
Acceleration Techniques for GPU-based Volume Rendering

J. Krüger and R. Westermann∗

Computer Graphics and Visualization Group, Technical University Munich

Abstract

Nowadays, direct volume rendering via 3D textures has positioned
itself as an efficient tool for the display and visual analysis of vol-
umetric scalar fields. It is commonly accepted, that for reason-
ably sized data sets appropriate quality at interactive rates can be
achieved by means of this technique. However, despite these bene-
fits one important issue has received little attention throughout the
ongoing discussion of texture based volume rendering: the integra-
tion of acceleration techniques to reduce per-fragment operations.

In this paper, we address the integration of early ray termination
and empty-space skipping into texture based volume rendering on
graphical processing units (GPU). Therefore, we describe volume
ray-casting on programmable graphics hardware as an alternative
to object-order approaches. We exploit the early z-test to terminate
fragment processing once sufficient opacity has been accumulated,
and to skip empty space along the rays of sight. We demonstrate
performance gains up to a factor of 3 for typical renditions of volu-
metric data sets on the ATI 9700 graphics card.

CR Categories:
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism - color, shading and texture—; I.3.8 [Computer Graphics]:
Applications—

Keywords: Volume Rendering, Programmable Graphics Hard-
ware, Ray-Casting

1 Introduction

Real-time methods to directly convey the information contents of
large volumetric scalar fields are still a challenge to the computer
graphics community. Based on the observation that the capability
of a single general-purpose CPU is not sufficient to achieve interac-
tivity or even real-time for large data sets in general, considerable
effort has been spent on the development of acceleration techniques
for CPU-based volume rendering and on the design and exploitation
of dedicated graphics hardware.

Among others, one research direction has lead to volume ren-
dering techniques that exploit hardware assisted texture mapping.
Fundamentally, these systems re-sample volume data, represented
as a stack of 2D textures or as a 3D texture, onto a sampling surface
or so-called proxy geometry. The most common surface is a plane

∗[jens.krueger,westermann]@in.tum.de

that can be aligned with the data, aligned orthogonal to the view-
ing direction, or aligned in other configurations (such as spherical
shells). The ability to leverage the embedded trilinear interpolation
hardware is at the core of this acceleration technique.

This capability was first described by Cullip and Neu-
mann[Cullip and Neumann 1993]. They discussed the necessary
sampling schemes as well as axis-aligned and viewpoint-aligned
sampling planes. Further development of this idea, as well as
the extension to more advanced medical imaging, was described
by Cabral et al. [Cabral et al. 1994]. They demonstrated that
both interactive volume reconstruction and interactive volume ren-
dering was possible with hardware providing 3D texture accel-
eration. Today, texture based approaches have positioned them-
selves as efficient tools for the direct rendering of volumetric scalar
fields on graphics workstations or even consumer class hardware
[Van Geldern and Kwansik 1996; Westermann and Ertl 1998;
Meißner et al. 1999; Rezk-Salama et al. 2000; Engel et al. 2001;
Guthe et al. 2002; Kniss et al. 2002]. Furthermore, it is commonly
accepted that for reasonably sized data sets appropriate quality at
interactive rates can be achieved by means of these techniques.

Nevertheless, despite the benefits of texture based volume ren-
dering, one important drawback has not been addressed sufficiently
throughout the ongoing discussion. For a significant number of
fragments that do not contribute to the final image, texture fetch
operations, numerical operations, i.e. lighting calculations, and per-
pixel blending operations are performed. It is thus important to in-
tegrate standard acceleration techniques for volume rendering, like
early ray termination and empty-space skipping [Levoy 1990; Dan-
skin and Hanrahan 1992; Sobierajski 1994; Yagel and Shi 1993;
Freund and Sloan 1997], into texture based approaches. This is the
novel contribution of this paper, and we will demonstrate the effec-
tiveness of the proposed algorithms on a variety of real-world data
sets.

To enable the integration of acceleration techniques into 3D tex-
ture based volume rendering, we propose a stream model for vol-
umetric ray-casting that exploits the intrinsic parallelism and effi-
cient communication on modern graphics chips. Our implementa-
tion builds upon the functionality that is provided on current pro-
grammable graphics hardware. In particular, we employ the Pixel
Shader 2.0 API [Microsoft 2002], a specific set of instructions and
capabilities in DirectX9-level hardware, which allows us to perform
hardware supported per-fragment operations like texture fetches
and arithmetic operations on our target architecture.

The essential mechanism that allows us to effectively integrate
early ray termination and empty-space skipping into the ray-casting
process is the early z-test. It is applied before the shader program is
executed for a particular fragment, and it can be used to avoid the
execution thus enabling a fragment processor to process the next
incoming fragment. The early z-test, however, is only enabled if all
other per-fragment tests are disabled and the fragments depth value
is not modified in the shader. The effect of the early z-test can be
demonstrated quite easily, by simply drawing an opaque quadrilat-
eral occluding parts of a volume prior to rendering the volume. If
the depth test is enabled and depth values have been written in the
first pass, a considerable speed up can be perceived that is directly
proportional to the area of the occluded parts of the volume.

The remainder of this paper is organized as follows. First, we



review 3D texture based volume rendering techniques and we put
emphasis on some intrinsic drawbacks and limitations of current
implementations. Next, we present volume ray-casting on pro-
grammable graphics hardware as an alternative to traditional object-
order approaches. Then, we outline new techniques to integrate
early ray termination and empty-space skipping into the ray traver-
sal process. We finally discuss the basic properties of our approach
and sketch future challenges in the field of volume rendering.

1.1 3D Texture Based Volume Rendering

Volume rendering via 3D textures is usually performed by slicing
the texture block in back-to-front order with planes oriented parallel
to the view plane, i.e. see Figure 1.

Figure 1: Volume rendering via 3D texture slicing.

For each fragment the 3D texture is sampled by trilinear interpo-
lation, and the resulting color sample is blended with the pixel color
in the color buffer. If slicing is performed in front-to-back order the
blending equation changes from

Cdst = (1−αsrc)Cdst+αsrcCsrc

to

Cdst = Cdst+(1−αdst)αsrcCsrc

αdst = αdst+(1−αdst)αsrc

Here,Cdst,αdst andCsrc,αsrc are the color and opacity values of
the color buffer and the incoming fragment, respectively.

In front-to-back order an additionalα-buffer needs to be ac-
quired to store the accumulated opacity. Pre-multiplication of
source color with source alpha is realized in a pixel shader as pro-
posed later in this work.

Figure 2: Different proxy geometries used in texture based volume
rendering.

As a direct implication of the selected proxy geometry in 3D
texture based volume rendering, from pixel to pixel the data is sam-
pled at varying rates. In Figure 2 the sampling patterns are shown
for 2D and 3D texture based volume rendering. As can be seen,
the sampling on spherical shells around the view point mimics at
best the kind of sampling that is performed in volume ray-casting.
Here, if no acceleration technique is employed, the rays of sight
are traversed with a constant step size. Spherical clip geometries,
however, have turned out to be rather impractical due to the huge
number of geometry that has to be generated, transferred and finally
rendered on the GPU.

Probably the most obstructive limitation of texture based volume
rendering, however, is the huge amount of fragment and pixel op-
erations, like texture access, lighting calculation, and blending, that
are performed, but which do not contribute to the final image. In or-
der to verify our hypothesis, typical volume data sets are shown in
figure 3. Most commonly in volume rendering applications the fo-
cus is on emphasizing boundary regions or selected material values.
Usually this is done by locally adjusting the color and opacity in or-
der to highlight these structures with respect to others. As a matter
of fact, due to the inherent occlusion effects the majority of frag-
ments that are generated during volume rendering never contribute
to the image. In addition, because non-relevant structures are often
suppressed by setting their opacity to zero, many fragments con-
tributing to empty space are generated and have to be processed.
For instance, in the images shown in figure 3 only between 0.2%
and 4% of all generated fragments contribute to the final image.

If the volume rendering technique should also provide realistic
simulation of lighting effects, the waste of per-fragment operations
is even more dramatic. Lighting effects are usually simulated by
means of a gradient texture, which is comprised of the material
gradients and the scalar material values in the RGB andα color
components, respectively. The illumination model is evaluated on a
per-fragment basis in the shader programm. Consequently, even for
non-visible fragments the gradient texture has to be sampled and
numerical computations have to be performed.

2 Volume Ray-Casting on Graphics Hard-
ware

Driven by the evolution of commodity graphics hardware from
fixed function pipelines towards fully programmable, floating point
pipelines, the demand for efficient strategies to realize graphics al-
gorithms on this kind of architectures is continuously increasing.
With regard to the observation that the power of GPUs is currently
increasing much faster than that of CPUs, algorithms amenable to
the intrinsic parallelism and efficient communication on modern
GPUs are worth an elaborate investigation. This direction of re-
search will lead to a considerable improvement of state-of-the-art
rendering techniques, and it will spawn completely new classes of
graphics algorithms.

Perhaps the most relevant discussion of contemporary and fu-
ture graphics hardware and programming models that exploit these
architectures can be found in [Purcell et al. 2002]. In this work
a stream model for ray-tracing was proposed, which takes advan-
tage of parallel fragment units and high bandwidth to texture mem-
ory. The stream of homogeneous data generated by the rasteriza-
tion stage is fed to the fragment units. These units work in parallel
on different data, i.e. in a SIMD-like manner. By using the func-
tionality provided by DirectX9-level hardware, a general strategy
to exploit programmable fragment processors for ray-tracing was
sketched.

Our current work also relies upon DirectX9-level hardware as
provided by the ATI 9700. We have used the Pixel Shader 2.0 API
for the implementation of volume ray-casting on this graphics ac-



Figure 3: Volume rendering examples.

celerator. In particular, the availability of the following features was
essential for the realization:

• Per-fragment texture fetch operations:In the pixel shader pro-
gram it is possible to access up to 8 different textures, but
only a limited number of dependent texture fetches can be
performed on the ATI.

• Texture render target:Instead of using the frame buffer, ren-
dering can be directed to a 2D texture map aligned with the
viewport. This texture can be accessed in the following ren-
dering passes. Consequently, this mechanism allows different
passes to communicate their rendering results to consecutive
passes. Note that, floating point textures are available. Thus,
negative values can be stored.

• Texture coordinate generation:Texture coordinates to be used
for texture access can be specified directly or manipulated in
the shader program.

• Per-fragment arithmetic:A number of arithmetic operations
on scalar or vector variables can be performed in the shader
program. These include the computation of simple arithmetic
operations, i.e. +,-,*, but also more complex ones like dot
products and square roots.

• Depth replace: A fragment can replace its depth value by
writing an arbitrary value to the z-buffer.

All of these features are supported on current graphics cards like
the ATI 9700. Together with the early z-test they build the basis for
the proposed volume rendering acceleration techniques.

2.1 Ray-Casting Implementation

The key to volume ray-casting is to find an effective stream model
that allows one to continuously feed multiple, data-parallel frag-
ment units on recent chips. In addition, the number of fragments
to be processed and the number of operations to be performed for
each fragment should be minimized.

The proposed algorithm is a multi-pass approach. For each frag-
ment, it casts rays of sight through the volume until an opacity
threshold is reached or a selected iso-value is hit. In the latter case,
the coordinates in local texture space of the intersection points with
the surface are written to a 2D texture. This texture is used in a fi-
nal pass to restrict necessary computations, i.e. access to a gradient
texture and shading computations, to these points.

Prior to ray traversal, for each pixel the direction in local texture
coordinates of the ray through that pixel is computed. This direction
is stored in two 2D textures, and it can now be retrieved directly in
all upcoming rendering passes. Ray traversal is done in a fixed
number of rendering passes, each performing a constant number of

steps along the rays. The render target in each pass is a 2D texture
that is accessed in consecutive passes to access accumulated color
and opacity values.

Between any two main passes, an additional pass is performed
that simply tests whether the actual opacity value has already ex-
ceeded a specified threshold or an iso-surface is hit. Depending on
the result of this test, the pixel shader modifies the z-value. If the
test succeeds, the z-value is set to the maximum value, it is set to
zero otherwise. As a consequence, if the z-test is set to GREATER,
all consecutive main passes will be discarded due to the early z-test.

(1,1,1)

(0,1,0) (0,1,0)

(0,0,1)

(1,0,1) (1,0,1)

(0,0,1)

(0,0,0)

(1,0,0) (1,0,0)

Figure 4: Rendering front faces (left) and back faces (right) of the
volume bounding box in order to generate ray directions and texture
coordinates of first ray intersection points.

In essence, the following steps are performed (the depth test is
always set to GREATER):

• Pass 1: (Entry point determination):The front faces of the
volume bounding box are rendered to a 2D RGB texture. 3D
texture coordinates of each vertex are issued as per-vertex
color COL (see left of Figure 4). The result is a 2D texture
(TMP) having the same resolution as the current viewport.
The color components in the texture correspond to the first
intersection point between the rays of sight and the volume.
Coordinates of the intersection points are given with respect
to texture space.

• Pass 2 (Ray direction determination):The same steps as
in Pass 1 are performed, but now back faces of the volume
bounding box are rendered to a 2D RGBA texture (DIR) (see
right of Figure 4). In this pass, a fragment shader is issued that
fetches for each fragment the respective value from TMP and
computes the normalized ray direction asnormalize(COL -
TMP). The result is rendered into the color components of the
render target. Again, COL corresponds to the current vertex
color. In addition, the length of the non-normalized direction



is rendered to the alpha component. For every fragment, the
2D floating point render target DIR now holds the normalized
ray direction in local texture coordinates as well as the length
of each ray passing through the volume.

• Main passes 3 to N (Ray traversal and early ray termina-
tion): In each pass, M steps along the rays are performed,
and rendering is directed to a 2D texture, RES, that can be
accessed in the consecutive passes. The front faces of the vol-
ume bounding box are rendered. Multiple parameters are is-
sued at the vertices of these faces: Texture coordinate 1 gets
assigned the normalized device coordinate (x,y) of each ver-
tex. It is used to index textures DIR and RES. 3D texture
coordinates of each vertex are issued as per-vertex color (C).
Thus, the parametric ray equationr(t) = C+ t ·DIR[x][y] in
local texture coordinates is directly available by performing
one texture lookup. In constant color 1 (C1) the step size∆ to
be performed along the rays of sight is specified. In constant
color 2 (C2) the product of∆ and the number of steps already
performed (∆ ·M · (N−3)) is issued. By initially setting t to
C2, ray traversal now involves incrementing t about C1 and
fetching the respective value from the 3D texture at r(t). This
is done M times, at each sample blending the current contri-
bution with the contribution that has been accumulated up to
this position. Finally, the result is blended with RES[x][y] and
it is written back to the 2D render target RES. If by means of
the opacity value read from DIR, which stores the length of
each ray within the volume, it turns out that the current ray
has already left the volume, an opacity value of 1 is written to
RES.

• Intermediate passes 3 to N (Stopping criterion): In an
intermediate pass, the front faces are rendered again, and a
shader is issued that accesses the current opacity value and
compares it with a constant threshold T (Note that in case
the ray has left the volume, opacity is always larger than T).
Essentially, it performs the following conditional statement:
IF(RES[x][y] > T) THEN z = MAX, out(0)
ELSE z = 0, out(0)
If the ray has to be terminated, the respective value in the
z-buffer is set to the maximum value and the color buffer
is kept by drawing zero color and opacity. Otherwise, the
shader has no effect.

2.2 Iso-Surface Ray-Casting

If we employ GPU-based ray-casting to render illuminated sur-
faces, the shader setup becomes even more simple. The first two
rendering passes remain unchanged. In passes 3 to N, however, M
steps along the ray are performed but considerably less arithmetic
is required. Although the execution order is still front-to-back,
now the traversal within each pass is performed back-to-front. At
each sample we fetch the respective value from the 3D texture, and
we test whether the scalar value is larger or equal to the selected
threshold. If this condition is true, we store the current position
along the ray, r(t), in a temporary variable. By going back-to-front
within each pass, only the intersection point closest to the view-
point is kept. At the very end of the shader, the temporary variable
is checked. If it´s not equal to an initial value the content is used
to look up a 3D gradient texture and to perform surface lighting. In
this case, the final color value that is rendered to the texture render
target contains the illumination of the surface point, and an opacity
value equal to one to guarantee for early ray termination in consec-
utive passes. The intermediate pass is the same as proposed above.

2.3 Empty-Space Skipping

Apart from early ray termination, one important issue needs to be
addressed to speed up volumetric ray-casting. Empty-space skip-
ping essentially relies on an additional data structure, which en-
codes empty regions in the data. For instance, an octree hierarchy
can be employed, which stores at every inner node statistical infor-
mation about child nodes, e.g. min/max-bounds for the region that
is covered by the node. If this information is present to the ray-
caster, it can effectively increase the sampling distance along the
ray when entering empty regions.

In our current implementation, to speed up rendering we use a
3D raster with constant cell size corresponding to one particular
octree level. We always encode disjoint blocks of size 83 within the
original data set, and for every block we store the minimum and the
maximum scalar value contained in this block. The data is stored
in a 3D RGB texture map with 1/8 the size of the original volume
in every dimension. The minimum and maximum values are en-
coded in the R- and G-components, respectively. In addition to this
texture we generate a 2D texture, CT, that indicates for every pair
(min/max) whether there is at least one non-zero color component
in the range from min to max after shading via a color table has
been performed. This texture is updated on the CPU and loaded on
the graphics subsystem whenever the color table is modified.

In order to test for empty space we extend the intermediate pass
that is executed right after each of the passes 3 to N described
above. Therefore, the front faces are rendered in the same way as
described, but the ray is traversed with a step size of 8·∆. The num-
ber of steps is decreased accordingly. Instead of the original data
set, the coarse resolution copy is accessed at every sample point r(t).
The R- and G-components at every sample are used to index CT,
and thus to test whether empty space is present or not. Whenever at
one of the sample points non-empty space is found, the entire seg-
ment processed in this pass is considered to be non-empty. In this
case, the z-value is set zero and the color buffer is left unchanged.
If empty space is determined, the z-value is set to the maximum,
thus forcing the next main shader pass to be skipped.

Altogether, the following conditional statement is now executed
in the intermediate shader:
IF(RES[x][y] > T) OR (EmptySpace==TRUE)
THEN z = MAX, out(0)
ELSE z = 0, out(0)
Note that the z-value is reset to 0 as soon as no empty space was
found, thus re-enabling ray-traversal.

3 Discussion and Results

The proposed stream programming model for volume ray-casting
has several benefits over object-order projection methods. Besides
equal sampling density along the rays of sight, the most important
one is the reduction of the number of fragment operations to be exe-
cuted if opaque structures or empty space are contained in the data.
Because the traversal procedure is split into multiple passes with
at most M steps along the ray, at most M texture fetch operations
have to be performed to no purpose. This happens if the first sam-
ple within a segment already saturates the opacity, generating M-1
void samples, or if the first sample is already outside the volume.

Therefore, M should be rather small compared to the maximum
number of samples that have to be performed for the longest ray
through the volume. On the other hand, the number of rendering
passes to be executed also depends on M. Assuming the longest ray
through the volume to perform K steps, thendK/Me passes need to
be issued. Because with each pass some overhead comes along, i.e.
rendering the front faces and accessing various textures, suppos-
edly M should be as large as K. Then, however, all rays shorter than
the longest one have to compute the same number of sample points



along the ray because a shader program cannot be discarded during
its execution. Regardless the optimal choice for M, in the current
implementation it was restricted to 8 due to hardware shader limi-
tations.

For shaded and opaque iso-surfaces, the gradient only needs to
be reconstructed and illuminated once in every rendering pass 3 to
N until an iso-surface is hit. Note that due to the fact that fragment
shaders do not yet support conditional execution of expressions,
gradient reconstruction and illumination is always performed even
if no surface is hit. The fact, however, that these computations only
have to be performed once every M steps significantly accelerates
the rendering of opaque iso-surfaces.

It is of course worth noting that for highly transparent and dense
data sets, where each ray needs to be traversed until it exits the vol-
ume, no gain in performance can be expected. In this case, the in-
termediate pass to check for early ray termination and empty space
introduces some overhead.

Figure 5: These images show the example data sets we have used
to test the performance of our acceleration techniques. The first 3
data sets are of size2563, the engine data set is of size2562 ·128.

Let us now demonstrate the effectiveness of the proposed accel-
eration schemes for 3D texture based ray-casting. We show four
example data sets, an MRI head, the Philips aneurism, the GE en-
gine and the Philips foot, all from the volren.org web-page (see
Figure 5). Rendering was directed to a 5122 viewport. In the table
below we give exact timings for our algorithm, which are compared
to the times achieved by the slice-based volume rendering (SBVR).
RC is the time consumed by the ray-caster without any accelera-
tion. RC-α andRC-β account for early ray termination and early
ray termination combined with empty-space skipping, respectively.

Table 1: Timings (fps) for 3D texture based volume rendering.

SBVR RC RC-α RC-β
Head 7.1 4.8 14.4 23.4

Aneurism 7.1 4.8 8.9 19.6
Foot 7.1 4.8 10.2 17.7

Engine 10.4 6.3 6.3 13.6

Obviously, with regard to performance, SBVR is clearly supe-
rior to volume ray-casting without early ray termination and empty-
space skipping, because in SBVR only those fragments have to be
processed that are within the volume bounding box. In RC, depend-
ing on the choice of M many fragments outside the volume have to
be processed. If early ray termination and empty-space skipping
is enabled, however, we can see a performance gain of RC in typ-
ical real-world examples exhibiting opaque structures and empty
regions. Unfortunately, the speed up is not as dramatic as we would
have expected. This is due to the fact that we need to perform the
intermediate shader pass to check for the stopping criterion and to
replace z-value in order to exploit the early z-test. The interme-
diate itself, however, cannot be discarded because it modifies the
z-values. Thus, empty-space detection is always performed, even
if early ray termination is already in use. We could easily integrate
empty-space detection into the main shader passes, but therefore
we need one additional flag that can be written from the shader to
identify whether empty-space has been detected or not. For this
purpose we can not use the alpha channel, because it already serves
as a flag indicating early ray termination.

For semi-transparent volumetric data sets, where neither early
ray termination nor empty-space skipping can be applied, the over-
head to perform the intermediate pass to check the stopping crite-
rion manifests in a loss in performance of about 30%. This, how-
ever, is always the price that has to be payed for the integration of
acceleration techniques if the data set does not provide appropriate
stopping cues.

4 Conclusions

In this paper, we have described a stream model for volume ray-
casting on DirectX9-level graphics hardware that is programmable
via the Pixel Shader 2.0 API. Our approach includes standard ac-
celeration techniques for volume ray-casting, like early ray termi-
nation and empty-space skipping. By means of these acceleration
techniques, the proposed framework is capable of efficiently ren-
dering large volumetric data sets including opaque structures ex-
hibiting occlusions and empty regions.

For many real-world data sets, the proposed method is signifi-
cantly faster than previous texture based approaches, yet achieving
the same image quality. This is due to the effective reduction of
texture fetch and arithmetic operations in case that early ray termi-
nation and empty-space skipping can be applied. For the rendering
of shaded iso-surfaces, access operations to the gradient texture and
per-fragment shading operations are considerably minimized.

The proposed acceleration techniques have been implemented on
current commodity graphics hardware by means of the early z-test.
Due to the fact that the early z-test is disabled as long as the frag-
ments z-value is replaced in the shader program, an additional but
simple shader pass has to be performed to check for the stopping
criterion. Once the early z-test remains active even if the z-value
is replaced or the stencil test is enabled, more optimal implementa-
tions can be presented. In particular, if we are able to use additional
buffers to communicate per-fragment results from one rendering
pass to the next one, empty-space skipping can be integrated into
the main shader passes. In this way we can considerably decrease
the overhead that is introduced by the intermediate pass in the cur-
rent implementation.

Acknowledgements

Special thanks to Joe Kniss, Christof Rezk-Salama and Markus
Hadwiger for fruitful discussions and for providing the images in
Figures 1, 2 and 3.



References
CABRAL , B., CAM , N., AND FORAN, J. 1994. Accelerated volume rendering and

tomographic reconstruction using texture mapping hardware. InProceedings ACM
Symposium on Volume Visualization 94, 91–98.

CULLIP, T., AND NEUMANN , U. 1993. Accelerating volume reconstruction with 3D
texture hardware. Tech. Rep. TR93-027, University of North Carolina, Chapel Hill
N.C.

DANSKIN , J., AND HANRAHAN , P. 1992. Fast Algorithms for Volume Ray Tracing.
In ACM Workshop on Volume Visualization ’92, 91–98.

ENGEL, K., KRAUS, M., AND ERTL, T. 2001. High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. InSIGGRAPH/Eurographics
Workshop on Graphics Hardware.

FREUND, J., AND SLOAN , K. 1997. Accelerated volume rendering using homoge-
neous region encoding. InProceedings IEEE Visualization ’97, 191–197.

GUTHE, S., ROETTGER, S., SCHIEBER, A., STRASSER, W., AND ERTL, T. 2002.
High-quality unstructured volume rendering on the PC platform. InACM Sig-
graph/Eurographics Hardware Workshop.

KNISS, J., PREMOZE, S., HANSEN, C., AND EBERT, D. 2002. Interactive translucent
volume rendering and procedural modeling. InProceedings of IEEE Visualization
2002, 168–176.

LEVOY, M. 1990. Efficient Ray Tracing of Volume Data.ACM Transactions on
Graphics 9, 3 (July), 245–261.

MEISSNER, M., HOFFMANN, U., AND STRASSER, W. 1999. Enabling classification
and shading for 3d texture mapping based volume rendering using OpenGL and
extensions. InIEEE Visualization ’99, 110–119.

M ICROSOFT, 2002. DirectX9 SDK. http://www.microsoft.com/DirectX.

PURCELL, T., BUCK, I., MARK , W., AND HANRAHAN , P. 2002. Ray tracing on pro-
grammable graphics hardware.Computer Graphics SIGGRAPH 98 Proceedings,
703–712.

REZK-SALAMA , C., ENGEL, K., BAUER, M., GREINER, G., AND ERTL, T.
2000. Interactive volume rendering on standard PC graphics hardware using multi-
textures and multi-stage rasterization. InSIGGRAPH/Eurographics Workshop on
Graphics Hardware, 109–119.

SOBIERAJSKI, L. 1994. Global Illumination Models for Volume Rendering. PhD
thesis, The State University of New York at Stony Brook. Disertation.

VAN GELDERN, A., AND KWANSIK , K. 1996. Direct Volume Rendering with Shad-
ing via Three-Dimensional Textures. InACM Symposium on Volume Visualization
’96, R. Crawfis and C. Hansen, Eds., 23–30.

WESTERMANN, R., AND ERTL, T. 1998. Efficiently using graphics hardware in vol-
ume rendering applications. InComputer Graphics (SIGGRAPH 98 Proceedings),
291–294.

YAGEL, R., AND SHI , Z. 1993. Accelerated Volume Animation by Space-Leaping.
In Proceedings IEEE Visualization ’93, 62–69.


