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Abstract

In this paper we proposea techniquefor topology preserving
smoothingof sampledvectorfields. The vectorfield datais first
convertedinto a scalarrepresentationin which time surfacesim-
plicitly exist as level-sets. We then locally analyzethe dynamic
behavior of level-setsby placinggeometricprimitivesin thescalar
field andby subsequentlydistortingtheseprimitiveswith respectto
localvariationsin thisfield. Fromthedistortedprimitiveswecalcu-
latethecurvaturenormalandwe usethenormalmagnitudeandits
directionto separatedistinctflow features.Geometricalandtopo-
logical considerationsare then combinedto successively smooth
denseflow fieldsat thesametime retainingtheir topologicalstruc-
ture.

1 Introduction and related work

Visualizing vector field data is challengingbecauseno existing
naturalrepresentationcanvisually convey largeamountsof three-
dimensionaldirectionalinformation. In fluid flow experimentsex-
ternalmaterialssuchasdye,hydrogenbubbles,or heatenergy are
injectedinto theflow. Theadvectionof theseexternalmaterialscan
createstreamlines,streaklines,or pathlinesto highlight theflow
patterns. Analoguesto theseexperimentaltechniqueshave been
adoptedby scientific visualizationresearchers.Numericalmeth-
odsandthree-dimensionalcomputergraphicstechniqueshavebeen
usedto mapthelocalflow characteristicsto graphicaliconssuchas
arrows, motionparticles,streamlines,streamribbons,andstream
tubeswhich also provide three-dimensionaldepth cues. While
thesetechniquesareeffective in revealingtheflow fields local fea-
tures,theinherenttwo-dimensionaldisplayof thecomputerscreen
and its limited spatialresolutionrestrict the numberof graphical
iconsthatcanbedisplayedatonetime.

Additional techniquesfor flow field visualizationincludeglobal
imagingtechniques.Crawfis andMax [4, 5] proposeddirect vol-
ume renderingmethodsto createimagesof entire vector fields.
Vector kernels and texture splats are used to construct three-
dimensionalscalarsignalsfrom thevectordata.VanWijk [30] pro-
poseda SpotNoisemethodusingstretchedellipsesto createtwo-
dimensionaltexturesthatcanbemappedontoparametricsurfaces.
Max et al.[19] further utilized the spotnoisemethodto visualize

three-dimensionalvelocity fieldsnearcontoursurfaces.Cabraland
Leedom[2] presenteda Line Integral Convolution (LIC) method,
which makesuseof a one-dimensionallow passfilter to convolve
aninputtexturealongtheprincipalcurvesof thevectorfield. Based
on this idea,a numberof relatedtechniqueshave beenproposed,
which attemptto optimize the LIC methodin termsof computa-
tional costandimagequality, to visualizeflow over surfacesand
just recentlyto visualize3D flow in avolume[24, 9, 1, 23, 15,22].

Thesemethodscansuccessfullyillustratetheglobalbehavior of
vectorfields; however, it is difficult whenusingsuchmethodsto
effectively control streamline densityin a way that depictsboth
thedirectionstructureof theflow andtheflow magnitude.Further-
more,becauseof thetremendousinformationdensitythey produce
andtheir inherentocclusioneffects,LIC methodsgenerallyfail if
utilized to globally visualize3D flow fields.

Oneapproachto overcometheselimitations is to interactively,
but manually modify the renderablerepresentationin order to
highlight the interestingstructures[20]. Although visually pleas-
ant resultscanbeachieved usinghardware-accelerated3D texture
mapping,in particularfor large-scalevector fields it turnsout to
be ratherdifficult to pick the relevant structureswithout explicit
knowledgeconcerningthe underlyingflow. Regardlessthe inter-
activity that is inherentto this approach,it doesnot guarantee,in
general,thatthecharacteristicflow featuresarefound.

In contrastto themanualsegmentationof vectorfield data,adif-
ferentapproachis to inspecttheflow field in orderto detectandan-
alyzecritical points[13]. Topologicalskeletons,which aredefined
by thosestreamlinesstartingat a critical point in thedirectionof
theeigenvectors,areto beextractedanddisplayed.Althoughthese
techniquesprovide an effective tool to determinethe topological
equivalenceof differentflows, they do not allow an intuitive anal-
ysisof theprincipalstreamsandtheir directionof complex flows.
First attemptsto further simplify the topology by merging close
critical pointsaspresentedin [27] arerestrictedto 2D flows.

Othertechniquestry to reducetheprimitivesusedto depictthe
structureof the flow in sucha way that the result still represents
theoriginal datasufficiently. While in [28] streamline placement
in 2D flows wasguidedby visualattributes,in [16] evenly-spaced
streamlinesweregeneratedbasedon a distancecriterion. Explicit
considerationof theflow topologywasusedin [32] to optimizethe
streamlineseedingstrategy.

On thecontrary, themainconcernof thework presentedin [12,
26,11, 18] wasto effectively simplify theunderlyingdatawithout
lossof relevantinformation.In general,however, thesehierarchical
techniquesare local in that they usually consideronly the vector
field in the geometricneighborhoodaroundeachposition,but do
not take into accounttheglobalstructureof theflow.

In thispaper, weextendournovel approachpresentedfirst in [33]
for theanalysisanddisplayof stationaryvectorfielddata,whichin-
cludeseffective techniquesfor theclassification,segmentationand
topologypreservingsmoothingof flow fields. Ratherthananalyz-
ing theflow fieldassuch,wefirstconvert it into ascalarfieldandwe
analyzethespatialandtemporalevolution of level-setsor timesur-
facesin thisfield. In particularweshow how to obtaintheflow data



at ever coarserresolutionby dispersingsmall disturbancesacross
thetimesurfaces.

The goal of our approachis twofold: to presenta methodthat
allows for the automaticsegmentationof flow fields and to build
analgorithmfor thetopologypreservingsmoothingof vectorfield
dataon top of it by meansof which a multiscalerepresentation
canbe obtained.In contrastto the work in [33], the focusof this
work liesondevelopinganefficientschemefor thetopologyguided
smoothingof flow fields. We considerablyimprove our previous
work in termsof accuracy and efficiency by introducinga novel
conceptthatallowsusto accuratelymeasuredistortionsin theflow.

The reminderof this paperis organizedas follows. First, we
introducethe basicideaof converting the vectorfield datainto a
level-setrepresentationof time surfaces,andwe describehow the
effective exploitation of intermediateresultsof the numericalin-
tegrationleadsto significantaccelerationof the process.We then
explain our conceptof flow analysisbasedon streamboundaries
which areextractedfrom theflow by a curvaturebasedanalysisof
the time surfacesinvolving an efficient approximationof the cur-
vaturenormalby meansof flow-warp icons. Finally, we propose
anexplicit schemefor the topologypreservingsmoothingof flow
fields,andwe concludethepaperwith a detaileddiscussionof our
results.

2 Flow surfaces

In fluid dynamics,flow surfacetechniqueshave becomeimportant
to the investigationof the dynamicsof vector field data. A flow
surfacecan be seenasa variationof path lines in non-stationary
flows whereseveral linesarejoinedto form a surface.A denseset
of particlesis releasedinto theflow, andtheirsubsequentpositions,
aswell asthedistortionsof theso-definedsurfaces,aremonitored.

In computationalflow visualization,techniquesfor simulating
different kinds of flow surfaceshave beendevelopedin the past
[14, 29,3]. In its mostgeneralform, flow surfacearesimulatedby
placinganinitial surfacein theflow andthenby successively mov-
ing all verticesdefiningthesurfacewithin constantintervalsalong
theintegral curvesof theflow. The integral curvesemanatingat a
givenpositionarethesolutionsto theordinarydifferentialequation�������
	������ ��������	 (1)

with initial boundarycondition
��������	  �
�

. Here,
������	

denotes
the position of a particleat time

�
, and � ��������	 representsthe in-

stationaryvelocity field. Notice in particular that this technique
canbeextendedto thestationarycase,in whichatime-independent
velocity field is consideredandits integral curvesaredefinedwith
respectto any otherparameterization.

In general,flow surfacescanbeplacedeverywherein theflow;
however, without lossof generalitylet usassumethatparticlesare
initially releasedat the inflow boundariesandat every sourceinto
all possibledirectionsof thevelocityatthatsource.Thus,theevolv-
ing surfacesformedby connectingparticlesat time

���
containall

positionswithin the domainthat canbe reachedfrom a sourcein
thattime. In otherwords,any particlethatis releasedfrom thissur-
faceandtraversesits integral curve backward will reacha source
or theboundaryof thedomainin that time. We will subsequently
call this kind of particlestheanti-particles, andtheparticularkind
of flow surfacethetimesurface.

A particulartime surfacein a flow is describedby the implicit
equation� ������ !��"�	  � �

, where � is thetime theanti-particlere-
leasedat position(

�#�� !��"
) requiresto reacha sourceor thebound-

ary. Therefore,a time surfacecanbecomputedeitherby distorting
theinitial surfacewith respectto theflow field or by computingthe
scalarfunction � for all necessarypositionsandby fitting thesur-
faceusingtraditionaltechniques.Thefirst approachhastwo major

limitations: it requiresthegenerationanddisplayof ahugenumber
of primitives,andthegeneratedsurfacesarelikely to becomenon-
manifoldsincludingself-intersections.In comparison,thesecond,
implicit approachhasvariousadvantagesandwill be sketchedin
thefollowing sections.

2.1 Implicit time surfaces

Weaim to constructavolumetricrepresentation,in which thetime
surfacesimplicitly exist as level-sets[21]. Level-setsin our ap-
proachmaynot exactly bethe’ level-sets’in a strict senseasintro-
ducedby Sethianin his original work, however, it is still level sets
in themathematicalsense.The level setof $ at a particularvalue
of time,

�
, is thesetof all points

���#�% &��"�	
suchthat $ ���#�� !�'"�	  �

.
Anothernamefor this is thecontourcurve of $ at level

�
.

Therefore,for eachgrid pointananti-particleis releasedandits
integralcurve is traceduntil asourceor theboundaryof thedomain
is reached.Thisprocedureis equivalentto thebackwardtracingap-
proachproposedin [31] for thecalculationof streamsurfacefunc-
tions. We employ a fourth-orderRunge-Kutta schemein orderto
find successive pointsalongthecurves.

In the current implementation,however, the grid is processed
streamlineby streamline. Onceacertainpositionhasbeenselected
tostartanew particleline, thisline is tracedbackwarduntil asource
or the boundaryis reached. During this walk the position of all
pointsthatarecloseto thecurrentline arestored.For eachof these
pointsthetime is recordedthatwasneededto reachthepoint from
thestartingposition.Now, thetime it takesto reachtheendof the
tracefrom eachof thesepoints is simply the overall time minus
the time storedfor the point during runtime. In this way a huge
numberof points to be processedseparatelycanbe saved which
considerablyacceleratesthegenerationof thetime field.

Prior to this procedurewe determinecritical pointsin the flow
wherethe magnitudeof the velocity vanishes.Thus,during run-
time we detectanti-particlesreachinga critical point, which then
have to bestoppedin orderto avoid nonterminatingtraces.Addi-
tionally, a stoppingcriterionis employed for anti-particlesmoving
on closedorbits, for which no valid, but uniquetime valueareas-
signed.

Figure1: In the left image theoceanflow is depictedby meansof
LIC. Ontheright thetravelingtimesof anti-particlesto thebound-
ariesor sourcesare shownasscalarvaluesat each grid point.

If the distancefrom point (&) to point (&)+*-, is
� ) , thenthe time

ananti-particleneedsto travel from (&) to (&).*/, is
� )  � )10 ,2 3�4.5�687�2 .

Integrating the distancesalong the path yields the time the anti-
particle needsto move from the grid point it was releasedfrom
until it leavesthedomainor reachesa critical point. A uniquetime
is assignedto thosegrid pointslocatedin closedorbits. Thus,by
storingall timesat eachgrid point we have convertedthe vector



field into a scalarfield, which providesalternativesfor displayand
analysis9 of theflow (seeFigure1).

3 Flow analysis

3.1 Stream boundaries

As we have claimedin the introduction,our approachshouldbe
effective in revealinghomogeneousstreamsin the flow, which, in
general,can not be determinedby just analyzingthe vector data
locally. Evenif thevectordatais locally homogeneousin termsof
directionand speed,we will find regionswheredifferentstreams
proceedparallelto eachotherover a certaindistance,but will be
separatingagain.As asolutionto thisproblem,we have developed
a local techniquethat takesinto accountglobalinformationin that
it accumulatesflow quantitiesalongtheintegral curves.

To illustratetheconcept,let asinterpretparticlesmoving along
a pathline asa containerfilled with liquid. At thebeginning,each
containeris empty. At eachpositionin thefield, theparticlecarries
all the liquid that wasinjectedalongthe pathline up to this posi-
tion. Theinjectedamountateachpositionis equalto themagnitude
of thevectordataat this position. We thentry to extract theexact
regionsin which adjacentparticlescarry differentamountsof liq-
uid, becausethis implies that theparticleshave a differenthistory
in termsof whatthey collectedalongtheirpaths.In thecurrentsce-
nario, the amountof liquid carriedby a particleequalsthe time a
particlewastraveling alonga particleline. Thedifferencebetween
adjacentvalueson neighboringlinesnow indicateshow muchthe
cumulatedmatteralongthe line differs. Consequently, within ho-
mogeneousstreamsthe distortionsof level-setscorrespondingto
equalcumulative amountsaresmall in general,whereasthey are
highbetweendifferentstreams.Wewill subsequentlycall thiskind
of boundariesthestreamboundaries, andwe proceedby studying
thecurvatureof time surfacesby meansof which areaswheredif-
ferencesoccurcanbeidentified.

3.2 Curvature based analysis of time surfaces

Thestudyof time surfacesis of particularinterestbecausethey ef-
fectively visualizethe geometricandtopologicalmodificationsof
their evolving structures.By helpingus to discriminateamongar-
easof flow showing different characteristics,thesemodifications
shouldallow usto moreaccuratelyanalyzetheflow underconsid-
eration. As a consequencewe needto develop a measurefor the
variationsof theflux asspecifiedabove thatcanbeusedto indicate
thepresenceof streamboundaries.

Oneapproachto detectandcharacterize‘surfacefeatures’in ge-
ometricmodelingis to analyzethe local curvatureacrossthe sur-
face. Methodsfor the efficient calculationof geometricattributes
on meshescanbefound in [8, 25, 17, 7, 6], wherethis kind of in-
formationhasmainly beenusedfor theanalysisandsmoothingof
geometricshapes.In the following we will make useof someof
theseconceptsto analyzethe implicit flow surfacesby meansof
theircurvature.

In the presentscenario,the curvatureof the time surfacestells
uswheredistortionsof thesesurfaceswith respectto theinfluence
of the flow field are most significant. At first glanceone might
concludethat the gradientof the scalartime distribution already
sufficesto locally characterizethesedistortions. In general,how-
ever, a high gradientmay point into the flow directionor it may
not coincidewith the directionthoughthe time surfaceit belongs
to is locally flat, e.g.in aperfectshearflow. Basedonourprevious
remarkson flow boundarieswe arethusinterestedin finding those
positionsin thedataexhibiting high curvature.

Therefore,however, we first have to derive amethodthatcanbe
usedeffectively to computethecurvatureat any grid point. In [33]

anoraclewasproposedthatallows for theestimationof themean
curvatureatarbitrarypointswithin cellsof thescalartimefield. The
curvaturewasthencomputedat randomlyselectedpointsin thein-
teriorof thatcell, andthemaximumvaluewasusedasthecurvature
measure.Eachcell exhibiting high curvaturewasassumedto be-
long to a streamboundarythat isolatesdistinctstreamsfrom each
other.

Unfortunately, theproposedoperatorhasturnedout to berather
impracticaldueto thefollowing reasons.First,thismeasureassuch
might give improperresultssincethe estimatedcurvaturedoesn’t
take into accountthe rangeof datasamplesin eachcell. As a
consequencetime surfaceswithin differentcells might have sim-
ilar curvatureeven if thevariationof scalarvalueswithin thecells
differ significantly. Second,theevaluationof thismeasureis expen-
sive in termsof numericaloperationsbecauseatanumberof points
thescalarfield hasto beresampledto computepartial derivatives.
Third, computedvaluesmightbecomevery smallandit hasturned
out to berathercumbersometo appropriatelyscalethevaluesto a
rangethatcanbeeffectively usedfurtheron.

In orderto circumvent thementioneddrawbackswe take advan-
tageof adiscreteoperatorwell suitedfor theestimationof themean
curvaturein meshes.Thereforewe first have to obtainthemeshon
whichthisparticulargeometricattributecanbecomputed.Because
we areonly interestedin classifyingeachgrid point with respect
to thecurvatureof thesurfacepassingthroughthatpoint it suffices
to locally reconstructthetime surfacein thevicinity of eachpoint.
However, insteadof reconstructingthesurfaceasit is we have de-
velopedamuchmoreefficient andstablealternative.

Let usproceedby introducingtheconceptof a flow-warp icon.
Theflow-warp icon is simply a regular, planarpolygonconsisting
of acentervertex anda1-ringneighborhoodasillustratedin Figure
2. Thenumberof 1-ringneighborsis chosenin suchawayasto al-
low for theaccurateresamplingof thescalarfield aroundthecenter
vertex. In our examplethecentervertex hasvalencesix and1-ring
neighborsareequallydistributedaroundthecenter.
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Figure2: Theflow-warp icon is a planar polygonthat is placed
in the flow anddeformedwith respectto theflow directionand to
the differencesin the time values. Thecurvature operator is then
evaluatedon thedeformedgeometricshape.

At eachgrid pointaflow-warpiconis positionedin theflow such
thattheflow vectoratthispoint is orthogonalto theplanarpolygon.
Thenthedistortionsof thetimesurfacearegoingto besimulatedby
distortingtheiconalrepresentationcorrespondingly. Thereforewe
proceedasfollows: At eachvertex thescalartimevalueis evaluated
andfor every1-ringneighborthedifferencebetweenthisvalueand
thevalueat thecentervertex is computed.In addition,at every 1-
ring neighborthevectorfield is reconstructed.Every vertex but the
centeroneis thenshiftedinto thedirectionof theflow, seeright of
Figure2. Thestrengthof theshift is inverselyproportionalto the



differencebetweenthe time values.Thedistortionis thusapplied
with respectto flow directionandto thevariationof theflux.

Oneof the nice featuresof this approachis that it allows us to
computethe meancurvaturein termsof magnitudeanddirection.
Fromthedeformediconwecaneasilydeterminethecurvaturenor-
mal which providesus with anadditionalattribute to classifygrid
points.Now, streamboundarycellsarecharacterizedby grid points
exhibiting high curvaturemagnitudeand oppositecurvaturenor-
mals.

For computingthemeancurvaturenormalwe usethefollowing
well-known approximationof theLaplacianoperator, theso-called
scale-independentumbrellaoperator[10, 7]:IKJ�LNMPORQTSU VW%X�Y[Z'\ M+] L W_^ L M` a M W `TbdcKe�f'g UhQ VWiXjYkZ�\ M+] ` a M W `
where

` a M W ` specifiesthelengthof theedgeconnectingvertices
L M

and
L W .

In particular, both the locationof verticesandthe lengthof the
edgesconnecting1-ringneighborswith thecentervertex enterinto
this operator. In this way we keeptrack of the direction of the
applieddistortionsandits strength.As we would expect,two dis-
tortionsperformedinto thesamedirectionbut with differentlength
resultin differentcurvaturevalues.Onetheotherhand,if thedis-
placementis performedwith equalstrengthbut into differentdirec-
tionsthecurvaturediffersaswell, seeFigure3 for someexamples.
Flows that proceedparallelto eachotherbut with differentspeed
thusreveal highercurvaturethandiverging flows having thesame
variationin speed.

Figure3: Differentdisplacementsare shown.In themiddleimage,
dueto oppositedisplacementsthe flow-warpicon remainsalmost
planar, e.g. in a shearflow. Ontheright thehighlydeformedshape
indicates1-ring neighbors belongingto differentstreams.

In 2D thingsbecomeevensimplerbecauseweonly have to con-
sidertwo line segmentsoriginatingat thecurrentgrid point. From
theorientationandthelengthof bothsegmentsthemeancurvature
caneasily be approximated.Note that againthe meancurvature
normalis evaluated,which dependson the directionof thedistor-
tionsaswell astheirstrengths.

In contrastto calculatingthemeancurvatureasproposedin [33]
thecurrentmethodis superiorwith regardto severalaspects.l It performsmuchfasterbecausethecurvatureis approximated

by meansof thediscreteumbrellaoperatorthatonly involves
simplevectoroperations.l Theaccuracy by which thecurvatureis approximatedcanbe
improvedusingany otheroperatorondiscretemeshesaspro-
posedin [6].l Curvaturemagnitudeandcurvaturenormalallow for a more
preciseclassificationof streamboundarycells.

l A conservative boundfor thecurvatureis givenby themaxi-
mal displacementthatcanoccur. This, however, is restricted
by themaximaldifferencebetweentimevaluesatneighboring
points.

In Figure4 two different curvatureplots of the time field that
wasgeneratedfrom the oceandatasetareshown. On the left the
methodproposedin [33] wasemployed, while on theright there-
sult ascomputedusingthecurrenttechniqueis displayed.As one
canimmediatelysee,thetechniqueproposedin thiswork is ableto
determinestreamboundariesmoreaccuratelyandis lesssensitive
to smalldisturbancesin thedata.

In any case,however, the curvatureplot naturally leadsto the
discriminationof separatestreamsthatflow in differentdirections
and/orwith differentspeeds.In laminarstreamswherethe distor-
tionsof thetimesurfacesarelow, thecurvaturewill below aswell.
In the next section,we will demonstratehow to usethis informa-
tion to successively smoothflow fieldsat the sametime revealing
theflow topology.

Figure4: Two curvature plots that were generatedusingdifferent
methodsare shown.On theleft curvature wascomputedby means
of the measure proposedin [33]. On the right curvature wasap-
proximatedby evaluatingthescale-independentumbrella operator
on thedeformedflow-warpicons.

4 Topology preser ving smoothing of flo w
fields

In thefollowing, ourgoalis to developatechniquethatallowsusto
successively smooththeflow field with respectto thecurvatureof
thetimesurfaces.Separatestreamsshouldnot bemerged,whereas
small deviationsbetweenvectorvalueswithin themshouldbe re-
moved.

4.1 Iterative smoothing scheme

So far, smoothingschemesfor vectordataalmostentirely rely on
thelocalevaluationof theflow field. Thevariationof theflow direc-
tion betweenadjacentgrid pointsis considered,but thesmoothing
operatordoesn’t accountfor accumulatedflow quantitiesas pro-
posedin our approach.In [6], for instance,ananisotropicsmooth-
ing schemefor vectorfieldshasbeenproposedthatdiffusessmall
deviationsinto thedirectionof homogeneousvectorcomponents.

However, alsoin thisapproachthelocalsmoothingprocessmay
resultin the dispersionof disturbancesacrossdifferentstreamsas
well asalongthestreamlines.Neithereffect is suitable,sinceboth
leadtoundesirablesmoothingorthogonalto thestreamsandequally



undesirabledistortionof thestreamlines’ mainshape.In orderto
avoidm thesedrawbacks,wehave incorporatedthelocalcurvatureof
theaccumulatedflow quantity, thetime-surfaces,into thesmooth-
ing process.

We startwith a Cartesiangrid andthe initial distribution of the
functionvaluesnpo�q#rts&r�u�v ateachgrid point.Wethensubsequently
visit eachgrid point andthevectordatais smoothedby averaging
thecontributionsfrom all 26neighborsaroundthatpoint:

w!x-y{z|%}�~_�.|'��� |_� w |
� � | y�� �����_�y������� |���� � �%� o � r � v�� | � �����#�t� � �P� �
Here, ��o � v includesthe point itself,

�� | specifiespre-computed
weightsthatarestoredin a 3x3x3filter mask, � | is thecurvature
magnitudeand

�i� o � r � v returnsTrueif bothcurvaturenormalsat � |
and � x areoppositeto eachotherandFalseotherwise.

At thecurrentgrid point andall of its neighborswe placeflow-
warpiconsinto thestream.Thedistortionsof theseiconsaresim-
ulatedas describedand the curvature normalsare approximated
by meansof the scale-independentumbrellaoperator. Only those
neighborsthat belong to the samestreamare consideredin the
smoothingprocess.All othersindicatedby high curvatureandop-
positecurvaturenormalwill be ignored.Note thatvectorsamples
atgrid pointsbelongingto closedorbitswill only beaveragedwith
othersamplesin thesameorbit. Theseareclassifiedby uniqueids
whichwereascertainedin thepre-processingstep.

5 Results and analysis

In this sectionwe show someresultsof our approachandwe ana-
lyze the mainmodulesandfeaturesof our system.All testswere
runonaSGIOctaneequippedwith oneR12000400MHz processor
and256MB mainmemory. All of our testswereexecutedon2D or
3D Cartesiangrids,but alsoothergrid typescanbeprocessedwith
only slight modifications.In particular, theparticletracerhasto be
modifiedappropriately, andanalgorithmis requiredthatallows for
there-samplingof thevectordataandthetime distribution. Then,
thedeformationof flow-warpscanbe computedstraightforwardly
with theonly modificationthatthesmoothingprocessincooperates
inversedistanceweightswith respectto thelengthof theedgesbe-
tweengrid pointsratherthanpre-computedweights.

Asalreadystatedin [33] themosttimeconsumingelementof the
presentedapproachis the computationof the time distribution n ,
which is accomplishedby tracingthe integral curvesbackin time
until a sourceor the inflow boundariesarereached.Theprevious
systemimplementedtheRunge-Kuttaschemein a straightforward
way without takingadvantageof coherencein thedata.Thenaive
approach,in which every particletraceis computedfrom scratch,
takesroughly28minutesfor the ���� j¡ flow datasetshown in Figure
5.

Asproposedearlierin thecurrentimplementationthegrid is pro-
cessedstreamline by streamline in orderto geneatethetime field.
In this way theproposedmethodcouldbe improved considerably,
which alsomakes it suitablefor the processingof large-scale3D
vectordata.For example,thetimeneededto processtheaforemen-
tionedexamplecould be reducedto 5 minutesusingthis acceler-
ation technique.For the sameexample,computingthe curvature
by meansof flow-warpiconsandsmoothingtheflow field took ap-
proximately48 seconds.

So far, the proposedmultiscalerepresentationenablesus to re-
move noisefrom flow fieldsandto generatecopiesof theoriginal
flow at ever coarserresolution.Figure6 shows differentdatasets
after someiterationswere performed. One can easily recognize
thatthemainshapeof thestreamlinesis retainedashighfrequency
oscillationsaresuccessively removed. In particular, randomnoise

wasaddedto someof the vector fields and the original datawas
comparedto the resultsbeforeand after smoothing. As can be
clearlyseenfrom theimages,theoriginaldatasetcanberecovered
withoutany noticeableartifactsby ourmethod.

As we have pointedout, our techniqueis intendedto extract
streamboundariesbasedon the proposeddiscretecurvaturecrite-
rion. As amatterof fact,theclassificationof streamboundariesand
consequentlythesmoothingprocessstronglyreliesonthecurvature
thresholdweselectastheimportancemeasure.Thespecificationof
apropererrortoleranceraisesthesameintrinsicproblemasin other
areaswheretechniquesattemptto discriminatenoisefrom features.
Ontheotherhand,theincooperationof thecurvaturedirectionasan
additionalimportancemeasureconsiderablyimprovestheaccuracy
of thisprocess.

6 Conc lusion

In this work we have emphasizeda generalapproachfor thetopol-
ogy preservingsmoothingof flow fieldsby meansof thedynamics
of time surfaces.The major contribution hereis to considertime
surfaceswithin thisfield asthefundamentalstructuresshowing the
dynamicsof theflow. Theevolutionof theselevel-setsin spaceand
time is analyzedin termsof their curvaturenormal,which enables
usto separatehomogeneousstreamsfrom eachother.

Although the discretecurvatureis locally investigated,it gives
a globalmeasurebecausea point on thetime surfacecarriesinfor-
mationalongthe entirestreamup to the currentposition. Conse-
quentlynoisealongthestreamlineswill be increasinglyremoved
dueto integration,while weexpectturbulenceto introducehighfre-
quency oscillations.This is dueto thefact thatflow directionwill
bechangedsignificantlythusalteringthestreamlines’ mainshape.

We introducedan explicit schemeto iteratively smoothflow
fields. In particular, wehave shown how to remove noisefrom vec-
tor databy dispersingsmall disturbanceswithin separatestreams
but not acrossthem. As a matterof fact the integral curves’ main
shapescanbe retained.Even if highly turbulent partsarepresent
in thedata,suchthatno regularstreamboundariescanbedetected,
our approachis ableto detecttheseregionsandsmoothingis not
goingto beperformed.

In contrastto thework presentedin [33] we introducedtwo ma-
jor extensions;theefficient approximationof thecurvaturenormal
by meansof flow-warpiconsasthefundamentalprimitives,andthe
accelerationof theintegrationprocessdueto theeffective exploita-
tion of intermediateresults.Both extensionhave leadto improved
accuracy of the classificationprocedureandto a considerableac-
celerationof theentiresmoothingprocess.
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Figure5: Bothimagesshowthecurvaturevolumecomputedfromtheflowfieldaroundtheback of thecar. Darkgrey indicateshighcurvature.
Therelevantstructurescanbeclearlydistinguishedevenwithoutanymanualmodifications.

Figure6: In this sequencetheoceandatasetis continuouslysmoothedusingtheproposediteration scheme. In themiddleimage theresult
after2 iterationsis shown.5 iterationswereperformedin therightmostimage.

Figure7: Thevectorfieldshowingtheflowarounda cylinder(left) wasmodifiedbyaddingnoise(middle).Ontheright thedatawassmoothed
using3 iterations.
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