Topology Preserving Smoothing of Vector Fields

RudigerWestermanty, Christopherdohnson, andThomasErtl}

tScientificVisualizationandlmagingGroup,Universityof TechnologyAachen

iScientificComputingandimaginglnstitute,University of Utah
1VisualizationandInteractive SystemsGroup,University of Stuttgart

Abstract

In this paperwe proposea techniquefor topology preserving
smoothingof sampledvectorfields. The vectorfield datais first

corvertedinto a scalarrepresentation which time surfacesim-

plicitly exist as level-sets. We thenlocally analyzethe dynamic
behaior of level-setshy placinggeometrigorimitivesin the scalar
field andby subsequentldistortingtheseprimitiveswith respecto

localvariationsn thisfield. Fromthedistortedprimitiveswe calcu-
latethe cunaturenormalandwe usethe normalmagnitudeandits

directionto separatalistinctflow features.Geometricabndtopo-
logical considerationsre then combinedto successiely smooth
denseflow fields at the sametime retainingtheir topologicalstruc-
ture.

1 Introduction and related work

Visualizing vector field datais challengingbecauseno existing
naturalrepresentatioganvisually corvey large amountsof three-
dimensionabirectionalinformation. In fluid flow experimentsex-
ternalmaterialssuchasdye, hydrogerbubbles,or heatenegy are
injectedinto theflow. Theadwectionof thesesxternalmaterialscan
createstreamlines, streaklines, or pathlinesto highlight the flow
patterns. Analoguesto theseexperimentaltechniqueshave been
adoptedby scientific visualizationresearchers Numericalmeth-
odsandthree-dimensionalomputeigraphicgechniquefiave been
usedto mapthelocal flow characteristicto graphicaiconssuchas
arrovs, motion particles,streamlines, streamribbons,andstream
tubeswhich also provide three-dimensionatiepth cues. While
thesetechniquesreeffective in revealingthe flow fieldslocal fea-
tures,theinherenttwo-dimensionatlisplayof the computerscreen
andits limited spatialresolutionrestrictthe numberof graphical
iconsthatcanbedisplayedatonetime.

Additionaltechniquedor flow field visualizationincludeglobal
imagingtechniques.Cranfis andMax [4, 5] proposedlirectvol-
ume renderingmethodsto createimagesof entire vector fields.
Vector kernels and texture splats are used to constructthree-
dimensionatcalarsignalsfrom thevectordata.VanWijk [30] pro-
poseda SpotNoise methodusingstretchectllipsesto createtwo-
dimensionatexturesthatcanbe mappednto parametricsurfaces.
Max et al.[19] further utilized the spotnoisemethodto visualize

three-dimensionalelocity fieldsnearcontoursurfaces.Cabraland
Leedom[2] presented Line Integral Convolution (LIC) method,
which malesuseof a one-dimensiondbw passfilter to convolve

aninputtexturealongtheprincipalcurvesof thevectorfield. Based
on this idea, a numberof relatedtechniqueshave beenproposed,
which attemptto optimizethe LIC methodin termsof computa-
tional costandimagequality, to visualizeflow over surfacesand
justrecentlyto visualize3D flow in avolume[24, 9, 1, 23, 15,22].

Thesemethodscansuccessfullyllustratethe globalbehaior of
vectorfields; however, it is difficult whenusing suchmethodsto
effectively control streamline densityin a way that depictsboth
thedirectionstructureof theflow andtheflow magnitude Further
more,becausef thetremendouinformationdensitythey produce
andtheir inherentocclusioneffects, LIC methodsgenerallyfail if
utilizedto globally visualize3D flow fields.

Oneapproacho overcometheselimitationsis to interactiely,
but manually modify the renderablerepresentatiorin order to
highlight the interestingstructureq20]. Although visually pleas-
antresultscanbe achieved usinghardvare-accelerated@D texture
mapping,in particularfor large-scalevector fields it turnsout to
be ratherdifficult to pick the relevant structureswithout explicit
knowledgeconcerningthe underlyingflow. Regardlesghe inter-
actiity thatis inherentto this approachjt doesnot guaranteein
generalthatthe characteristidlow featuresarefound.

In contrasto themanualsegmentatiorof vectorfield data,a dif-
ferentapproachs to inspectheflow field in orderto detectandan-
alyzecritical points[13]. Topologicalskeletonswhich aredefined
by thosestreamlines startingat a critical point in the directionof
theeigemwvectors,areto be extractedanddisplayed Althoughthese
techniquesprovide an effective tool to determinethe topological
equialenceof differentflows, they do not allow anintuitive anal-
ysis of the principal streamsandtheir directionof complex flows.
First attemptsto further simplify the topology by meging close
critical pointsaspresentedh [27] arerestrictedto 2D flows.

Othertechniquedry to reducethe primitivesusedto depictthe
structureof the flow in sucha way that the resultstill represents
the original datasuficiently. While in [28] streamline placement
in 2D flows wasguidedby visual attributes,in [16] evenly-spaced
streamlinesweregeneratedasedon a distancecriterion. Explicit
consideratiorof theflow topologywasusedin [32] to optimizethe
streamlineseedingstrateyy.

Onthe contrary the mainconcernof thework presentedn [12,
26,11, 18] wasto effectively simplify theunderlyingdatawithout
lossof relevantinformation.In generalhowever, thesehierarchical
techniquesarelocal in that they usually consideronly the vector
field in the geometricneighborhoodaroundeachposition, but do
nottake into accountheglobalstructureof the flow.

In thispaperweextendournovel approactpresentefirstin [33]
for theanalysisanddisplayof stationaryectorfield data whichin-
cludeseffective techniquegor the classificationsegmentatiorand
topologypreservingsmoothingof flow fields. Ratherthananalyz-
ing theflow field assuch wefirstconvertit into ascalarfield andwe
analyzethe spatialandtemporalevolution of level-setsor time sur
facedn thisfield. In particularwe shav how to obtaintheflow data



at ever coarsemesolutionby dispersingsmall disturbancescross
thetime surfaces.

The goal of our approacthis twofold: to presenta methodthat
allows for the automaticsegmentationof flow fields and to build
analgorithmfor the topologypreservingsmoothingof vectorfield
dataon top of it by meansof which a multiscalerepresentation
canbe obtained.In contrastto the work in [33], the focusof this
work liesondevelopinganefficientschemedor thetopologyguided
smoothingof flow fields. We considerablyimprove our previous
work in termsof accurag and efficieng/ by introducinga novel
concepthatallows usto accuratelymeasurelistortionsin theflow.

The reminderof this paperis organizedasfollows. First, we
introducethe basicidea of converting the vectorfield datainto a
level-setrepresentationf time surfaces,andwe describehow the
effective exploitation of intermediateresultsof the numericalin-
tegrationleadsto significantacceleratiorof the process.We then
explain our conceptof flow analysisbasedon streamboundaries
which areextractedfrom the flow by a cunaturebasedanalysisof
the time surfacesinvolving an efficient approximationof the cur
vaturenormalby meansof flow-warpicons. Finally, we propose
anexplicit scheméor the topology preservingsmoothingof flow
fields,andwe concludethe paperwith a detaileddiscussiorof our
results.

2 Flow surfaces

In fluid dynamics flow surfacetechnique$ave becomeémportant
to the investigationof the dynamicsof vectorfield data. A flow
surfacecan be seenasa variation of pathlinesin non-stationary
flows whereseverallinesarejoinedto form a surface. A denseset
of particlesis releasednto theflow, andtheir subsequerpositions,
aswell asthedistortionsof the so-definedsurfacesaremonitored.

In computationaflow visualization,techniquedor simulating
differentkinds of flow surfaceshave beendevelopedin the past
[14,29,3]. In its mostgeneraform, flow surfaceare simulatedby
placinganinitial surfacein theflow andthenby successely mov-
ing all verticesdefiningthe surfacewithin constanintervals along
theintegral curvesof the flow. Theintegral curvesemanatingat a
givenpositionarethe solutionsto the ordinarydifferentialequation

dr(t
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with initial boundaryconditionr(ts) = ro. Here,r(¢) denotes
the position of a particleat time ¢, andv(r,¢) representshe in-
stationaryvelocity field. Notice in particularthat this technique
canbeextendedo thestationarycasejn which atime-independent
velocity field is consideredandits integral curvesaredefinedwith
respecto ary otherparameterization.

In generalflow surfacescanbe placedeverywherein the flow;
however, without lossof generalitylet usassumehatparticlesare
initially releasedt the inflow boundariesandat every sourceinto
all possiblairectionsof thevelocity atthatsource Thus,theevolv-
ing surfacesformedby connectingparticlesat time ¢,, containall
positionswithin the domainthat canbe reachedrom a sourcein
thattime. In otherwords,ary particlethatis releasedrom this sur
faceandtraversesits integral curve backward will reacha source
or the boundaryof the domainin thattime. We will subsequently
call thiskind of particlesthe anti-particles andthe particularkind
of flow surfacethetime surface

A particulartime surfacein a flow is describedby the implicit
equationI'(z, y,z) = tn, whereT is thetime the anti-particlere-
leasedat position(z, y, z) requiresto reacha sourceor the bound-
ary. Thereforeatime surfacecanbecomputeceitherby distorting
theinitial surfacewith respecto theflow field or by computingthe
scalarfunctionT for all necessarpositionsandby fitting the sur
faceusingtraditionaltechniquesThefirst approacthastwo major

limitations: it requireghegeneratioranddisplayof ahugenumber
of primitives,andthe generatedurfacesarelikely to becomenon-
manifoldsincluding self-intersectionsln comparisonthe second,
implicit approachhasvariousadwantagesandwill be sketchedin

thefollowing sections.

2.1 Implicit time surfaces

We aim to constructa volumetricrepresentatiorin which thetime
surfacesimplicitly exist aslevel-sets[21]. Level-setsin our ap-
proachmay not exactly bethe’level-sets’in a strict senseasintro-
ducedby Sethianin his original work, however, it is still level sets
in the mathematicatense.The level setof f ata particularvalue
of time, ¢, is the setof all points(z, y, z) suchthat f(z,y,z) = ¢t.
Anothernamefor thisis thecontourcune of f atlevel ¢.

Thereforefor eachgrid pointan anti-particleis releaseandits
integral curwe is traceduntil asourceor theboundaryof thedomain
is reachedThisproceduréas equivalentto thebackwardtracingap-
proachproposedn [31] for the calculationof streamsurfacefunc-
tions. We emply a fourth-orderRunge-Kitta schemein orderto
find successie pointsalongthe cunes.

In the currentimplementationhowever, the grid is processed
streanine by streaniine. Onceacertainpositionhasbeenselected
tostartanew particleline, thislineis tracecbackwarduntil asource
or the boundaryis reached. During this walk the position of all
pointsthatarecloseto the currentline arestored.For eachof these
pointsthetimeis recordedhatwasneededo reachthe pointfrom
the startingposition. Now, thetime it takesto reachthe endof the
tracefrom eachof thesepointsis simply the overall time minus
the time storedfor the point during runtime. In this way a huge
numberof pointsto be processedeparatelycan be sared which
considerablyacceleratethe generatiorof thetime field.

Prior to this procedurene determinecritical pointsin the flow
wherethe magnitudeof the velocity vanishes.Thus, during run-
time we detectanti-particlesreachinga critical point, which then
have to be stoppedn orderto avoid nonterminatingraces. Addi-
tionally, a stoppingcriterionis emplag/ed for anti-particlesnoving
on closedorbits, for which no valid, but uniquetime valueare as-
signed.

Figurel: In the leftimage the oceanflow is depictedby meansof
LIC. Ontheright thetravelingtimesof anti-particlesto the bound-
ariesor sourcesare shownasscalarvaluesat ead grid point.

If the distancefrom point p; to point p;4+1 is d;, thenthetime
ananti-particleneedso travel from p; to pi 11 ist; = d; - m
Integrating the distancesalong the path yields the time the anti-
particle needsto move from the grid point it was releasedrom
until it leavesthedomainor reaches critical point. A uniquetime
is assignedo thosegrid pointslocatedin closedorbits. Thus, by

storingall times at eachgrid point we have convertedthe vector



field into a scalarfield, which providesalternatvesfor displayand
analysisof theflow (seeFigurel).

3 Flow analysis

3.1 Stream boundaries

As we have claimedin the introduction,our approachshouldbe
effective in revealinghomogeneoustreamsn the flow, which, in
general,can not be determinedby just analyzingthe vector data
locally. Evenif the vectordatais locally homogeneoum termsof
directionand speedwe will find regionswheredifferentstreams
proceedparallelto eachotherover a certaindistance but will be
separatinggain.As asolutionto this problem,we have developed
alocaltechniquethattakesinto accountglobalinformationin that
it accumulatefiow quantitiesalongtheintegral curves.

To illustratethe concept et asinterpretparticlesmoving along
apathline asa containeffilled with liquid. At thebeginning,each
containelis empty At eachpositionin thefield, the particlecarries
all the liquid thatwasinjectedalongthe pathline up to this posi-
tion. Theinjectedamountateachpositionis equalto themagnitude
of the vectordataat this position. We thentry to extractthe exact
regionsin which adjacentparticlescarry differentamountsof lig-
uid, becausehis implies thatthe particleshave a differenthistory
in termsof whatthey collectedalongtheir paths.In thecurrentsce-
nario, the amountof liquid carriedby a particle equalsthe time a
particlewastraveling alonga particleline. The differencebetween
adjacentvalueson neighboringlines now indicateshov muchthe
cumulatedmatteralongthe line differs. Consequentlywithin ho-
mogeneoustreamsthe distortionsof level-setscorrespondingo
equalcumulatre amountsare small in general,whereashey are
highbetweerdifferentstreamsWe will subsequentlgall thiskind
of boundarieghe streamboundaries andwe proceecby studying
the cunatureof time surfacesby meansof which areaswvheredif-
ferencesoccurcanbeidentified.

3.2 Curvature based analysis of time surfaces

The studyof time surfacess of particularinterestbecause¢hey ef-

fectively visualizethe geometricand topologicalmodificationsof

their evolving structures By helpingusto discriminateamongar

easof flow shaving different characteristicsthesemodifications
shouldallow usto moreaccuratelyanalyzethe flow underconsid-
eration. As a consequencee needto develop a measurédor the
variationsof theflux asspecifiedabove thatcanbe usedto indicate
thepresencef streamboundaries.

Oneapproacho detectandcharacterizésurfacefeaturesin ge-
ometricmodelingis to analyzethe local cunatureacrossthe sur
face. Methodsfor the efficient calculationof geometricattributes
on mesheganbefoundin [8, 25, 17, 7, 6], wherethis kind of in-
formationhasmainly beenusedfor the analysisandsmoothingof
geometricshapes.In the following we will male useof someof
theseconceptso analyzethe implicit flow surfacesby meansof
theircunature.

In the presentscenariothe cunatureof the time surfacestells
uswheredistortionsof thesesurfaceswith respecto theinfluence
of the flow field are mostsignificant. At first glanceone might
concludethat the gradientof the scalartime distribution already
sufficesto locally characterizaéhesedistortions. In general how-
ever, a high gradientmay point into the flow directionor it may
not coincidewith the directionthoughthe time surfaceit belongs
toislocally flat, e.g.in aperfectshearflow. Basedon our previous
remarkson flow boundariesve arethusinterestedn finding those
positionsin the dataexhibiting high cunature.

Therefore however, we first have to derive amethodthatcanbe
usedeffectively to computethe cunatureat ary grid point. In [33]

an oraclewasproposedhatallows for the estimationof the mean
cunatureatarbitrarypointswithin cellsof thescalattimefield. The
cunaturewasthencomputecht randomlyselectegointsin thein-

teriorof thatcell, andthemaximumvaluewasusedasthe curvature
measure.Eachcell exhibiting high cunaturewas assumedo be-
long to a streamboundarythatisolatesdistinct streamdrom each
other

Unfortunately the proposedperatortasturnedoutto berather
impracticaldueto thefollowing reasonsFirst, thismeasuressuch
might give improperresultssincethe estimatedcurvature doesnt
take into accountthe rangeof datasamplesin eachcell. As a
consequencéme surfaceswithin differentcells might have sim-
ilar cunatureevenif thevariationof scalarvalueswithin the cells
differ significantly Secondtheevaluationof thismeasurés expen-
sivein termsof numericaloperationdecauseatanumberof points
the scalarfield hasto beresampledo computepartial derivatives.
Third, computedraluesmight becomevery smallandit hasturned
outto berathercumbersoméo appropriatelyscalethe valuesto a
rangethatcanbe effectively usedfurtheron.

In orderto circumentthe mentioneddravbackswe take adwan-
tageof adiscreteoperatonvell suitedfor theestimatiorof themean
cunaturein meshesThereforewe first have to obtainthe meshon
whichthis particulargeometriattribute canbecomputed Because
we areonly interestedn classifyingeachgrid point with respect
to the curvatureof the surfacepassinghroughthatpointit sufiices
to locally reconstructhetime surfacein thevicinity of eachpoint.
However, insteadof reconstructinghe surfaceasit is we have de-
velopeda muchmoreefficientandstablealternatve.

Let us proceedby introducingthe conceptof a flow-warpicon.
The flow-warpiconis simply a regular, planarpolygonconsisting
of acentenvertex anda 1-ringneighborhoodsillustratedin Figure
2. Thenumberof 1-ring neighborss choserin suchaway asto al-
low for theaccurateesamplingdf thescalarfield aroundthecenter
vertex. In our examplethe centervertex hasvalencesix and1-ring
neighborsareequallydistributedaroundthe center

O center vertex 4

® 1-ring neighbors

Figure2: Theflow-warpicon is a planar polygonthat is placed
in the flow and deformedwith respecto the flow directionandto
the differencesin the time values. Thecurvatue opeitor is then
evaluatedon thedeformedgeometricshape

At eachgrid pointaflow-warpiconis positionedn theflow such
thattheflow vectoratthis pointis orthogonato theplanampolygon.
Thenthedistortionsof thetime surfacearegoingto besimulatecdby
distortingthe iconal representatiosorrespondingly Thereforewe
proceedasfollows: At eachvertex thescalatimevalueis evaluated
andfor every 1-ring neighborthe differencebetweerthis valueand
thevalueat the centervertex is computed.In addition,at every 1-
ring neighborthevectorfield is reconstructedEvery vertex but the
centeroneis thenshiftedinto the directionof theflow, seeright of
Figure2. The strengthof the shift is inverselyproportionalto the



differencebetweerthe time values. The distortionis thusapplied
with respecto flow directionandto the variationof theflux.

Oneof the nice featuresof this approacthis thatit allows usto
computethe meancunaturein termsof magnitudeanddirection.
Fromthedeformedconwe caneasilydeterminghecunaturenor
mal which providesus with an additionalattribute to classifygrid
points.Now, streanmboundarycellsarecharacterizetdy grid points
exhibiting high curvature magnitudeand oppositecunature nor
mals.

For computingthe meancunaturenormalwe usethe following
well-known approximatiorof the Laplacianoperatorthe so-called
scale-independenimbrellaoperatof10, 7]:

2 X;—X; .
L(Xi)zﬁ Z =t with E= Z less]
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where|e; ;| specifieghe lengthof the edgeconnectingrerticesX;
andX;.

In particular both the locationof verticesandthe lengthof the
edgesonnectingl-ring neighborawith the centervertex enterinto
this operator In this way we keeptrack of the direction of the
applieddistortionsandits strength.As we would expect,two dis-
tortionsperformednto the samedirectionbut with differentlength
resultin differentcurvaturevalues. Onethe otherhand,if thedis-
placements performedwith equalstrengthbut into differentdirec-
tionsthe cunaturediffersaswell, seeFigure3 for someexamples.
Flows that proceedparallelto eachotherbut with differentspeed
thusreveal highercurvaturethandiverging flows having the same
variationin speed.

Figure3: Differentdisplacementare shown.In themiddleimage,
dueto oppositedisplacementshe flow-warpicon remainsalmost
planar e.g. in a shearflow Ontheright the highly deformedshape
indicatesl-ring neighbos belongingto differentstreams.

In 2D thingsbecomesven simplerbecauseve only have to con-
sidertwo line sggmentsoriginatingat the currentgrid point. From
theorientationandthelengthof both segmentsthe meancunature
caneasily be approximated. Note that againthe meancunature
normalis evaluated which depend®n the directionof the distor
tionsaswell astheir strengths.

In contrasto calculatingthemeancurvatureasproposedn [33]
thecurrentmethodis superiorwith regardto severalaspects.

e [t performanuchfastebecaus¢hecurvatureis approximated
by meanf thediscreteumbrellaoperatotthatonly involves
simplevectoroperations.

e Theaccurag by which the curvatureis approximatedanbe
improved usingary otheroperatoon discretemeshesspro-
posedn [6].

e Cunaturemagnitudeand cunaturenormalallow for a more
preciseclassificatiorof streamboundarycells.

¢ A conserative boundfor the curvatureis given by the maxi-
mal displacementhatcanoccur This, however, is restricted
by themaximaldifferencebetweeriime valuesatneighboring
points.

In Figure 4 two different curvature plots of the time field that
wasgeneratedrom the oceandatasetare shavn. On the left the
methodproposedn [33] wasemplaged, while on theright there-
sult ascomputedusingthe currenttechniques displayed.As one
canimmediatelysee thetechniqueproposedn thiswork is ableto
determinestreamboundariesnoreaccuratelyandis lesssensitve
to smalldisturbance# thedata.

In ary case,however, the cunatureplot naturally leadsto the
discriminationof separatestreamghatflow in differentdirections
and/orwith differentspeeds.n laminarstreamsvherethe distor
tionsof thetime surfacesarelow, the curvaturewill below aswell.
In the next section,we will demonstraténow to usethis informa-
tion to successiely smoothflow fields at the sametime revealing
theflow topology

Figure4: Two curvatue plots that were geneated usingdifferent

methodsare shown.On theleft curvatue wascomputedy means
of the measue proposedn [33]. On theright curvatue wasap-

proximatedby evaluatingthe scale-independenimbeella opeator

onthedeformedlow-warpicons.

4 Topology preserving smoothing of flow
fields

In thefollowing, ourgoalis to developatechniquehatallows usto
successiely smooththe flow field with respecto the curnvatureof
thetime surfaces.Separatstreamsshouldnot be melged,whereas
small deviations betweervectorvalueswithin themshouldbe re-
moved.

4.1 lIterative smoothing scheme

Sofar, smoothingschemedor vectordataalmostentirely rely on
thelocalevaluationof theflow field. Thevariationof theflow direc-
tion betweeradjacengrid pointsis consideredbut the smoothing
operatordoesnt accountfor accumulatedlow quantitiesas pro-
posedin our approachln [6], for instanceananisotropicsmooth-
ing schemdor vectorfields hasbeenproposedhat diffusessmall
deviationsinto thedirectionof homogeneousectorcomponents.
However, alsoin this approachhelocal smoothingorocessnay
resultin the dispersiorof disturbancescrosdifferentstreamsas
well asalongthe streamlines. Neithereffectis suitable sinceboth
leadto undesirablemoothingrthogonato thestreamsndequally



undesirablalistortionof the streamlines’ mainshape.In orderto
avoid thesedravbacks we have incorporatedhelocal curvatureof
theaccumulatedlow quantity thetime-suraces,into the smooth-
ing process.

We startwith a Cartesiargrid andtheinitial distribution of the
functionvaluesT'(z, y, z) ateachgrid point. We thensubsequently
visit eachgrid point andthe vectordatais smoothecdy averaging
thecontritutionsfrom all 26 neighborsaroundthatpoint:

0 i#tj &
Vi= Y wV; ow= Li>e & opl(j,i)
JENG) w; : otherwise

Here, N (j) includesthe point itself, w; specifiespre-computed
weightsthatare storedin a 3x3x3filter mask,L; is the curvature
magnitudeandop(j, ) returnsTrueif bothcunaturenormalsat IV,
andN; areoppositeto eachotherandFalseotherwise.

At the currentgrid pointandall of its neighborswe placeflow-
warpiconsinto the stream.The distortionsof theseiconsaresim-
ulated as describedand the cunature normalsare approximated
by meansof the scale-independentmbrellaoperator Only those
neighborsthat belongto the samestreamare consideredn the
smoothingprocessAll othersindicatedby high cunatureandop-
positecurvaturenormalwill beignored. Note thatvectorsamples
atgrid pointsbelongingto closedorbitswill only be averagedwith
othersamplesn the sameorbit. Theseareclassifiedoy uniqueids
whichwereascertaineih the pre-processingtep.

5 Results and analysis

In this sectionwe shav someresultsof our approachandwe ana-
lyze the main modulesandfeaturesof our system.All testswere
runonaSGIOctanesquippedvith oneR12000400MHz processor
and256MB mainmemory All of ourtestswereexecutedon 2D or
3D Cartesiargrids, but alsoothergrid typescanbe processeavith
only slight modifications.In particular the particletracerhasto be
modifiedappropriatelyandanalgorithmis requiredthatallows for
there-samplingof the vectordataandthetime distribution. Then,
the deformationof flow-warpscanbe computedstraightforvardly
with theonly modificationthatthe smoothingorocessncooperates
inversedistanceveightswith respecto thelengthof theedgese-
tweengrid pointsratherthanpre-computedveights.

As alreadystatedn [33] themosttime consumingelemenbf the
presentedpproactis the computationof the time distribution T',
which is accomplishedy tracingthe integral cunesbackin time
until a sourceor the inflow boundariesarereached.The previous
systemimplementedhe Runge-Kittaschemen a straightforvard
way without taking adwvantageof coherencen the data. The nave
approachijn which every particletraceis computedfrom scratch,
takesroughly28 minutesfor the256° flow datasetshavn in Figure
5.

As proposeckarlierin thecurrentimplementationthegrid is pro-
cessedstreamline by streamline in orderto geneatehetime field.
In this way the proposedmnethodcould be improved considerably
which alsomalesit suitablefor the processingf large-scale3D
vectordata.For example thetime neededo procesgheaforemen-
tioned examplecould be reducedto 5 minutesusingthis acceler
ation technique. For the sameexample, computingthe cunature
by meanf flow-warpiconsandsmoothinghe flow field took ap-
proximately48 seconds.

Sofar, the proposedmultiscalerepresentatioenablesisto re-
move noisefrom flow fieldsandto generatecopiesof the original
flow at ever coarseresolution. Figure 6 shavs differentdatasets
after someiterationswere performed. One can easily recognize
thatthemainshapeof thestreandinesis retainedashighfrequenyg
oscillationsare successiely remaoved. In particular randomnoise

was addedto someof the vector fields and the original datawas
comparedto the resultsbefore and after smoothing. As canbe
clearlyseenfrom theimagesthe original datasetcanberecoered
withoutary noticeableartifactsby our method.

As we have pointedout, our techniqueis intendedto extract
streamboundariedasedon the proposedliscretecurnaturecrite-
rion. As amatterof fact, theclassificatiorof streamboundariesind
consequentlyhesmoothingorocesstronglyreliesonthecunature
thresholdve selectastheimportancemeasureThespecificatiorof
apropererrortoleranceaiseshe sameintrinsic problemasin other
areasvheretechniquesttempto discriminatenoisefrom features.
Ontheotherhandtheincooperatiorof thecunaturedirectionasan
additionalimportanceneasureonsiderablymprovestheaccurag
of thisprocess.

6 Conclusion

In this work we have emphasized generalpproachor thetopol-
ogy preservingsmoothingof flow fieldsby meanof the dynamics
of time surfaces. The major contritution hereis to considertime
surfaceswithin thisfield asthefundamentastructureshaving the
dynamic=f theflow. Theevolution of thesdevel-setsn spaceand
timeis analyzedn termsof their cunaturenormal,which enables
usto separatéhomogeneoustreamgrom eachother

Although the discretecurvatureis locally investigatedjt gives
aglobalmeasuréecause point on thetime surfacecarriesinfor-
mationalongthe entire streamup to the currentposition. Conse-
quentlynoisealongthe streamlineswill beincreasinglyremoed
dueto integration,while we expectturbulenceto introducehigh fre-
queng oscillations. This is dueto thefactthatflow directionwill
be changedignificantlythusalteringthe streanlines’ mainshape.

We introducedan explicit schemeto iteratvely smoothflow
fields. In particular we have shavn how to remove noisefrom vec-
tor databy dispersingsmall disturbancesvithin separatestreams
but not acrosshem. As a matterof factthe integral curves’ main
shapecanberetained.Evenif highly turbulent partsare present
in thedata,suchthatnoregular streamboundariesanbedetected,
our approachs ableto detecttheseregionsand smoothingis not
goingto beperformed.

In contrastto thework presentedn [33] we introducedwo ma-
jor extensionsthe efficient approximatiorof the curvaturenormal
by meanf flow-warpiconsasthefundamentaprimitives,andthe
acceleratiorof theintegrationprocesslueto the effective exploita-
tion of intermediateesults.Both extensionhave leadto improved
accuray of the classificationprocedureandto a considerableac-
celeratiorof theentiresmoothingoprocess.
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Figure5: Bothimagesshowthe curvatue volumecomputedromtheflowfield aroundthebadk of thecar. Dark grey indicateshigh curvatue.
Therelevantstructuescanbeclearly distinguishedevenwithoutany manualmodifications.
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Figure6: In this sequencéhe oceandatasetis continuouslysmoothedisingthe proposedteration scheme In the middleimage theresult
after 2 iterationsis shown 5 iterationswere performedn therightmostimage.

Figure7: Thevectorfield showingtheflowarounda cylinder(left) wasmodifiedby addingnoise(middle). Ontheright thedatawassmoothed
using3 iterations.
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