
Interactive Volume Illustration

Zoltán Nagy, Jens Schneider, Rüdiger Westermann

Scientific Visualization & Imaging Group
University of Technology Aachen

�

Abstract

In this paper we describe non-photorealistic render-
ing techniques for volumetric data sets. First, we
outline an automatic approach that generates line
drawings to illustrate such data sets and to aug-
ment traditional volume rendering techniques. For
a number of seed points that are placed appropri-
ately to represent selected volume structures curva-
ture lines are traced and encoded by a sparse set of
control points. These curves are finally drawn as
hatching strokes modulated by anisotropic lighting
and transparency. Second, in addition to line-art
drawings we present efficient implementations of
volume toon-shading and silhouette rendering using
fragment shader hardware. All techniques together
allow us to interactively illustrate volumetric data
sets and to enhance important features using non-
photorealistic rendering techniques.

1 Introduction

In this paper we consider volume illustrations as a
class of non-photorealistic rendering (NPR) tech-
niques with the particular characteristic to empha-
size important attributes or parts of an object and to
communicate relevant information to the viewer in
the most effective way. It is quite interesting that
this characterization exactly matches the demands
on visualization techniques in general. In scien-
tific visualization the grant challenge is to convey
the relevant information in the most comprehensible
but not necessarily in the most realistic way. With
regard to that observation NPR techniques seem to
be the predestined rendering tool in visualization
applications, and it comes to no surprise that NPR
techniques have already attracted the visualization
community during the last couple of years.

�

University of Technology, Aachen, Seffenter Weg 23, 52056
Aachen, Germany, Phone:+49-(0)241-80-28920, Fax:+49-(0)241-
80-22241, e-mail: nagy@sc.rwth-aachen.de

In this paper our emphasis is on proposing in-
teractive approaches to non-photorealistic volume
illustration. Our first technique creates hatching
fields coinciding with the principal curvature di-
rections along selected volume structures. Creat-
ing the hatching field and rendering the strokes is
performed in two separate passes: In the first pass
higher order differential characteristics of the vol-
umetric data field are computed and encoded in a
hierarchical data structure. At run time, based on
some user-defined importance criterion a represen-
tative set of hatching strokes is computed, each of
which is effectively encoded by a connected group
of line segments. Strokes are finally displayed as
colored and shaded line strips employing OpenGL
functionality and the anisotropic model proposed by
Banks [1].

Our choice of techniques was mainly driven by
two requirements. First, in our opinion line draw-
ings should not be integrated into the volume rep-
resentation itself as proposed by [17] thus pro-
hibiting flexible and efficient modification of the
strokes appearance and arrangement. Second, tech-
niques should not rely on any polygonal representa-
tion thus limiting its potential use to geometric ob-
jects. Rather than that we aim at proposing meth-
ods that are capable of interactively illustrating ar-
bitrary structures in volumetric data sets without the
need to generate intermediate surface representa-
tions at run time. Moreover we want to demonstrate
that interactive non-photorealistic rendering is pos-
sible even for large-scale volumetric data sets thus
spawning a promising new direction in scientific vi-
sualization.

In addition to volume hatching we present
non-photorealistic volume rendering techniques
via three-dimensional texture maps and fragment
shader hardware. Dedicated shaders have been de-
veloped that enable iso-surface toon-shading, sil-
houette rendering and view-dependent opacity en-
hancement at interactive rates in one single render-

VMV 2002 Erlangen, Germany, November 20–22, 2002

ing pass. high resolution data sets.
The remainder of this paper is organized as fol-

lows. In Chapter 2 we review related work with the
focus on NPR techniques that are related to our ap-
proach. The procedure to compute principal curva-
ture directions in volumetric data sets is described
in Chapter 3. Chapter 4 is dedicated to interactive
NPR techniques for volumetric data sets. Future di-
rections and alternative issues are subject of Chap-
ter 5.

2 Related work

In the past a number of different approaches have
been carried out to simulate the imagery generated
by artists and technical writers in an automatic and
computer-assisted way. Since in our current work
we mainly concentrate on the simulation of line
drawings, we will only refer to those attempts that
are directly related to ours. For an excellent in-
troduction to and a comprehensive survey of NPR
techniques in general let us refer to the book of
Gooch and Gooch [12] and to the web-page main-
tained by Reynolds [29], where many related online
resources are given.

An image-based system for generating computer-
aided pen-and-ink illustrations using oriented stroke
textures was proposed in [33, 34]. In the final ver-
sion stroke textures conveying color, tone and ori-
entation were generated automatically from a set of
representative strokes and a user-controlled direc-
tion field. A digital engraving system based on lines
coinciding with potential fields in the image was
presented in [27]. Rössl and Kobbelt [31] described
a semi-automatic image-based technique for gener-
ating technical illustrations of 3D models, where the
user has to manually select partitions in image space
exhibiting coherent curvature direction to generate
appropriate hatching fields. A real-time rendering
system was described in Lake et al. [22], where
a palette of textures representing different tones by
different pencil strokes is precomputed and used to
cover the object. However, due to the employed
viewport mapping to generate texture coordinates
from viewport coordinates, the textures seem to stay
above the object thus limiting the techniques suit-
ability for animations.

In [5] attributed lines in object space were used to
augment traditional renderings with regard to user-
defined importance of information. In [39, 8, 9, 15]

3D curves on free-form surfaces and parametric
or implicit surfaces were introduced to emphasize
geometric properties of 3D models. Winkenbach
and Salesin [38] also presented an object-based ap-
proach, in which oriented strokes were utilized to
simulating different tones. Markosian et al. [25]
employed line drawings for interactive NPR ren-
dering. The focus in this work, however, was on
enhancing silhouettes and cusps by only placing a
sparse set of appropriately selected strokes. Finally,
Praun et al. [28] employed lapped multi-textures to
achieve real-time hatching. They extended on the
concept of art maps described in [20] by using a set
of oriented stroke textures each of which represents
different tones. In visualization NPR techniques
have been considered to substitute or to enhance tra-
ditional rendering techniques. Saito [32] described
a point-based rendering system to allow for fast pre-
viewing of volumetric data sets. Expressive textures
have been used in [30, 18] to improve the under-
standing of the shape of complex structures. Inter-
rante [17] developed techniques to enhanced spa-
tial and shape information of transparent surfaces in
volumetric data sets by constructing patterns of thin
opaque lines. In order to accelerate volume render-
ing and to enhance the insight into complex struc-
tures Csébfalvi et al. [3] proposed a contour based
visualization technique. Kirby et al. [19] described
a technique closely related to oil painting, which
effectively enhances the information content in 2D
images by using multiple layers covering different
kinds of features. An image-based approach for
simulating pen-and-ink drawings to augment vol-
ume rendering was introduced by Treavett and Chen
[36]. Ebert and Rheingans [7] proposed a modi-
fied volume rendering pipeline that is amenable to
a variety of different NPR techniques, which can be
used to further enhance traditional rendering meth-
ods. The visualization of tensor data by means of
brush strokes was illustrated by Laidlaw et al. [21].
Here, a brushing technique was used to stress direc-
tional information and to guide the user towards the
orientation of electrocardial fields.

3 Preprocess

We now start with a description of the preprocess
that has to be performed to generate accurate princi-
pal curvature directions in three-dimensional scalar
data fields.

666

3.1 Discrete curvature estimation

Although principal curvature directions can be de-
rived from the extremal values of a quadratic form
[6], this technique is impractical in the current
scenario due to its numerical complexity. Monga
et al.[26] derived a considerably faster method
for computing the principal directions in three-
dimensional scalar fields. First, an orthonormal
basis for � is computed explicitly. Therefore, let
G =

�
F = (g0, g1, g2)t and � =

�
g2

0 + g2
1. Then an

orthonormal matrix P can be given that rotates the
first basis vector into the direction of G:

P =

�� g0�
G
� g1� g2 � g0� � � G �

g1�
G
� 	 g0� g2 � g1� � � G �

g2�
G
� 0

��
G
�

�

= � G

G

 , h, f �

The case � = 0 has to be treated separately and
results in a standard basis.

Any v in � G ��� can then be expressed as

v = h � cos � + f � sin �
If � corresponds to a principal curvature direction
then the first derivative of � v with respect to � van-
ishes. Finally this yields

tan 2 � =
2 � ht(D2F)f

ht(D2F)h � f t(D2F)f

which can be easily solved. Special attention has to
be paid at umbilical points where the surface is lo-
cally flat or spherical. Such points occur if and only
if the denominator vanishes. One approach to ob-
tain meaningful principal curvatures at such points
is to increase the filter width of the differentiation
operator.

Besides the possibility of computing principal
curvature directions in three dimensions, Mongas
algorithm can be fed with any suitable method to es-
timate partial derivatives. Unfortunately, this tech-
nique (and any other method we know) only solves
for ��� (���2 , + �2). At first glance this does not
seem to be a major problem, but it results in cur-
vature fields that are not oriented consistently. As
a matter of fact the curvature directions might flip
about 180 degrees along a particular field line. Trac-
ing these fields in a globally consistent way, e.g. if
oriented strokes should be rendered, becomes im-
possible without that a heuristic is used to consis-
tently align the directions along the paths. Note that

this is not a problem if hatches are generated as pro-
posed in [17] by integrating backward and forward
along the curvature field path lines. Then, along
each path the flip can be performed based on the
current direction of the stroke.

Global methods to continuously orient the entire
field, however, fail in general. This is because in
many real data sets we find curvature fields contain-
ing regions in which curvature streams with oppo-
site direction meet each other, but which smoothly
merge into each other in some other region. As a
matter of fact, in these cases global methods like
sweep-planes or region growing successively flip
the directions back and forth but do not converge.
On the other hand, optimization schemes such as
conjugate gradients as employed in [28] for surface
hatching are far too expensive in three dimensions.

A solution to the problem is to use a heuristic to
continuously orient curvature directions during the
tracing of path lines in the field by using a globally
defined reference field, as it was proposed in [10]
to flip first and second curvature directions. From
a selection of possible choices the user selects the
reference field that results in the most pleasent ori-
entation, without that the appropriateness of such a
global reference field can be guaranteed in general.
In our current work a cylindrical reference field was
used, which in general leads to good results.

3.2 Pyramid data structure

The principal curvature directions can now be used
to generate hatching strokes that characterize struc-
tures in the volume and effectively reveal important
shape information. Therefore we have to select ap-
propriately positioned seed points that are used as
starting points of the strokes. The seed points have
to be arranged statically so that temporal coherence
between frames can be guaranteed even if transfor-
mations are applied to either the object or the view
point.

In order to minimize memory requirements, how-
ever, we do not generate any seeds in advance. Gen-
erating seed points for all possible volume struc-
tures would produce a tremendous amount of points
to be encoded, and it would also generate many
points that are not going to be used for hatching
the currently selected structures. Instead we con-
struct a pyramidal data structure that allows us to
efficiently find those cells in the volume where seed
points have to be placed at run time.

666

In this work we employ a pointerless octree rep-
resentation, where every level has one eighth as
many entries as the previous level. The first level
of the pyramid is the original data. Entries at level
two carry additional information about the region
covered by that entry, i.e. the minimal and maximal
scalar values, the maximal gradient magnitude and
the maximal mean curvature 1

2 (� 1 + � 2). These at-
tributes are used at run time to efficiently find the set
of cells that should host a seed and to determine the
seed point density within a region. At levels larger
than two the gradient magnitude is not going to be
stored any more because a measure of the local ho-
mogeneity and the maximal curvature is sufficient
to terminate the traversal of the octree. Note that
all attributes are quantized to 8 bit thus keeping the
additional memory as low as possible.

4 Run time

4.1 Seed point placement

To generate hatching strokes a number of seed
points are strayed into the volume. Instead of a ran-
dom placement we perform a data driven placement
which produces an optimal arrangement of seeds.
Therefore we assume that at most one seed per
volume cell should be issued. On the other hand,
within a certain region also fewer seed points might
be selected depending on the local characteristics of
the data.

When a new hatching process is initiated the oc-
tree data structure is traversed in depth-first order
starting at the coarsest level. The traversal is ter-
minated if a region turns out to be empty or when
an iso-surface should be illustrated but the iso-value
is not contained in this region. We also stop the
traversal if the maximal mean curvature is below
a constant. This is motivated by the observation
that on planar or almost planar structures no mean-
ingful principal curvature directions can be com-
puted. Whenever the traversal is terminated on a
level greater than one no seed points are placed and
thus no strokes are going to be drawn in this region.

In order to determine the number of effectively
placed seed points we take into account the normal-
ized gradient magnitude and mean curvature infor-
mation at level two. From both attributes we com-
pute a value that defines the probability of placing a
seed point in any non-empty cell of the 2x2x2 voxel

region (� and � � max � are normalized to (0,1)):

p(� ,
�

max) =

�
0 : ��� C0

0 : � � max ��� C1
1
2 (� + � � max �) : otherwise

Note that in case of surface illustrations a cell is
supposed to be non-empty only if it contains the
iso-value. As a consequence of the seeding strat-
egy the number of selected seeds directly correlates
to the gradient magnitude and the mean curvature,
i.e Figure 1. As a matter of fact less points are
placed in homogeneous regions exhibiting low cur-
vature while more points are placed at highly curved
boundary surfaces.

Figure 1: We illustrate the process of determining seed point

density with regard to gradient magnitude and curvature. A re-

gion is supposed to be empty if no iso-surface passes through it.

Darker color corresponds to higher probability of placing a seed

in a volume cells. Seed points are only placed in non-empty cells.

The most critical step in hatching the volume is
the correct placement of seed points within the se-
lected cells. This doesn’t pose a problem for trans-
parent structures where strokes might be placed in-
side the structures, but for opaque objects it has to
be guaranteed that the entire stroke lies in front of
the object and thus survives the depth test that is ap-
plied during rendering. In our terminology a stroke
lies in front of an object if the scalar values at each
point defining that stroke are less than the selected
iso-value. This assumption is in accordance with
the use of the alpha-test that is employed in our ap-
plication to discards all fragments less than the se-
lected threshold during volume rendering (see be-
low).

After a seed point has been selected for hatching
at run time it is initially placed right in the center
of the corresponding cell. At this point the scalar
value and the gray-scale gradient are interpolated
and the scalar value is compared with the iso-value.
Depending on the result of the comparison the point

666

is either shifted along the gradient direction or into
the opposite direction until it is positioned at a point
having a scalar values that is slightly smaller than
the iso-value.

4.2 Stroke generation

For each selected seed point we finally generate a
stroke that is used for hatching. Strokes are gen-
erated by tracing the paths originating at a selected
seed point along the maximal curvature directions
in object space. The entire stroke is stored as a
set of points that are rendered as line strip. At
each point we also interpolate the gray-scale gradi-
ent from the scalar field in order to simulate lighting
effects. From the set of all gradients a cone of nor-
mals is derived that can be used effectively to cull
back facing strokes. By assuming sufficiently accu-
rate curvature directions each stroke will be placed
entirely in front of any selected surface.

In order to numerically integrate the field lines
in the curvature field we employ a Runge-Kutta
RK4(3) integration method with adaptive step size
control. Although we only tri-linearly interpolate
the curvature field the RK4(3) method allows us to
compute the field lines within high accuracy. This
is due to the fact that a stroke is terminated when-
ever the current hatch direction deviates from the
original one by more than a constant. In this way
we avoid stepping into regions where the curvature
field shows high variations.

By means to the adaptive step size control we
considerably reduce the number of intermediate
points used to sample the vector field and thus to
represent the strokes. As a matter of fact the strokes
can be effectively encoded using only a very small
number of line segments. In addition to vertex co-
ordinates and gradients we also store texture coor-
dinates for each point. Texture coordinates corre-
spond to the distance of each point to the seed point
relative to the total length of the stroke. As will be
shown later, these attributes can be used to simulate
various drawing options.

4.3 Hatching

Once the hatching strokes have been computed and
stored, line art drawings to illustrate the volumetric
data set or to augment traditional volume render-
ing techniques can be simulated. Volume hatching
is split into two passes. In the first pass hatching

strokes are rendered as line strips starting at the cur-
rently selected seed points. In the second pass the
volumetric data set is rendered by means of three-
dimensional texture maps.

4.3.1 Stroke rendering

Due to the object space representation of strokes as
line strips we can render the curves using OpenGL
functionality. In particular, the curves can be il-
luminated by means of the stored gradients and
per-vertex colors can be specified to modify the
strokes appearance. In addition, the appearance of
each curve is modulated by applying the anisotropic
shading model for lines as proposed in [1], which
was extended towards real-time shading using hard-
ware support in [35, 40, 14].

To produce additional visual cues that help to
convey the positions of strokes in space we extend
[14] as follows. Since for each stroke the normal
of the corresponding iso-surface is known we can
determine whether a line belongs to a front or back
facing part of the surface. This enables us to use
different colors for back and front facing parts thus
emphasizing the line positions in space. In order to
do so we calculate two different 2D lookup textures
by varying diffuse and specular color. The two tex-
tures are mapped onto each line and the color con-
tributions are linearly interpolated based on the dot
product N � V between the surface normal N and
the per-vertex view-vector V . Interpolation is per-
formed using per-fragment shaders, while the dot
product is calculated in software. Optionally a self-
shadowing term as proposed in [14] can be inte-
grated using the surface normal.

In particular, anisotropic shading of hatching
strokes helps to enhance the visual impression in
dynamic animations. Spatially coherent bundles of
lines having the same orientation can be visually
distinguished quite efficiently using this approach.
Two-sided lighting using different colors for back
and front facing lines also simplifies the visual com-
plexity of hatching fields for high-resolution vol-
umetric structures. If only front facing strokes or
strokes on opaque iso-surfaces should be consid-
ered, however, the cone of normals can be used
for culling purposes. During rendering of hatch-
ing strokes the depth test is enabled and values are
updated in the depth buffer. Because line drawing
is always performed first, transparent volume struc-
tures can be overlayed by rendering these struc-

666

tures in back-to-front order without changing the
OpenGL state. Cross-hatches are used in our ap-
proach to effectively reveal spatial correlations by
darkening those regions that are in shadow. They
are generated as follows. For every selected seed
point we consider the dot product between its nor-
mal and the light source direction to determine
whether a cross-hatch should be drawn or not. If
the angle is above a constant a cross-hatch is gen-
erated by creating an additional stroke that follows
the minimal curvature direction. Further on, apart
from being shorter than the initial strokes they are
handled in exactly the same way.

4.3.2 Volume rendering

Volume rendering via 3D texture maps has become
a powerful tool to interactively display scalar data
fields [2]. Interpreting volume rendering as the
re-sampling of a discrete 3D texture map on ap-
propriately oriented cutting geometries allows one
to exploit hardware supported texture interpola-
tion and per-pixel blending to simulate the appear-
ance of semi-transparent media. By rendering the
hatching strokes prior to volume rendering arbi-
trary rendering modes can be applied. By using
the depth-test and alpha-blending transparent and
opaque regions will be correctly merged with the
hatches. This allows us to enhance traditional vol-
ume representations or to simulate the hatching of
opaque iso-surfaces. This can be achieved by com-
bining the OpenGL alpha- and depth-test during
the re-sampling procedure to guarantee that only
those texture samples closest to the viewpoint and
above/below a selected threshold are rendered [37].
By writing white color into the frame buffer only
those hatches that were just drawn in front of the
iso-surface remain visible.

4.4 Toon-shading and silhouette render-
ing

In this section we are going to present a couple of
interactive algorithms to illustrate volumetric data
sets by exploiting consumer class fragment shader
hardware.

In contrast to the work presented in [24] we de-
veloped specialized fragment shaders that enable us
to render the data sets even more efficiently but us-
ing the same principal algorithms. In addition, by
exchanging the shaders we can arbitrarily integrate

them into our hatch based approach and into the
direct volume rendering algorithm via 3D texture
maps.

Our first goal is to develop an algorithm that cre-
ates toon-shaded images from volumes without any
special mark-up - only volume gradients and light-
ing parameters are required. Alternative approaches
include image-space methods [4] and toon-shading
algorithms based on ray-tracing, e.g. implemented
in CartoonReyes, a commercial cartoon shader [16].

The general idea our algorithm is based upon has
been described in [22, 23] for toon-shading polyg-
onal objects. For every vertex the dot product L � N
between the normal N and the light source direc-
tion L is issued as a one-dimensional texture coor-
dinate. The texture coordinate is then used to look
up colors in a toon-shading texture. As texture coor-
dinates of a surface point are interpolated from the
values of the vertices the dot product is interpolated
across the surface. By using nearest neighbor tex-
ture interpolation a discontinuouity between illumi-
nated points and points lying in shadow is achieved.

In our approach, however, we do not have any
vertices at all, and shading has to be performed on
a per-fragment basis using multitextures and frag-
ment shader hardware. Therefore we utilize a three-
dimensional normal map storing the gray-scale gra-
dients in the RGB components.

We proceed by rendering the three-dimensional
normal map as described. In the texture combiner
the parallel light vector is issued as constant color.
Using per-fragment arithmetic the dot product be-
tween this vector and the normal vector that is
looked up in the three-dimensional normal map is
computed. The resulting value is used to trigger a
multiplexer that is available in the texture combiner
stage. Depending on whether this value is larger
or less than 0.5 the multiplexer outputs one of two
possible registers. Both registers can be written by
the user to specifying the tones that should finally
be rendered. Note that an offset can be added to the
input to the multiplexer thus enabling an arbitrary
mapping of shades to tones.

Using the same approach also allows us to in-
teractively render silhouettes (see [13, 11] for a
good introduction). Object- or geometry based ap-
proaches for rendering silhouettes attempt to extract
those edges of a polygonal mesh that belong to the
silhouette. These edges are then rendered in a spe-
cific color. Because silhouette edges are connected

666

to one front- and one back-facing triangle with re-
spect to the current viewpoint, a silhouette edge is
defined by

((N1 � (C � V1))(N2 � (C � V2)) � 0

where N1, N2 are the face normals, V1, V2 are points
that lie on face 1 and 2, respectively, and C is the
eye point.

To perform the described method for volumet-
ric data sets we proceed as follows. The three-
dimensional normal map is rendered and at each
vertex of the rendered polygons the normalized
view vector is issued as an additional texture co-
ordinate. In the rasterization stage coordinates are
interpolated on a per-fragment basis, but because
normalization is not preserved they have to be re-
normalized. Therefore the coordinates are used to
fetch texture values from an additional cube-map.
This map simply stores the normalized values for
each possible coordinate. Again register combiners
are employed to compute the dot product between
the normalized view vector and the normal vector.
Before the results can be used to trigger the multi-
plexer they first have to be squared to obtain positive
values. Depending on the dot product between view
vector and normal the multiplexer outputs black or
white. Finally, the result is merged with the colors
produced by the toon-shader.

5 Results and discussion

All our results were computed on a Pentium4 pro-
cessor running at 1.5 GHz and a GeForce4 graph-
ics unit with 128 MB local memory and 3D tex-
ture support. Our experiments were run on different
real data sets with different illumination models, as
illustrated in figures 4-6: (a) the well known en-
gine block (2562x128), (b) the hydrogen molecule
data set (1283) and (c) an iron proteine molecule
(643). Over that we applied our toon shader to the
aneurysm data set (2562x128, c.f. 2) as well as to
a human foot and a human skull (2563 , c.f. 3). For
a 2563 volume preprocessing the data set roughly
took 1.3 minutes including curvature estimation and
octree construction.

Preprocessing statistics of the seeding and path
tracing procedure differ significantly depending on
the number of strokes and their length. The av-
erage number of line segments used to represent

the strokes in all of our examples was 10. Plac-
ing seed points to appropriately represent an iso-
surfaces took between 0.5 and 4 seconds in the ex-
amples. 20K to 50K strokes were generated. Ren-
dering the data sets (including volume rendering)
was always performed with 4 to 8 fps on a 600x600
viewport. As can be seen, even for highly detailed
hatches the volume can still be rendered interac-
tively. Also the process of generating the strokes
at run time consumes only very few time. Here
the algorithm considerably takes advantage of the
data driven seed point selection by means of which
the generation of an optimal number of points is en-
sured. This affects both the performance of the gen-
eration process as well as the performance of the
rendering process, keeping memory requirements
as low as possible. In all our examples at most one
eighth of the memory consumed by the volume data
set was required to store the selected strokes.

Figures 4-6 exemplify various drawing options.
In figure 4 the hatching strokes were lit anisotropi-
cally and superimposed over an iso-surface that was
illuminated using a per-fragment phong model. In
figure 5 only the hatching strokes were rendered. To
help the user convey the positions of the hatchings
in space, front facing lines were colored blue while
back facing lines were colored yellow. In the last
row (c.f. 6) we demonstrate classical artistic hatch-
ing. Cross hatches and intensity modulations are
used to emphasize both lighting and shape. In all
cases the rendering performance was at least 4 fps,
depending on the number of strokes and the resolu-
tion of the volume.

Figure 2 illustrates our interactive volume toon
shader with silhouette tracing and half-level light-
ing. Rendering performance was about 7 fps.

6 Conclusion

We have presented an interactive object space tech-
nique for the illustration of volumetric data sets by
simulating free-hand line art drawing suitable for
generating technical illustrations and sketches.

We have described an object space algorithm that
generates hatching strokes from volumetric data
sets. This allows us to arbitrarily modulate the
strokes appearance by means of color and texture
and to integrate stroke based rendering into other
rendering modes, e.g. surface or direct volume ren-
dering. The major contribution here is that we effec-

666

tively take advantage of hardware assisted volume
and line rendering to generate meaningful images.

By selecting seed points at run time, we are able
to minimize the overall memory requirements and
the number of line segments to be generated, stored
and rendered. This makes it possible to apply the
technique to large-scale data sets.

Furthermore we have demonstrated that interac-
tive NPR techniques for volumetric data sets can be
achieved by taking advantage of graphics hardware.
Even for large-scale data sets we achieve interac-
tive frame rates on consumer class hardware using
fragment shader support. In particular we hope to
endorse the strategy already proposed by others - to
bring NPR techniques and real-time 3D graphics to
the visualization community.

References
[1] D.C. Banks. Illumination in diverse codimensions. Computer Graphics

(SIGGRAPH 94 Proceedings), pages 327–334, 1994.
[2] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and

tomographic reconstruction using texture mapping hardware. In Pro-
ceedings ACM Symposium on Volume Visualization 94, pages 91–98,
1994.

[3] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and E. Gröller. Fast visu-
alization of object contours by non-photorealistic volume rendering. In
Computer Graphics Forum (Eurographics ’01), pages 210–218, 2001.

[4] P. Decaudin. Rendu des scénes 3d imitant le style dessin anim. Techni-
cal report, Projet Syntim, 1996.

[5] D. Dooley and M.F. Cohen. Automatic illustration of 3d models: Lines.
Computer Graphics, 23(2):77–82, 1990.

[6] Eberly, D. 3D Game Engine Design. Morgan Kaufmann Publishers,
1999.

[7] D. Ebert and P. Rheingans. Volume illustration: Non-photorealistic
rendering of volume data. In IEEE Visualization ’2000, pages 195–203,
2000.

[8] G. Elber. Line art rendering via a coverage of isoparametric curves.
IEEE Transactions on Visualization and Computer Graphics, 1(3):231–
239, 1995.

[9] G. Elber. Interactive line art rendering of freeform surfaces. In Com-
puter Graphics Forum (Eurographics ’99), volume 18(3), pages 1–12.
The Eurographics Association and Blackwell Publishers, 1999.

[10] A. Girshick, V. Interrante, S. Haker, and T. Lemoine. Line direction
matters: an argument for the use of principal directions in 3d line draw-
ings. NPAR 2000, First International Symposium on Non-Photorealistic
Animation and Rendering, pages 13–20, 2000.

[11] B. Gooch and A. Gooch. Interactive non-photorealistic rendering. ACM
Siggraph ’99 Course Note, 1999.

[12] B. Gooch and A. Gooch. Non-Photorealistic Rendering. A K Peters,
2001.

[13] S. Green. Introduction to non-photorealistic rendering. ACM Siggraph
’99 Course Note, 1999.

[14] W. Heidrich and H.-P. Seidel. Efficient rendering of anisotropic sur-
faces using computer graphics hardware. In B. Girod H. Niemann, H.-
P. Seidel, editor, Image and Multi-dimensional Digital Signal Process-
ing Workshop ’98, pages 315–318. infix, 1998.

[15] A. Hertzmann and D. Zorin. Illustrating smooth surfaces. Computer
Graphics (SIGGRAPH 00 Proceedings), pages 517–526, 2000.

[16] Reyes Infografica. CartoonReyes. http://www.reyes-infografica.com/.
[17] V. Interrante. Illustrating surface shape in volume data via principal

direction-driven 3D line integral convolution. In Computer Graphics
(SIGGRAPH 97 Proceedings), pages 109–116, 1997.

[18] V. Interrante, H. Fuchs, and S. Pizer. Conveying the 3d shape of
smoothly curving transparent surfaces via texture. IEEE Transactions
on Visualization and Computer Graphics,, 3(2):98–117, 1997.

[19] R.M. Kirby, H. Marmanis, and D.H. Laidlaw. Visualizing multivalued
data from 2D incompressible flows using concepts from painting. In
IEEE Visualization ’99, pages 333–340, 1999.

[20] A. Klein, W. Li, M. Kazhdan, W.T. Corra, A. Finkelstein, and
T. Funkhouser. Non-photorealistic virtual environments. Computer
Graphics (SIGGRAPH 00 Proceedings), pages 121–129, July 2000.

[21] D. Laidlaw, E.T. Ahrens, D. Kremers, M. Avalos, R. Jacobs, and
C. Readhead. Visualizing diffusion tensor images of the mouse spinal
cord. In IEEE Visualization ’98, pages 127–134, 1998.

[22] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized rendering
techniques for scalable real-time 3d animation. NPAR 2000, First Inter-
national Symposium on Non-Photorealistic Animation and Rendering,
pages 13–20, 2000.

[23] J. Lander. Shades of disney. Game Developer Magazine, March 2000.
[24] E. Lum and K.-L. Ma. Hardware-accelerated parallel non-photorealistic

volume rendering. NPAR 2002, First International Symposium on Non-
Photorealistic Animation and Rendering, 2002.

[25] L. Markosian, M.A. Kowalski, S.J. Trychin, L.D. Bourdev, D. Gold-
stein, and J.F. Hughes. Real-time non-photorealistic rendering. Com-
puter Graphics, 31(Annual Conference Series):415–420, 1997.

[26] O. Monga, S. Benayoun, and O. Faugeras. From partial derivatives of
3d density images to ridge lines. In IEEE Conference on Computer
Vision and Pattern Recognition 92, pages 354–359, 1992.

[27] Y. Pnueli and A.M. Bruckstein. Digi Dürer – A Digital Engraving Sys-
tem. The Visual Computer, 10(5):277–292, 1994.

[28] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatch-
ing. Computer Graphics (SIGGRAPH 01 Proceedings), pages 579–584,
2001.

[29] C. Reynolds. Stylized Depiction in Computer Graphics.
http://www.red3d.com/cwr/npr/.

[30] P. Rheingans. Opacity-modulating triangular textures for irregular sur-
face. In IEEE Visualization ’96, pages 219–226, 1996.

[31] C. Rössl and L. Kobbelt. Line-art rendering of 3d-models. Pacific
Graphics 00, pages 231–239, 2000.

[32] T. Saito. Real-time previewing for volume visualization. In ACM Sym-
posium on Volume Visualization ’94, pages 99–106, 1994.

[33] M. Salisbury, S. Anderson, R. Barzel, and D Salesin. Interactive pen-
and-ink illustration. Computer Graphics (SIGGRAPH 94 Proceedings),
pages 101–108, 1994.

[34] M. Salisbury, M. Wong, J. Hughes, and D. Salesin. Orientable textures
for image-based pen-and-ink illustration. Computer Graphics (SIG-
GRAPH 97 Proceedings), pages 401–406, 1997.

[35] D. Stalling, M. Zöckler, and H.-C. Hege. Fast display of illuminated
field lines. IEEE Transactions on Visualization and Computer Graph-
ics, 3(2), pages 118–128, 1997.

[36] S.M.F. Treavett and M. Chen. Pen-and-ink rendering in volume visual-
isation. In IEEE Visualization ’2000, pages 203–210, 2000.

[37] R. Westermann and T. Ertl. Efficiently using Graphics Hardware in
Volume Rendering Applications. In Computer Graphics (SIGGRAPH
98 Proceedings), pages 291–294, 1998.

[38] G. Winkenbach and D. Salesin. Computer-generated pen-and-ink il-
lustration. Computer Graphics (SIGGRAPH 94 Proceedings), pages
91–100, 1994.

[39] G. Winkenbach and D. Salesin. Rendering parametric surfaces in pen
and ink. Computer Graphics (SIGGRAPH 96 Proceedings), pages 469–
476, 1996.

[40] M. Zöckler, D. Stalling, and H.-C. Hege. Interactive visualization of
3d-vector fields using illuminated stream lines. IEEE Visualization ’96,
pages 107–113, 1996.

Figure 2: Results of interactive volume cartoon shaded render-

ing. Rendering performance was about 7 fps.

666

Figure 3: We present interactive non-photorealistic rendering techniques for three-dimensional scalar fields. These techniques allow

us to display volumetric structures in a way that is suitable for technical illustrations and sketches, and it generates additional visual cues

providing an effective means for enriching traditional representations.

Figure 4: Hatches were lit anisotropically and superimposed over a volume illuminated by per-fragment phong.

Figure 5: Anisotropically lit hatches, but without the volume. Back facing parts of the hatches can be identified due to their yellow tone.

Figure 6: Artistic hatching over isosurfaces. Cross hatches are used to emphasize both shape and lighting. For the leftmost image our

seeding strategy was used. For the other two images seed points were placed in each voxel containing the selected iso-surface in order to

gain a dense appearence of hatches on low-resolution datasets.

666

