9x

dy

) @)

The partial derivatives df andG are solved at each grid point,
represented as a 2D texture, by means of forward differerféies
nally, the right hand side of equation 7 is input to the GPUlanp
mentation of the CG solver. Because vectors are internaflyer
sented as 2D matrices, the data does not have to be convaded a
can be directly used to feed the CG solver. Equipped with@appr
priate boundary conditions, the CG solver iteratively catap a
solution for p at timet + 1, which can be directly passed back to
the explicit scheme to compute new velocity values by medns o
equations 3 and 4.

Overall, by means of the GPU implementation of both the ex-
plicit and the implicit scheme we were able to interactividynon-
strate the numerical solution of the NSE at 9 fps on a #@gitl. In
each time step, we use the pressure distribution from thditas
step as initial guess for the CG solver. In this way, only a e
ations have to be performed, yet resulting in good accuracthe
currentimplementation, four iterations were executed:hSusmall
number of iterations, on the other hand, yields inaccuraselts
once abrupt changes are applied by means of external fotnes.
Figure 8, we show a snapshot of our interactive tool, whitdwa
one to interact with the velocity field, and to visualize tlypamics
of injected dye into this field.

7 Conclusion

In this work, we have described a general framework for the im
plementation of numerical simulation techniques on gregphard-
ware. For this purpose, we have developed efficient intéagalits
for vectors and matrices. By considering matrices as a sgibgf
onal or column vectors and by representing vectors as 2Dirext
maps, matrix-vector and vector-vector operations coulddoeler-
ated considerably compared to software based approaches.

Our emphasis was on providing the building blocks for the de-
sign of general techniques of numerical computing. This ison-
trast to existing approaches, where dedicated, mainlyi@xpblu-
tion methods have been proposed. In this respect, for thdaiion
of particular phenomena some of these approaches mightpee
rior to ours in terms of performance. On the other hand, amé-
work offers the flexibility to implement arbitrary expliar implicit
schemes, and it can thus be used in applications where Istegger
sizes and stability are of particular interest. Furtheentecause
our internal matrix layout can benefit from the sparsity diioins
quite effectively, we do not expect our method to be signifilya
slower compared to customized explicit schemes.

In order to demonstrate the effectiveness and the efficiehayr
approach, we have described a GPU implementation of theiconj
gate gradient method to numerically solve the 2D wave eguati

and the incompressible Navier-Stokes equations. In bameles,
implicit schemes were employed to allow for stable compoitat
yet providing interactive rates. Despite precision isswescould
achieve considerably better performance compared to duwvae
realization. On the other hand, to allow for a fair comparisee
should consider timing statistics of SSE-optimized sofewsolu-
tions, which are supposed to perform about a factor of 2 tet&fa

The lack of a contiguous floating point pipeline on our target

architecture still prohibits its use in numerical applioas where

accuracy is a predominant goal. On the other hand, with degar

to the fact that full floating point pipelines are already imlze,
the implementation of humerical techniques on commodigpbf
ics hardware is worth an elaborate investigation. Pagitylin en-
tertainment and virtual scenarios, where precision issught be
of lesser dominant concern, such implementations can lkafse
fectively for interactive physics based simulation.

In the future, we will implement matrix-matix operationssied
on the described internal layout, and we will investigatethme
ods to efficiently update vector and matrices that are stamed
texture memory. In this way, linear algebra operations liké&
decomposition or Singular Value decomposition can be imple
mented. In the long term, we aim at providing the functidyali
that is available in the BLAS library, thus allowing geneliakar
algebra packages to be built upon GPU implementations.

8 Acknowledgements

We would like to thank ATI for providing the 9800 graphics dar
and in particular Mark Segal for providing information abdlie
technical details of this card.

/—«@F‘

RAPH
SISG391 200

Figure 6: GPU-based interactive simulation of 2D wateraes$ is
demonstrated. The implementation runs at 43 fps on & §iidl.

References

ANDERSON E., Bal, Z., BiIscHOF, C., BLACKFORD, S., DEMMEL, J.,
DONGARRA, J., DU CROZ, J., GREENBAUM, A., HAMMARLING, S.,
MCKENNEY, A., AND SORENSEN D. 1999. LAPACK Users’ Guidge
third ed. Society for Industrial and Applied Mathematichjl&delphia,
PA.

Figure 7: A GPU-based tool to interact with water surface®al-

time is shown. By means of the mouse, the user can simulate ex-
ternal forces that disturb the water surface. On a 2agi the
applications runs at 13 fps.

Figure 8: An interactive tool for the visualization of thelgmn
to the 2D Navier-Stokes equations is demonstrated. Theaaser
modify the velocity field, and dye can be injected into thefi€bn
a 1024 grid the applications runs at 9 fps.

ATI, 2003. Sample effects on the ATI cards.

http://www.ati.com/developer/techpapers.html.

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simulation.
Computer Graphics SIGGRAPH 98 Proceeding3-54.

BoLz, J., ARMER, |., GRINSPUN, E.,AND SCHROEDER P. 2003. Sparse
matrix solvers on the GPU: Conjugate gradients and mutiGfomputer
Graphics SIGGRAPH 03 Proceedings

CHEN, J.,AND DA VITORIA LOBO, N. 1995. Towards interactive-rate
simulation of fluids with moving obstacles using Navier{&® equa-
tions. Graphical Models and Image Processing, 27

CURTIS, C., ANDERSON S., &IMS, J., HLEISCHER, F., AND SALESIN,
D. 1997. Computer-generated watercold@@omputer Graphics SIG-
GRAPH 97 Proceedings

DEBUNNE, G., DESBRUN, M., M.-P., C.,AND BARR, A. 2001. Dy-
namic real-time deformations using space and time adaptivepling.
In Computer Graphics SIGGRAPH 01 Proceedings

DESBRUN, M., MEYER, M., SCHROEDER P.,AND BARR, A. 1999. Im-
plicit fairing of irregular meshes using diffusion and catwre flow. In
Computer Graphics SIGGRAPH 99 Proceedingks7—324.

graphics

DONGARRA, J., DU CrROZ, J., HAMMARLING, S., AND HANSON, R.
1988. An extended set of FORTRAN basic linear algebra swspros.
ACM Transactions on Mathematical Software 1417.

DONGARRA, J., Du CrROz, J., HAMMARLING, S., AND HANSON, R.
1990. A set of level 3 basic linear algebra subprogra®€M Transac-
tions on Mathematical Software 16-17.

ELDER, G. 2002. Radeon 9700. Proceedings Eurographics/SIGGRAPH
Workshop on Graphics Hardware 2002

FEDKIW, R., STAM, J., AND JENSEN, H. 2001. Visual simulation of
smoke.Computer Graphics SIGGRAPH 01 Proceedintfs-22.

FOSTER N., AND FEDKIW, R. 2001. Practical animation of liquid€om-
puter Graphics SIGGRAPH 01 Proceeding8-30.

FOSTER N., AND METAXAS, D. 1996. Realistic animation of liquids.
Graphical Models and Image Processing, 53471-483.

HARRIS, M., COOMBE, G., SCHEUERMANN, T., AND LASTRA, A. 2002.
Physically-based visual simulation on graphics hardwdreProceed-
ings Eurographics/SIGGRAPH Workshop on Graphics Hardwza@2

HART, J. 2001. Perlin noise pixel shaders. Rroceedings Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware 2001

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P.,AND ERTL, T. 1999.
Applications of pixel textures in visualization and refiismage synthe-
sis. INACM Symposium on Interactive 3D Graphi@40-119.

HILLESLAND, K., MOLINOV, S.,AND GRZESZCzUK, R. 2003. Nonlinear
Optimization Framework for Image-Based Modelling on Pesgmable
Graphics HardwareComputer Graphics SIGGRAPH 03 Proceedings

HoOPF, M., AND ERTL, T. 1999. Accelerating 3D convolution using graph-
ics hardware. IProceedings IEEE Visualization'99471-474.

HoPF, M., AND ERTL, T. 2000. Hardware accelerated wavelet transfor-
mations. InProceedings EG/IEEE TCVG Symposium on Visualization
VisSym '0093-103.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, Y. 2000. Lagrangian-
Eulerian advection of noise and dye textures for unsteadyvisualiza-
tion. In Proceedings IEEE Visualization'0Q10-118.

KAAS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics for
computer graphics.Computer Graphics SIGGRAPH 90 Proceedings
49-57.

LARSEN, E. S.,AND MCALLISTER, D. 2001. Fast matrix multiplies using
graphics hardware. IRroceedings Supercomputing 2001

LINDHOLM, E., KILGARD, M., AND MORETON, H. 2001. A user-
programmable vertex enginéComputer Graphics SIGGRAPH 01 Pro-
ceedings

MICROSOFT, 2002. DirectX9 SDK. http://www.microsoft.com/DirectX.

MONTRYM, J., AND MORETON, H. 2002. GeForce4. IRroceedings
Eurographics/SIGGRAPH Workshop on Graphics Hardware 2002

NVIDIA, 2002. nvidia OpenGL game of life.
http://www.nvidia.com/view.asp?lO=agjameoflife.
NVIDIA, 2003. Sample effects on the nVIDIA graphics cards.

http://developer.nvidia.com/view.asp?PAGE=papers.

OLANO, M., AND LASTRA, A. 1998. A shading-language on graphics
hardware.Computer Graphics SIGGRAPH 98 Proceedintfs9-168.

PRESS W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B.
2002. Numerical Recipes in C++ : The Art of Scientific Computing
Cambridge University Press.

PURCELL, T., BUCK, |., MARK, W., AND HANRAHAN, P. 2002. Ray
tracing on programmable graphics hardwa@omputer Graphics SIG-
GRAPH 98 Proceedingg03-712.

STAM, J. 1999. Stable fluid€Computer Graphics SIGGRAPH 99 Proceed-
ings 121-128.

STRZODKA, R.,AND RUMPF, M. 2001. Nonlinear diffusion in graphics
hardware. IrfProceedings EG/IEEE TCVG Symposium on Visualization
2001, 75-84.

STRZODKA, R.,AND RUMPF, M. 2001. Using graphics cards for quantized
FEM computations. IfProceedings VIIP 200198-107.

THOMPSON C., HAHN, S.,AND OsSKIN, M. 2002. Using modern graph-
ics architectures for general-purpose computing: A fraorkvand anal-
ysis. Proceedings of 35th International Symposium on Microdesture
(MICRO-35)

WEISskOPF, D., HOPFR, M., AND ERTL, T. 2001. Hardware-accelerated
visualization of time-varying 2D and 3D vector fields by text advec-
tion via programmable per-pixel operations. Rroceedings Workshop
on Vision, Modeling, and Visualization VMV’'0439-446.

WEIskoOPF, D., HOPFR M., AND ERTL, T. 2002. Hardware-accelerated
Lagrangian-Eulerian texture advection for 2D flow visuadian. InPro-
ceedings Workshop on Vision, Modeling, and Visualizatibf/V02.

