
Compression Domain Volume Rendering

Jens Schneider∗ and Rüdiger Westermann†

Computer Graphics and Visualization Group, Technical University Munich

Results overview: First, a volumetric scalar data set of size 2563 requiring 16 MB is shown. Second, the hierarchically encoded
data set (0.78 MB) is directly rendered using programmable graphics hardware. Third, one time step (256 3) of a 1.4 GB shock
wave simulation is shown. Fourth, the same time step is directly rendered out of a compressed sequence of 70 MB. Rendering
the data sets to a 5122 viewport runs at 11 and 24 fps, respectively, on an ATI 9700.

Abstract

A survey of graphics developers on the issue of texture mapping
hardware for volume rendering would most likely find that the vast
majority of them view limited texture memory as one of the most
serious drawbacks of an otherwise fine technology. In this paper,
we propose a compression scheme for static and time-varying vol-
umetric data sets based on vector quantization that allows us to cir-
cumvent this limitation.

We describe a hierarchical quantization scheme that is based on
a multiresolution covariance analysis of the original field. This al-
lows for the efficient encoding of large-scale data sets, yet provid-
ing a mechanism to exploit temporal coherence in non-stationary
fields. We show, that decoding and rendering the compressed data
stream can be done on the graphics chip using programmable hard-
ware. In this way, data transfer between the CPU and the graph-
ics processing unit (GPU) can be minimized thus enabling flexible
and memory efficient real-time rendering options. We demonstrate
the effectiveness of our approach by demonstrating interactive ren-
ditions of Gigabyte data sets at reasonable fidelity on commodity
graphics hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Color, shading, shadowing and texture;
I.3.8 [Computer Graphics]: Applications

Keywords: Volume Rendering, Vector Quantization, Texture
Compression, Graphics Hardware

∗schneider@glhint.de
†westerma@informatik.tu-muenchen.de

1 Introduction

Over the last decade many articles have extolled the virtues of hard-
ware accelerated texture mapping for interactive volume rendering.
Often this mechanism was positioned as the latest cure for the soft-
ware crisis in scientific visualization - the inability to develop vol-
ume rendering algorithms that are fast enough to be used in real-
time environments, yet powerful enough to provide realistic simu-
lation of volumetric effects. Despite all the great benefits that were
introduced by the most recent texture mapping accelerators, how-
ever, one important issue has received little attention throughout
the ongoing discussion in the visualization community: volumetric
texture compression.

As the demand for high-resolution three-dimensional texture
maps in visualization applications like medical imaging or compu-
tational fluid dynamics is continuously increasing, there is also an
increasing need for effective texture compression schemes. Besides
enabling the optimal exploitation of limited texture memory, tex-
ture compression has the potential to significantly reduce the load
on the transmission channel between the CPU and the GPU. There-
fore, however, methods need to be developed to directly decode the
data stream on the graphics chip at run-time, yet still enabling in-
teractive frame rates.

Apart from the aforementioned requirements, one additional re-
quirement becomes important once the compression scheme has to
be applied to large-scale data sets: encoding optimization. As we
aim at the compression of large volumetric data and sequences, the



encoding step can easily consume hours to generate an appropri-
ately compressed data stream. Thus, to provide a tool that has the
potential to be used in real-world scenarios, it is necessary to specif-
ically address performance issues.

In this paper, the emphasis is on proposing a novel approach to
volumetric texture compression that satisfies the mentioned require-
ments. The key to our approach is an improved implementation of
vector quantization. A vector quantizer essentially maps any input
n-dimensional vector to a single index that references a codebook.
The respective codebook entry or codeword carries a vector of equal
dimensionality that is used to reproduce the original one. Usually,
no such codebook is known a priori. Hence, encoding the input
set means finding a partitioning of the input set that calculates the
codebook.

Our proposed scheme can effectively be applied to multi-
dimensional data, and it can thus serve as a basis for region en-
coding of static and time-varying scalar or vector fields. Our choice
of technique was mainly driven by the requirement to perform the
decoding by means of the functionality available on consumer class
graphics accelerators. Alternative compression techniques for vol-
umetric data, for instance RLE encoding, IFS [Fisher 1995; Saupe
et al. 1996], or compression schemes based on wavelet and Lapla-
cian hierarchies [Muraki 1993; Westermann 1994; Ghavamnia and
Yang 1995; Gross et al. 1995; Ihm and Park 1998; Bajaj et al. 2001;
Nguyen and Saupe 2001], although in some cases they result in
even better compression ratios, do not allow for simultaneous de-
coding and rendering of the compressed data on the GPU in general.

At the core of the quantization step the original data is split into
a multiresolution representation. A covariance analysis at each res-
olution level followed by a relaxation step to minimize residual dis-
tortions allows us to compute sets of representative values at vary-
ing resolution. Temporal coherence between successive time steps
in non-stationary fields is exploited in various ways to speed up the
quantization process.

The data set is finally encoded into a RGB index texture, each
color component being an index into a 2D dependent texture that
holds the codebook generated at a particular resolution level. To
access the compressed data stream and to decode the data we em-
ploy the Pixel Shader API, a specific set of instructions and capa-
bilities in DirectX9-level hardware that can also be accessed from
within the OpenGL API via the GL ARB fragment program exten-
sion [OpenGL ARB n. d.]. Both the index texture and the depen-
dent textures necessary to look up codewords from the codebook
can be accessed on a per-fragment basis.

Although the decoding of compressed data on the GPU slows
down rendering performance, above all it enables the rendering of
volumetric data sets that would not have fit into texture memory
otherwise. Even if the compressed data stream does not fit into
texture memory, e.g. long sequences of large volumetric data sets
are rendered, we achieve a considerable performance gain due to
the minimization of bus transfer. One drawback of our rendering
approach, however, is the fact that only nearest neighbor interpola-
tion can be employed during rendering. This is a direct implication
of vector quantization in general, and it can only be overcome by
means of a considerably more expensive decoding scheme.

To further improve rendering performance, we effectively em-
ploy the early z-test that allows us to discard fragments before they
enter the fragment program. Based on the observation that in the
current implementation the loss in rendering performance is due to
the complex shader program used to decode the data, we discard
the execution of the shader program for those fragments that would
most likely decode empty space.

The reminder of this paper is organized as follows. In Chapter
2 we review related work. The basic description of the hierarchi-
cal decomposition scheme is subject of Chapter 3. In Chapter 4
we describe GPU-based decoding and rendering of the compressed

data stream. An improved implementation of vector quantization
as well as performance issues and the compression of time-varying
data sets is discussed in Chapter 5. We conclude the paper with
a detailed discussion, and we show further results of our approach
applied to real data sets.

2 Previous Work

Over the last decades the effective use of textures for realistic im-
age synthesis has been demonstrated in various computer graphics
applications. In particular, graphics chip manufacturers have spent
considerable effort on the design of dedicated hardware to achieve
real-time 2D and 3D texture mapping. As a result, hardware as-
sisted texture mapping has now positioned itself as one of the fun-
damental drawing operations to achieve interactivity in applications
ranging from shading and lighting simulation to advanced volume
rendering techniques.

On the other hand, with the increasing attraction of texture maps
limited texture memory becomes a major concern, and one is faced
the problem to extend texture volume without increasing local tex-
ture memory. Particularly in volume rendering via 2D or 3D tex-
tures [Cabral et al. 1994; Westermann and Ertl 1998; Rezk-Salama
et al. 2000; Engel et al. 2001; Kniss et al. 2001; Kniss et al. 2002],
limited texture memory has become an important issue that often
prohibits the rendering of large-scale data sets at the maximum pos-
sible frame rates.

With the focus on the application to typical 2D textures as they
arise in computer games, like stones, bricks and walls, chip man-
ufacturers have already proposed hardware supported decoding of
compressed texture maps. Based on compression technology pro-
vided by S3 Inc., these activities have lead to the S3 texture com-
pression standard [OpenGL ARB n. d.], which is now part of the
DirectX and OpenGL APIs. In the S3 standard, 4x4 texel values
are grouped together and represented by two average color samples
and 4 linear interpolation factors, each of which is addressed via 2
bit per texel. Although the S3 texture compression scheme yields
decent fidelity when applied to the aforementioned textures, from
the numerical point of view it generates insufficient results due to
the linear fit that is performed even in non-homogeneous regions.
In addition, due to the maximum compression ratio of 8:1, it is not
appropriate for the application to volumetric textures or even time-
varying data sets in general.

Customized compression schemes for 3D textures, on the other
hand, have the potential to produce considerably better compression
ratios. For texture based volume rendering, Guthe et al. [Guthe
et al. 2002] employed wavelet transforms to significantly compress
separate texture tiles. Although resulting in high fidelity, every tile
has to be decoded before it can be transferred and rendered on the
GPU.

If an application demands for the rendering of time-varying data
sets, data compression becomes an even more important require-
ment. Hierarchical data structures and difference encoding schemes
have been proposed to detect spatial and temporal coherence in
consecutive time steps, and to use this information to accelerated
the rendering process [Westermann 1995; Shen and Johnson 1994;
Shen et al. 1999]. In general, however, none of these techniques has
been shown to be able to decode the data on the graphics chip.

First approaches in which volumetric data decoding and render-
ing was performed on the graphics chip were proposed in [Lum
et al. 2001] for time-varying sequences, and in [Kraus and Ertl
2002; Li and Kaufman 2002] for static data sets. The former ap-
proach is based on a transform coding of the original signal. DCT-
coefficients are quantized and encoded into hardware assisted color
tables, which can be reloaded interactively to generate animations
at interactive rates. In the latter techniques, relevant areas of the



Figure 1: The hierarchical decomposition and quantization of volumetric scalar data sets is illustrated. Blocks are first split into multiple
frequency bands, which are quantized separately. This generates three index values per block, which are used to reference the computed
codebooks.

original texture are packed into a texture atlas of reduced size. De-
coding is finally done by employing programmable graphics hard-
ware to reconstruct the appropriate information for each rendered
fragment.

A quite challenging alternative to the proposed compression
schemes is vector quantization, which essentially enables the au-
tomatic computation of a reduced set of representative values used
to approximate the original samples at reasonable fidelity.

In computer graphics many different applications have already
benefit from vector quantization. Particularly in imaging applica-
tions, where true color images have to be displayed on devices ex-
hibiting limited color resolution, the quantization of color samples
has been used frequently to find an appropriate mapping [Heck-
bert 1982; Gervauz and Purgathofer 1990; Orchard and Bouman
1991; Buhmann et al. 1998]. Vector quantization has also been
used in volume rendering applications for compression purposes
by treating continuous data blocks as multi-dimensional vectors to
be encoded [Ning and Hesselink 1992], and for the quantization of
grey-scale gradients to be used further on in 3D texture based vol-
ume rendering to simulate local illumination [Van Gelder and Kim
1996]. The compression of light fields based on vector quantiza-
tion was considered in [Levoy and Hanrahan 1996; Heidrich et al.
1999]. In the latter approach, Heidrich et al. demonstrated the ef-
ficient use of texture color tables for the encoding and hardware
assisted decoding of vector components. Tarini et al. [Tarini et al.
2000] suggested to use vector quantization for the interactive sim-
ulation of local lighting effects on surfaces. Two-dimensional nor-
mal maps were quantized using a customized quantizer such that
the lighting computation only had to be performed for each of the
generated table entries.

In contrast to the described applications of vector quantization,
in our work the focus is on a somewhat different topic. In par-
ticular; the goal of our approach is two-fold: to demonstrate that
real-time decoding and rendering of quantized contiguous texel re-
gions in large volumetric data sets and sequences can be achieved
by means of standard graphics hardware and to propose an en-
hanced vector quantization scheme that is extremely performant,
yet resulting in high fidelity and in the ability to efficiently process
multi-dimensional data.

3 Hierarchical Data Decomposition

Prior to the in-depth discussion of the proposed compression
scheme, let us first outline the hierarchical setting our approach is
based upon as well as the technique to render the hierarchically
encoded data stream on programmable graphics hardware. Our im-
plementation exploits the GL ARB fragment program extension to
the OpenGL API on the latest ATI technology, the ATI 9700. In par-
ticular, we exploit the possibility to perform arithmetic operations
and dependent texture fetches on a per-fragment basis.

Starting with the original scalar field, the data is initially parti-
tioned into disjoint blocks of size 43. Each block is decomposed
into a multiresolution representation, which essentially splits the
data into three different triadic frequency bands. Therefore, each

block is down-sampled by a factor of two by averaging disjoint sets
of 23 voxels each. The difference between the original data samples
and the respective down-sampled value is stored in a 64-component
vector. The same process is applied to the down-sampled version,
producing one single value that represents the mean value of the en-
tire block. The 23 difference values carrying the information that is
lost when going from 23 mean values to the final one are stored in a
8-component vector. Finally, a 1-component vector stores the mean
of the entire block. The basic procedure is illustrated in Figure 1.

In performing this task, the data is decomposed into three vectors
of length 64, 8, and 1, respectively, which hierarchically encode the
data samples in one block. This approach has two main advantages.
Firstly, the detail or difference coefficients will most likely become
small, or they are already zero in homogeneous or empty regions.
By applying a simple thresholding, many of the difference vectors
can be mapped to the zero vector. In this way, the number of code-
words used to represent significant non-zero vectors is maximized.
Moreover, the performance of the quantization process is consid-
erably increased, because the relaxation process that assigns vector
elements to quantization bins becomes a simple operation for zero
vectors. Secondly, by quantizing each frequency band separately
and by assembling the original signal from these contributions, we
enhance fidelity by using combinations of entries stored in each
band.

By means of the vector quantizer, which will be described be-
low, appropriate mappings and codebooks containing 64- and 8-
component codewords are computed for both high frequency bands.
Let us therefore assume that the length of each codebook is 256,
such that the respective index into the codebook can be stored as
one 8 bit value. Let us also assume that mean values are stored in
an 8 bit value. They can thus be used directly without the need to
lookup the respective value in a codebook.

We thus end up with three 8 bit values per block: one value repre-
sents the mean of each block, while the other two values are indices
into the respective codebooks representing the difference informa-
tion. All three values are stored in one single RGB index texture, I,
of size (Nx/4)x(Ny/4)x(Nz/4). Here, Nx,Ny and Nz are the size of
the original volume in every dimension.

The two codebooks are stored in two separate 2D textures C1
and C2 of size 256x64 and 256x8, respectively. They are indexed
via (s,t) texture coordinates, the s coordinates being directly given
by the G- and the B-component of I. To decode a particular block,
its mean and the respective difference information from C1 and C2
have to be added. Both operations, the lookup of the difference
information and the reconstruction of the final value can be done
efficiently by means of per-fragment operations as described in the
following.

4 Compression Domain Rendering

Starting with a 3D scalar data set, the hierarchical quantization
scheme generates a RGB index set of 1/4 the original size in ev-
ery dimension. This data set is converted to a 3D texture map, and
it is rendered via hardware accelerated 3D texture mapping. In our



current implementation the texture is sliced either in back-to-front
or front-to-back order via planes orthogonal to the viewing direc-
tion. Because each texel of the index texture is expanded to a 43

block during rendering, care has to be taken to perform the slicing
with as many slices as necessary to render the original data.

To assemble each quantized block on a per-fragment basis, a
shader program is issued that performs the following tasks:

• The respective texture sample is fetched from the index tex-
ture I.

• The difference vectors are indexed via the G- and B-
components, and they are fetched from the dependent textures
C1 and C2.

• The R-component of I (mean value) is added to the difference
information.

• The final scalar value is mapped to color and opacity via a 1D
dependent texture map (color table).

• Color and opacity is drawn to the framebuffer.

Although by the G- and B-component of the index texture I,
for every fragment the s texture coordinates to index the respective
codewords in C1 and C2 are uniquely determined, the relative ad-
dress (t texture coordinate) of each fragment within this codeword
is not yet available. Therefore, we issue an address texture, A, in
the shader program. This texture is of the same size as the encoded
texel region, 43 in the current example, and it is mapped via nearest
neighbor interpolation. It stores relative addresses to access partic-
ular components in one codeword, and it is used by each fragment
to determine the missing s texture coordinate.

In the R-component of A, 64 different addresses are coded to
index C1. In the G-component, however, only 8 different addresses
have to be coded to assign the codewords in C2. Therefore, blocks
of 23 adjacent texels get assigned the same address, thus yielding 8
different values necessary to access C2. For sake of simplicity, the
basic idea is illustrated in Figure 2 for the encoding of 2x2 regions.

C
o

d
e

w
o

rd
s

2D dependent texture (codebook)

0.1

0.85
I

0.35

1.0
A

Figure 2: Illustration of on-chip decoding for a 2x2 texel region.
Texture values from two different texture sources are used to fetch a
difference sample from the dependent 2D texture.

Because the address texture only holds the addresses for one sin-
gle block, an enlarged texture as large as the original data set with
its content repeated across the domain has to be mapped. This ap-
proach, however, is not appropriate, because it does not allow for
the saving of any memory at all. Consequently, we proceed in a
different way. To access the index texture, for each slice that is ren-
dered we issue texture coordinates ranging from 0 to Nx/4, Ny/4
and Nz/4, respectively, and we set the wrap parameter for texture
coordinates to GL REPEAT. Now, the address texture is periodi-
cally repeated over the domain thus yielding the correct addresses
at every fragment. As a matter of fact, the G- and B-component of
T together with the R- and G-component of A uniquely determine
the addresses into the dependent textures C1 and C2, respectively.

4.1 Early Shader Termination

For the simultaneous decoding and rendering of the compressed
data sets as proposed, we perceive a loss in performance of about
a factor of 2-3 compared to the rendering of uncompressed data.
Based on the observation that in the current implementation the loss
in performance is due to the complex shader program, and in partic-
ular due to the many texture indirections, we discard the execution
of the shader program for fragments that are most likely to decode
empty space.

Therefore, we employ the early z-test, which is available on our
target architecture. The early z-test discards a fragment and thus
avoids execution of the pixel shader program, if depth values are not
explicitly modified in the shader program and other per-fragment
tests are disabled.

To exploit the early z-test we render each slicing polygon twice.
In the first pass, a simple pixel shader program is issued. In the
shader, index texture I is accessed and the mean value stored in the
R-component is checked. If it is zero, then the fragment is rendered
with color and opacity set to zero. In this way, it does not affect
the color buffer, but the depth value in the depth buffer is set to the
fragments depth. If the mean value is not zero, then the fragment is
discarded by means of a kill instruction. This instruction does not
allow one to gain performance, but it takes care that the fragment
does neither affect the color nor the depth buffer. As a matter of
fact, if a fragment gets discarded in the shader program, the depth
value of the fragment that was rendered last is still valid in the depth
buffer.

In the second pass, the slicing polygon is rendered again, but now
the complex shader as described in the previous section is called.
However, because the depth test is set to GL GREATER, the early
z-test only lets those fragments pass that have been discarded in the
forgoing simple shader pass. All other fragments will be discarded
before entering the complex shader program.

In this way, in empty regions only one texture fetch operation
has to be performed to access the mean of each block. If this value
is zero, then the difference information will be zero as well and
the data sample does not have to be decoded. Particularly for the
rendering of numerical simulation results, in which large empty re-
gions occur quite frequently, the proposed acceleration technique
results in a considerable speed-up.

5 Vector Quantization

Let us now briefly summarize the basic concept and the features
provided by the improved vector quantizer that is used as a basis for
volumetric texture compression and hardware accelerated texture
decoding.

In its most general form a vector quantizer takes a n-dimensional
vector as input and maps it to a single index that references a code-
book. The respective codebook entry or codeword carries a vector
of equal dimensionality that is used to reproduce the original one.
Usually, no such codebook is known a priori. Hence encoding the
input set means finding a partitioning of the input set that calcu-
lates the codebook. Because we aim at reproducing each input set
as closely as possible vector quantization can be seen as a data fit-
ting procedure that minimizes the residual distortion implied by the
mapping with respect to some metric δ . The most common dis-
tortion metric used in data fitting processes is the squared-distance
metric δ (x,y) �→ ‖x−y‖2

2, which provides an intuitive measurement
of the distortion.

Although vector quantization has been around for quite a long
time, until now there was only a limited use of quantization schemes
in computer graphics applications due to a number of drawbacks
of existing algorithms. In our opinion the most serious drawback
of vector quantization schemes is their inability to be used in time



critical applications. Usually, high quality quantizers show a signif-
icant lack in performance, which prohibits their application to high-
resolution data. In addition, the extension of existing approaches to
higher dimensions or multi-parameter data is not straight forward
in general. This is due to the conceptual design of the algorithms
and due to performance issues.

Linde, Buzo and Gray [Linde et al. 1980] developed one of the
first vector quantization algorithms suitable for practical applica-
tions - the LBG-algorithm - which improved on the scalar quantizer
proposed by Max [Max 1960] and by Lloyd [Lloyd 1982]. For
an excellent introduction to and a comprehensive survey of vector
quantization let us refer to [Gray and Neuhoff 1998; Sayood 2000].
While conceptually simple there are still some serious problems in-
herent to the LBG-algorithm, of which the most severe ones are
execution speed and the so called empty cell problem.

In the following we will demonstrate that by integrating an en-
hanced splitting strategy to find optimal codebooks empty cells can
be avoided automatically without any special treatment. In addition
this approach makes vector quantization fast enough to establish it
as attractive alternative to other compression schemes, yet provid-
ing excellent compression ratios at high fidelity. Our algorithm is
easy to implement, and it is general enough to deal with high di-
mensional multi-parameter data. The latter property exposes our
approach among previous ones, which are often restricted to appli-
cations in two or three dimensions.

5.1 LBG Revisited

Since our algorithm is a modification of the LBG-algorithm, let us
start with a review of this algorithm.

1. Start with an initial codebook C = {Y (0)
i }m

i=1 ⊂ ℜn. Let I ⊂
ℜn be the set of input vectors. Set k = 0, D(0) = 0 and select
threshold ε .

2. Find quantization regions V (k)
i = {X ∈ I :

δ (X ,Yi) < δ (X ,Yj) ∀ j �= i}, where j = 1,2, . . . ,m.

3. Compute the distortion D(k) = ∑m
i=1 ∑X∈V (k)

i
δ (X ,Y (k)

i )

4. If D(k−1)−D(k)

D(k) < ε stop, otherwise, continue.

5. Increment k. Find a new codebook {Y(k)
i }m

i=1 by calculating

the centroids of each cell V (k−1)
i . Go to (2).

The final output of the algorithm is a codebook C = {Y(k)
i }m

i=1

and a partition {V (k)
i }2r

i=1 of I, where r is the fixed bit-rate of the
quantization. Each input vector is then replaced by the index of the
associated quantization cell.

The initial codebook for step (1) is usually obtained by means of
a so called splitting technique. First, the centroid of the entire input
set is placed as a single entry into the codebook. Then, a second
entry is generated by adding a random offset to the first entry, and
the LBG-algorithm is executed until convergence. This procedure
is repeated until the desired bit-rate is achieved

While repeated nearest neighbor searches in step (2) slow down
its performance significantly, the LBG-algorithm also suffers from
the empty cell problem. Empty cells are the result of collapsing
codebook entries during refinement steps. These entries are not
detected by the algorithm, and as a consequence many codebook
entries might be wasted. Although it is possible to explicitly detect
and delete these entries, this alternative results in even more LBG-
steps because the number of codebook entries is not going to be
doubled in each iteration. Starting with as many codebook entries

as there are input vectors and merging these entries until the desired
codebook size is achieved solves the problem as well. This, how-
ever, requires 1

2 n2 nearest neighbor searches for n input vectors and
clearly disqualifies the approach when it comes to speed.

5.2 Covariance Analysis

To obtain the initial codebook an improved splitting technique
needs to be integrated. A splitting based on a principal component
analysis (PCA) followed by a relaxation-based optimization phase
is one alternative solution to find an initial codebook. It enables us
to choose an optimal splitting plane with regard to the variances of
the disjunct subregions. The exploitation of such a splitting process
has been described in various applications ranging from data clus-
tering to load balancing, and it is essentially the technique used in
[Pauly et al. 2002; Lensch et al. 2001] for the hierarchical clustering
of point sets and scanned BRDFs.

The splitting technique proceeds as follows. We start with a
single quantization cell V1, which contains the entire input set
I. The respective codebook entry Y1 is the centroid of the en-
tire set, and the distortion of this quantization cell is computed as
D1 = ∑X∈V1

δ (X ,Y1). We then construct a double-linked “to-do”
list by inserting the new “group” defined by (D1, Y1, ℑ1 = {i ∈ ℑ :
Xi ∈V1}) into this list. After subsequent splits this list is sorted in
descending order with respect to the stored distortions Dj. In each
iteration the element j with the largest residual distortion Dj is se-
lected and split further on. We use this heuristic to predict the actual
maximum decrease in distortion, without that we have to explicitly
compute the gain. Because we no longer need to perform one split
in advance, a considerable speed-up can be achieved in addition to
improved quality of the codebook generated this way.

To perform one split, we proceed as follows:

1. Pick the group j with largest residual distortion Dj from the
to-do list.

2. Calculate the auto-covariance matrix
M = ∑i∈ℑ j

(Xi −Yj) · (Xi −Yj)t

3. Calculate the eigenvector emax that corresponds to the largest
eigenvalue λmax of M

4. Split the original group into a “left” and a “right” group:
ℑle f t = {i ∈ ℑ j, < (Yj −Xi),emax > < 0 }
ℑright = {i ∈ ℑ j, < (Yj −Xi),emax > ≥ 0 }

5. Calculate new centroids Yle f t and Yright along with new resid-
ual distortions Dle f t and Dright

6. Insert the two new groups into the to-do list.

7. If number of groups equals 2r, stop, else go to 1.

This procedure essentially adds one codebook entry per split (see
Figure 3). Since the splitting hyperplane passes through the old
centroid, the new distortions will be small compared to the old one.
Once the splitting procedure terminates, the codebook along with
the residual distortion can be directly obtained from the to-do list.

The benefits of this approach are manifold. First, a cell with low
residual distortion will never be split because it is always appended
to the end of the list. In particular this includes cells that only con-
tain one data point and thus have a residual distortion of 0. Second,
if a cell is split it is divided into two sub-cells of roughly equal resid-
ual distortions. Third, applying some LBG-steps as post-refinement
to relax the centroids quickly generates stable Voronoi regions (see
Figure 4). Fourth, in all our examples we did never observe any
empty cells during the LBG post-refinement. This is due to the fact
that we always place centroids into densely populated cells. Fifth,



Figure 3: A series of PCA-Splits to obtain a first codebook.

our algorithm is extremely fast because it avoids expensive LBG-
steps during the splitting process. It has a runtime of O(N · log2 m),
where N is the number of input vectors and m = 2r is the number
of codebook entries. Sixth, the algorithm is easy to implement and
can be extended straight forwardly to any dimension. Moreover,
since the numerical complexity is dominated by distortion evalua-
tions the algorithm offers a huge potential for further optimizations
based on latest SIMD-technology, such as SSE or 3DNow

Figure 4: A series of post-refinements by means of LBG-steps ap-
plied to the codebook from Figure 3. Current centroids are marked
by dark points, while bright points show the centroids from some
previous iteration.

5.3 Performance Optimization

Regardless the mentioned improvements the total run-time of the
algorithm is still dominated by the LBG-steps, which are employed
to relax the codebook entries. On the other hand, these refinements
are necessary because they significantly increase the resulting fi-
delity. As a consequence we further improved the performance of
the enhanced LBG-algorithm as follows.

We restrict the expensive nearest-neighbor search that is per-
formed during the LBG-refinement to a subset of the entire code-
book entries. In the literature this is commonly referred to as fast
searching. While there exist different approaches to determine the
minimal codebook subset we favor a fast but solid heuristic. By ob-
serving that the possibility is high that during one LBG-step each
data point migrates from the initial quantization cell into adjacent
cells, we restrict the search to the k-neighborhood of the initial cell.
Mutual distortions are calculated for each pair of centroids, and ref-
erences to the k nearest neighbors are established for each entry.
The k nearest neighbors are found by means of a modified Quick-
sort algorithm. This algorithm is essentially the one that is used
to find the k smallest entries. In contrast to the full Quicksort, this
sorting procedure only recurses for the partition that overlaps the
kth entry and consequently runs in linear time. Now the nearest
neighbor search is restricted to the list of adjacent centroids and the
adjacency information is updated after each LBG-step. Because
for small k this procedure converges to a suboptimal distortion the
search radius is continuously increased by some value whenever
the convergence rate drops below 5%. This seems to be a reason-
able choice, and it allows us to save up to 85% of the execution

time compared to an exhaustive search. In both cases the algorithm
terminates when no gain in distortion could be achieved or when
a search radius kmax or an user-defined minimum distortion ε is
reached.

For higher dimensions our improvement relies on the concept of
partial searches. Because the distortion measure is essentially a
scalar product < X ,Y > that increases with each evaluated dimen-
sion, the computation is stopped whenever the next contribution
Xi ·Yi leads to a higher value than an initial distortion δ (X ,Yinit).
Obviously, the correct selection of Yinit is very important because
it triggers the number of computations to be performed. Since it is
very probable for a data point not to change the associated quanti-
zation point, we initialize the distortion with respect to the nearest
quantization point. In all our experiments this approach allows us
to save about 50% of the accumulated calculations.

5.4 Region Encoding

One of the drawbacks of vector quantization as described is that
as soon as the bit-rate decreases below 8 bpp artifacts become ap-
parent. In addition, the compression ratio is limited to roughly 3:1
because each RGB texel is represented by one 8 bit color index. On
the other hand, we know that encoding contiguous pixel regions can
significantly improve the compression ratio, yet resulting in even
better quality. This phenomenon can be explained by the fact that
the number of possible colors is increased due to larger codewords
at the same time decreasing the spatial resolution by exploiting co-
herences. Using this approach the number of index bits can be re-
duced considerably, while the length of the generated codewords is
increased. This makes the approach very appropriate for large data
sets, since they profit most from a compact index set.

In correspondence to that observation the quantizer was modi-
fied such as to accept vectors of arbitrary length as input set. This
allows us to interpret enlarged 3D regions as (n3)D vectors, which
are fed into the quantizer to compute appropriate indices and cor-
responding codebooks. Note that scalar or RGBα samples can be
handled in exactly the same way without any coding modifications.

Now, the set of texels within a region is represented by the same
codebook index. The compressed texture map is of length Nx/n
x Ny/n x Nz/n, where Nx, Ny and Nz is the size of the original
data set in each dimension. The codewords, however, consist of n3

consecutive scalar or color samples.
As described in Chapter 3, the proposed quantization scheme can

be easily integrated into a hierarchical setting to generate a multires-
olution representation. Fed with the appropriate input vectors, the
quantizer produces codebooks at different resolution levels. Code-
words can then be combined to produce the best fit for a particular
input vector.

Some results of the proposed quantization scheme are shown in
Figure 5, where a part of one slice of the Visible Human RGB data
set and a 3D confocal microscopy scan of size 5122x32 were en-
coded using the hierarchical compression scheme. As one can see,
by using the hierarchical region encoder we achieve high fidelity at
good compression ratios of 25.3:1 and 31.2:1, respectively. These
ratios include the memory overhead required to store the depen-
dent textures. In both examples, dependent textures were of size
256x16 and 256x4. The RGB index texture used to store the mean
value and indices into the dependent textures was composed of 8
bit components.

5.5 Quantization of Time-Varying Sequences

To encode non-stationary data, we employ a so-called codebook-
retraining algorithm. For a good survey of such algorithms, that are
at the core of adaptive vector quantization schemes, let us refer to
[Fowler 1996]. In general these algorithms partition the data stream



Figure 5: This sequence demonstrates the effectiveness of the hierarchical quantization scheme. First, a 24 bpp true color image (first) was
encoded in 0.95 bpp (second). Next, a 3D 32 bpp confocal microscopy scan (third) was encoded in 1 bpp.

into frames that are to be encoded one at a time, but each frame can
reuse the codebooks of previous frames in different ways. Firstly,
a frame can be encoded separately, producing an index texture and
2 local codebooks for every time step. Secondly, codebooks can be
retrained from the previous frame. Retraining proceeds by taking
the previous codebooks as initial codebooks to the LBG algorithm.
Since not only the codebooks but also the index sets can be reused to
obtain a first guess to the final quantization, fast and partial searches
are possible throughout the entire process.

Obviously, choosing the second alternative for all but the first
time step produces the best results in terms of performance, be-
cause it only computes the PCA-Split for the first frame. For all
other frames fast searches are employed to speed up the remain-
ing LBG-relaxations. On the other hand, after some number of
frames the current codebooks can become sub-optimal, since the
LBG-algorithm depends on the choice of the initial codebook. It
has thus become common practise to select special frames that are
encoded separately, similar to key-frames, while the quantization
for all other frames is obtained by retraining. This scheme shows
remarkably good results. For instance, in figure 6 we show the same
time step out of a shock wave simulation. In the first example the
time step was encoded separately, while the second image was ob-
tained using the 10th retrained codebook from the last key-frame.

Figure 6: This example demonstrates progressive encoding of time-
varying sequences using I- and P-frames. On the left, time step
65 was separately encoded. On the right, the same time step was
encoded using the initial codebook of time step 55, and by perform-
ing the LBG-relaxation on this codebook. Encoding time decreased
from 29 minutes to 13 minutes for the entire sequence.

6 Results and Comparison

In the following we will discuss the proposed quantization and ren-
dering scheme in more detail, and we will give performance and
quality measures for a variety of different data sets. All our experi-
ments were compiled and run under WindowsXP on a P4 2.8 GHz

processor equipped with 512 MB main memory and an ATI 9700.
In figure 7 the quality of the proposed quantization scheme is

demonstrated for different compression modes - 4-color quanti-
zation, 22 region encoding and hierarchical encoding of 42 pixel
blocks. We show the compression of a 2048x1216 24 bpp slice
from the Visible Human data set. Processing time was 2.2, 5.0 and
10.0 seconds, respectively. Compression ratios were 12:1, 19.18:1
and 25.29:1, resulting in respective SNRs of 16.25dB, 25.97dB
and 26.02dB. As one can see, the hierarchical quantization scheme
yields slightly better results compared to 22 region encoding and
generates a significantly better compression ratio. The images also
show nicely the benefits of region encoding compared to color
quantization of separate pixels.

The figures in 8 and 9 demonstrate the application of the hier-
archical quantization scheme to volumetric data sets. All our ex-
amples are rendered using nearest neighbor interpolation, because
linear interpolation within codebooks is not possible. Trilinear in-
terpolation could be achieved by decoding 8 adjacent neighbors
around each fragment in the shader program. On the other hand,
this approach would considerably slow down performance and has
not been considered here.

As in the previous 2D example, the results of different quanti-
zation modes are shown and compared to each other. From left to
right, we show the original data set, region encoding using 23 and
43 texel blocks, and hierarchical encoding of 43 blocks. For the en-
gine data set the compression rates are 7.98:1, 56.89:1 and 20.38:1.
The SNR is 24.29 dB, 19.04 dB and 21.87 dB. For the skull data
set the respective rates are 7.98:1, 60.24:1 and 20.84:1. The SNR is
14.86 dB, 9.96 dB and 11.70 dB.

Obviously, 43 region encoding yields the best results in terms
of compression ratio, but it also produces significant quantization
artifacts. Hierarchical encoding, on the other hand, achieves signif-
icantly better texture fidelity at reasonable compression rates. Ren-
dering performance drops to roughly 1/3 and 1/2 of the performance
of standard 3D texture based rendering. Due to our improved ren-
dering scheme, which employs the early z-test to skip empty re-
gions, performance strongly depends on the consistency of the data
sets. The engine data set, for instance, exhibits noise even in those
regions that have finally been suppressed be the selected transfer
function. If noisy structures are removed from the data in advance,
a considerable speed up can be achieved.

Hierarchical quantization took 19.0 and 50.6 seconds for the en-
gine and skull data sets,respectively. Compared to other quanti-
zation tools, we achieve a significant speed up due the proposed
performance optimizations. For instance, the Open Source vector
quantization toolbox QccPack [Fowler 2000] is of a factor of 40
slower than the proposed scheme; a difference that is of important
relevance if a scheme is to be used for the compression of time-
varying data sets.



In the last figure 10 we demonstrate the effectiveness of the hi-
erarchical quantization scheme and the GPU-based rendering ap-
proach for the display of time-varying data sets. Two different se-
quences are shown: a shock wave simulation consisting of 89 time
steps, each of size 2563, and a vortex flow simulation consisting of
100 time steps of size 1283. Both sequences were compressed using
the proposed progressive quantizing scheme. In this way, memory
requirement dropped from 1.4 GB to 70 MB for the shock wave
simulation, and from 200 MB to 11.1 MB for the vortex simula-
tion. Due to progressive encoding, quantization of the vortex data
set took roughly 5 minutes.

We should note here, that the original vortex data was quantized
to 8 bits in advance. Thus, we can encode the mean value into an 8
bit color component without introducing large distortions. On the
other hand, we could easily use the α-channel in the index texture
to encode 16 bit mean values in the R- and α-component. In this
way, for higher resolved data samples, fidelity can be improved sig-
nificantly.

Rendering the sequences on our target architecture is performed
with 24 fps and 16 fps, respectively. Note that in the first exam-
ple, a considerable speed-up is achieved by taking advantage of the
advanced rendering method that allows us to skip empty space. In
this case, we are yet slightly faster than standard 3D texture based
rendering.

7 Conclusion and future work

In this work, we have outlined a basis for volumetric texture com-
pression and hardware accelerated texture decoding and render-
ing. Therefore, we have developed a hierarchical vector quanti-
zation scheme that is able to efficiently encode static and time-
varying multi-dimensional data. With regard to performance, the
proposed scheme significantly improves previous vector quantiza-
tion schemes, and it achieves compression rates and fidelity similar
to wavelet based compression. For the quantization of sequences,
we have presented an acceleration technique that effectively takes
advantage of temporal coherence between consecutive time steps.
In this way, performance gains up to a factor of 3 could be demon-
strated.

Furthermore, we have described a method to directly render hi-
erarchically encoded data on programmable graphics hardware. We
have employed DirectX9-level hardware to decode the data set and
to achieve interactive frame rates even for large data sets. By effec-
tive use of the early z-test, we have considerably increased render-
ing performance. In this way, for sparse data sets we achieve perfor-
mance rates similar or even better than those that can be achieved
by rendering the uncompressed data sets. Although rendering is
restricted to nearest neighbor interpolation, the proposed method
allows for the interactive rendering of large data sets that would not
have fit into texture memory otherwise.

In the future, we will investigate how to use our scheme to com-
press and render vector valued data. In particular, we will try to
effectively compress large vector fields with regard to vector field
topology. In addition, new rendering modes can be developed based
on this technique, for instance palette based animation or template
based flow representation.

Acknowledgements

Special thanks to K.-L. Ma and D. Silver for providing the Vortex
sequence.

References
BAJAJ, C., IHM, I., AND PARK, S. 2001. 3D RGB image compression for interactive

applications. ACM Transactions on Graphics (TOG) 20, 1, 10–38.

BUHMANN, J., FELLNER, D., HELD, M., KETTERER, J., AND PUZICHA, J. 1998.
Dithered color quantization. In EUROGRAPHICS ’98, 219–231.

CABRAL, B., CAM, N., AND FORAN, J. 1994. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In Proceedings ACM
Symposium on Volume Visualization 94, 91–98.

ENGEL, K., KRAUS, M., AND ERTL, T. 2001. High-quality pre-integrated vol-
ume rendering using hardware-accelerated pixel shading. In Proc. Eurograph-
ics/Siggraph Workshop on Graphics Hardware.

FISHER, Y., Ed. 1995. Fractal Image Compression: Theory and Application. Springer
Verlag, New York.

FOWLER, J. 1996. Adaptive Vector Quantization for the Coding of Nonstationary
Sources. PhD thesis, The Ohio State University.

FOWLER, J. E. 2000. Qccpack: An open-source software library for quantization,
compression, and coding. In Applicationd of Digital Image Processing XXIII (Proc.
SPIE 4115), A. G. Tescher, Ed., 294–301. see also http://qccpack.sourceforge.net.

GERVAUZ, M., AND PURGATHOFER, W. 1990. Graphics Gems. Academic Press,
ch. A simple method for color quantization: octree quantization, 287–293.

GHAVAMNIA, M., AND YANG, X. 1995. Direct rendering of laplacian pyramid com-
pressed volume data. In Proceedings of IEEE Visualization 1995, 192–199.

GRAY, R., AND NEUHOFF, D. 1998. Quantization. IEEE Transactions on Information
Theory 44.

GROSS, M., LIPPERT, L., DREGER, A., AND KOCH, R. 1995. A new method to
approximate the volume rendering equation using wavelets and piecewise polyno-
mials. Computers and Graphics 19, 1.

GUTHE, S., WAND, M., GONSER, J., AND STRASSER, W. 2002. Interactive render-
ing of large volume data sets. In Proceedings of IEEE Visualization 2002, 104–115.

HECKBERT, P. 1982. Color image quantization for frame buffer displays. Computer
Graphics (SIGGRAPH 82 Proceedings), 297–307.

HEIDRICH, W., LENSCH, H., COHEN, M., AND SEIDEL, H.-P. 1999. Light field
techniques for reflections and refractions. Rendering Techniques ’99 (Proceedings
of Eurographics Rendering Workshop), 59–66.

IHM, I., AND PARK, S. 1998. Wavelet-based 3D compression scheme for very large
volume data. In Graphics Interface, 107–116.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Interactive volume rendering
using multi-dimensional transfer functions and direct manipulation widgets. In
Proceedings of IEEE Visualization 2001, 255–262.

KNISS, J., PREMOZE, S., HANSEN, C., AND EBERT, D. 2002. Interactive translucent
volume rendering and procedural modeling. In Proceedings of IEEE Visualization
2002, 168–176.

KRAUS, M., AND ERTL, T. 2002. Adaptive texture maps. In Proc. SIGGRAPH/EG
Graphics Hardware Workshop ’02, 7–15.

LENSCH, H., KAUTZ, J., GOESELE, M., HEIDRICH, W., AND SEIDEL, H.-P. 2001.
Image-based reconstruction of spatially varying materials. In Proceedings of the
12th Eurographics Workshop on Rendering, 104–115.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. Computer Graphics
(SIGGRAPH 96 Proceedings), 31–42.

LI, W., AND KAUFMAN, A. 2002. Accelerating volume rendering with bounded
textures. In IEEE/SIGGRAPH Symposium on Volume Visualization and Graphics
2002.

LINDE, Y., BUZO, A., AND GRAY, R. 1980. An algorithm for vector quantizer design.
IEEE Transactions on Communications COM-28, 1 (Jan.), 84–95.

LLOYD, S. 1982. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory 28, 129–137.

LUM, E., MA, K.-L., AND CLYNE, J. 2001. Texture hardware assisted rendering of
time-varying volume data. In Proceedings of IEEE Visualization 2001.

MAX, J. 1960. Quantization for minimum distortion. IRE Transactions on Information
Theory IT-6, 7–12.

MURAKI, S. 1993. Volume data and wavelet transforms. IEEE Computer Graphics
and Applications 13, 4, 50–56.



NGUYEN, K., AND SAUPE, D. 2001. Rapid high quality compression of volume data
for visualization. Computer Graphics Forum 20, 13.

NING, P., AND HESSELINK, L. 1992. Vector quantization for volume rendering. In
Proceedings Workshop on Volume Visualization ’92, 69–74.

OPENGL ARB. The OpenGL Architecture Revision Board.
http://www.opengl.org/developers/about/arb.html.

ORCHARD, M., AND BOUMAN, C. 1991. Color quantization of images. IEEE Trans-
actions on Signal Processing 39, 2677–2690.

PAULY, M., GROSS, M., AND KOBBELT, L. 2002. Efficient simplification of point-
sampled surfaces. In Proceedings of IEEE Visualization 2002, 171–177.

REZK-SALAMA, C., ENGEL, K., BAUER, M., GREINER, G., AND T., E. 2000. In-
teractive volume rendering on standard PC graphics hardware using multi-textures
and multi-stage rasterization. In Proc. Eurographics/Siggraph Workshop on Graph-
ics Hardware, 109–119.

SAUPE, D., HAMZAOUI, R., AND HARTENSTEIN, H., 1996. Fractal image compres-
sion - an introductory overview. ACM Siggraph ’96 Course Note.

SAYOOD, K. 2000. Introduction to Data Compression, second ed. Morgan Kaufmann
Publishers, 2929 Campus Drive, Suite 260, San Mateo, CA 94403, USA.

SHEN, H.-W., AND JOHNSON, C. 1994. Differential volume rendering; a fast vol-
ume rendering technique for flow animation. In Proceedings of IEEE Visualization
1994, 180–187.

SHEN, H.-W., CHIANG, L., AND MA, K.-L. 1999. A fast volume rendering algo-
rithm for time-varying fields using time-space partitioning. In Proceedings of IEEE
Visualization 1999, 371–377.

TARINI, M., CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 2000. Real time,
accurate, multi-featured rendering of bump mapped surfaces. In EUROGRAPHICS
’00, 112–120.

VAN GELDER, A., AND KIM, K. 1996. Direct volume rendering with shading via
three-dimensional textures. In Proceedings Symposium on Volume Visualization
’96, 23–31.

WESTERMANN, R., AND ERTL, T. 1998. Efficiently using graphics hardware in vol-
ume rendering applications. In Computer Graphics (SIGGRAPH 98 Proceedings),
291–294.

WESTERMANN, R. 1994. A multiresolution framework for volume rendering. In
1994 Symposium on Volume Visualization, ACM SIGGRAPH, A. Kaufman and
W. Krüger, Eds., 51–58.

WESTERMANN, R. 1995. Compression domain volume rendering. In Proceedings of
IEEE Visualization 1995, 168–176.



Figure 7: First, the original RGB 24 bpp slice from the Visible Human data set is shown. Second, pixel encoding with 2 bpp is shown. Third,
2x2 regions are encoded in 1.25 bpp. Fourth, the data was hierarchically quantized and encoded in 0.94 bpp.

Figure 8: The 2562x128 engine data set (left) is quantized using different quantization modes. Second and third, 23 and 43 region encoding
results in compression ratios of 7.99:1 and 56.89:1, respectively. Fourth, hierarchical quantization and encoding results in a compression
ratio of 20.38:1. Rendering performance (5122 viewport) is 19 fps, 14 fps, 16 fps and 12 fps, respectively.

Figure 9: The 2563 skull data set (left) is quantized using different quantization modes. Second and third, 23 and 43 region encoding results
in compression ratios of 7.98:1 and 60.24:1, respectively. Fourth, hierarchical quantization and encoding results in a compression ratio of
20.84:1. Rendering performance (5122 viewport) is 14 fps, 10 fps, 11 fps and 11 fps, respectively.

Figure 10: Time steps from two different sequences are shown. First, time step 85 of a 2563x89 shock wave simulation (1.4 GB) is shown.
Second, from the hierarchically encoded data stream (70 MB), the same time step is directly rendered at 24 fps. Third, the first time step of a
1283 x 100 (200 MB) vortex simulation is shown. Fourth, the sequence was encoded in 11.1 MB, and the compressed time step was directly
rendered at 16 fps.


