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Figure1: Denseflow fieldsare first convertedinto a scalar field, and thendisplayedand analyzedby meansof level-setsn this field. An
oraclethatis basedonthediscretecurvatue of level-setsallowsfor the automaticsepaation and extractionof homaeneousstreams.

Abstract

In this paperwe proposea techniquefor visualizing steadyflow.
Using this technique we first corvert the vector field datainto a
scalarevel-setrepresentationVe thenanalyzethedynamicbeha-
ior andsubsequertdistortionof level-setsandinteractvely monitor
the evolving structuresby meansof texture-basedsurfacerender
ing. Next, we combinegeometricabndtopologicalconsiderations
to derive a multiscalerepresentatiorand to implementa method
for the automaticplacemenof a sparsesetof graphicalprimitives
depictinghomogeneoustreamsn thefields. Usingtheresultingal-
gorithms,we have built avisualizationsystenthatenablesusto ef-
fectively displaytheflow directionandits dynamicsevenfor dense
3D fields.
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1 Introduction and Related Work

Visualizing vector field datais challengingbecauseno existing
naturalrepresentatioganvisually corvey large amountsof three-
dimensionabirectionalinformation.In fluid flow experimentsgex-
ternalmaterialssuchasdye, hydrogenbubbles,or heatenegy are
injectedinto theflow. Theadwectionof theseexternalmaterialscan
createstreamlines, streaklines, or pathlinesto highlight the flow
patterns. Analoguesto theseexperimentaltechniqueshave been
adoptedby scientific visualizationresearchers Numerical meth-
odsandthree-dimensionalomputemgraphicgechniquesiave been
usedto producegraphicaliconssuchasarrowns, motion particles,
streamlines, streamribbons, and streamtubesthat act as three-

dimensionabepthcues.While thesetechniquesreeffective in re-

vealingtheflow fields’ local featurestheinherentwo-dimensional
displayof thecomputerscreerandits limited spatialresolutionre-

strict the numberof graphicaliconsthat can be displayedat one

time.

Additional techniquedor flow field visualizationincludeglobal
imagingtechniques.Cranfis andMax [5, 6] proposeddirectvol-
ume renderingmethodsto createimagesof entire vector fields.
Vector kernels and texture splats are used to constructthree-
dimensionakcalarsignalsfrom thevectordata.VanWijk [28] pro-
poseda SpotNoise methodusingstretcheckllipsesto createtwo-
dimensionatexturesthatcanbe mappedonto parametricsurfaces.
Max et al.[17] further utilized the spotnoisemethodto visualize
three-dimensionalelocity fieldsnearcontoursurfaces.Cabraland
Leedom[3] presenteda Line Integral Cornvolution (LIC) method,
which makesuseof a one-dimensiondbow passfilter to corvolve
aninputtexturealongtheprincipalcurvesof thevectorfield. Based
on this idea, a numberof relatedtechniqueshave beenproposed,
which attemptto optimize the LIC methodin termsof computa-
tional costandimagequality, to visualizeflow over surfaces,and,
mostrecentlyto visualize3D flow in avolume[23,9, 1,22,13,21].

Thesemethodscansuccessfullyllustratethe globalbehavior of
vectorfields; however, it is difficult when using suchmethodsto
effectively control streamline densityin a way that depictsboth
thedirectionstructureof theflow andtheflow magnitude Further
more,becausef thetremendousnformationdensitythey produce
andtheir inherentocclusioneffects, LIC methodshave difficulty
effectively visualizing3D flow fieldsglobally.

One approachto overcometheselimitations is to interactvely
but manuallymodify therenderableepresentatiom orderto high-
light theinterestingstructureq19]. Althoughvisually pleasante-
sultscanbeachievedby exploiting hardware-accelerate8D texture
mapping,in particularfor large-scalevectorfieldsit is difficult us-
ing this approachto detectthe relevant structureswithout explicit
knowledgeconcerningthe underlyingflow. Regardlessof the in-
herentinteractvity, this approachdoesnot guaranteein general,



thatthe characteristidlow featuresarefound.

A differentapproachis to inspectthe flow field in orderto de-
tectandanalyzecritical points[11]. In this approachtopological
skeletonswhich aredefinedby thosestreamlines startingat a crit-
ical pointin thedirectionof the eigervectors areextractedanddis-
played. Although thesetechniquegrovide an effective tool to de-
terminethe topologicalequivalenceof differentflows, they some-
timesdo notyield anintuitive analysisof the principal streamsand
their direction.

Othertechniquedry to reducethe primitivesusedto depictthe
structureof the flow in sucha way thatthe resultstill sufficiently
representshe original data. While in [26] streamline placement
in 2D flows is guidedby visual attributes,in [14] evenly-spaced
streamlines are generatedasedon a distancecriterion but with-
out explicit consideratiorof the flow topology On the contrary
the main concernof the work presentedn [10, 25] is to effec-
tively simplify the underlyingdatawithout loss of relevant infor-
mation.In generalhowever, thesehierarchicatechniquesrelocal
in thatthey usuallyconsideronly the vectorfield in the geometric
neighborhoodaroundeachposition, but do not take into account
theglobalstructureof theflow.

In this paper we presenta novel approacHor the analysisand
display of stationaryvector field data, which includes effective
techniquedor the classification,sggmentationand smoothingof
flow fields. Ratherthananalyzingthe flow field assuch,we first
corvertit into ascalarfield andthenanalyzethe spatialandtempo-
ral evolution of level-setsor time surfacesin this field. In particu-
lar, we shav how to obtainthe flow dataat ever coarserresolution
by dispersingsmall disturbancescrossthe time surfaces. In ad-
dition, we introducetwo beneficialextensionsof 3D texture-based
iso-surficerenderingwhich allow for the simultaneouslisplay of
multiple, two-sidedighted surfacesandtheir dynamicsusingcolor
tableanimations.

The goal of our approactis twofold: to obtainbettervisualiza-
tion of the underlyingstructuresby automaticallyplacinga sparse
setof graphicalprimitives depictinghomogeneoustreamsn the
flow and to generatea multiscalerepresentationwhich provides
improved methodsfor particletracing. In the latter case,the fo-
cuslies ondevelopinganeffective schemehatallows oneto obtain
accurateparticletracesbut with fewer total integrationsteps.

The remainderof this paperis organizedasfollows. First, we
introducethe basicidea of corverting the vectorfield datainto a
level-setrepresentatioanddescribeour extensionsfor interactve
displayof multiple level-setsvia 3D textures. We thenproposean
explicit schemefor the smoothingof flow fields and demonstrate
how to automaticallyselectand placethe graphicalprimitivesde-
picting homogeneoustreamsWe concludewith adetaileddiscus-
sionof resultsillustratingour approactappliedto realdatasets.

2 Flow Surfaces

In fluid dynamics flow surfacetechniquesave becomemportant
to the investigationof the dynamicsof vectorfield data. A flow
surfacecanbe seenas a variation of pathlinesin non-stationary
flows whereseverallinesarejoinedto form a surface.A denseset
of particlesis releasednto theflow, andtheir subsequentositions,
aswell asthedistortionsof the so-definedsurfaces aremonitored.
In computationalfflow visualization,techniquedor simulating
different kinds of flow surfaceshave beendevelopedin the past
[12,27,4]. In its mostgeneraform, flow surfacesaresimulatedby
placinganinitial surfacein theflow andthenby successiely mov-
ing all verticesdefiningthe surfacewithin constantintervals along
theintegral curesof the flow. The integral curesemanatingat a
givenpositionarethe solutionsto the ordinarydifferentialequation
dr(t)

with initial boundaryconditionr(to) = ro. Here,r(t) denotes
the positionof a particleat time ¢, and v(r, t) representshe in-
stationaryvelocity field. Notice in particularthat this technique
canbeextendedo thestationarycasejn which atime-independent
velocity field is consideredandits integral curvesaredefinedwith
respecto ary otherparameterization.

In general flow surfacescanbe placedeverywherein the flow;
however, without lossof generalitylet usassumehatparticlesare
initially releasedat the inflow boundariesandat every sourceinto
all possibladirectionsof thevelocity atthatsource Thus,theevolv-
ing surfacesformedby connectingparticlesat time ¢,, containall
positionswithin the domainthat canbe reachedrom a sourcein
thattime. In otherwords,ary particlethatis releasedrom this sur
faceandtraversesits integral curve backward will reacha source
or the boundaryof the domainin thattime. We will subsequently
call thesekinds of particlesanti-particles andthis particularkind
of flow surfacethetimesurface

A particulartime surfacein a flow is describedby the implicit
equation?’(z,y, z) = tn, whereT is thetime the anti-particlere-
leasedat position(z, y, z) requiresto reacha sourceor the bound-
ary. Therefore atime surfacecanbe computeckeitherby distorting
theinitial surfacewith respecto theflow field or by computingthe
scalarfunction T for all necessarpositionsandby fitting the sur
faceusingtraditionaltechniquesThefirst approacthastwo major
limitations: thatit requiresthe generationand display of a large
numberof primitives,andthatthe generatedurfacesarelikely to
becomenon-manifoldandpotentiallyself-intersectln comparison,
thesecondjmplicit approachwhichwill beoutlinedin thefollow-
ing sectionshasvariousadwantages.

2.1 Level-set representation of time surfaces

We aim to constructa volumetricrepresentatiom which thetime
surfacesimplicitly exist aslevel-sets.We definethe level setof f
ataparticularvalueof time, ¢, asthesetof all points(z, y, z) such
that f(z, y, z) = t. Anothernamefor this is the contourcurve of
f atlevel t. For anexcellentintroductionto level setmethodsand
additionalapplicationssee[20].

Thereforefor eachgrid pointananti-particleis releasedndits
integral curve is traceduntil asourceor theboundaryof thedomain
is reachedThis procedurés equialentto thebackwardtracingap-
proachproposedn [29] for the calculationof streamsurfacefunc-
tions. We emplg a fourth-orderRunge-Kitta schemewith adap-
tive step-sizecontrol in orderto find successie pointsalongthe
curwes. Prior to this procedurewe determinecritical pointsin the
flow wherethe magnitudeof the velocity vanishes.Thus, during
run-timewe detectanti-particleseachinga critical point, at which
they mustbestoppedn orderto avoid nonterminatingraces Addi-
tionally, a stoppingcriterionis emplo/ed for anti-particleamoving
on closedorbits,for which no valid time valuecanbe assigned.

If the distancefrom point p; to point p;+1 is d;, thenthetime
ananti-particleneedgo travel from p; to p; 1 iSt; = d; - m
Integrating the distancesalong the path yields the time the anti-
particle needsto move from the grid point it was releasedrom
until it leavesthedomainor reaches critical point. A uniquetime
is assignedo thosegrid pointslocatedin closedorbits. Thus, by
storingall times at eachgrid point we have convertedthe vector
field into a scalarfield,. This providesalternatvesfor displayand
analysisof theflow (seeFigure?2).

2.2 Interactive display of level-sets

In orderto effectively analyzea flow field by meansof time sur
faceswe needto interactvely displaythe continuousevolution of
thesesurfaces. As we have alreadypointedout, a geometricap-
proachfails, in general;but oncethe flow field hasbeenconverted
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Figure?2: In theleft image, the oceanflow is depictedby meansof
LIC. Ontheright, thetravelingtimesof anti-particlesto thebound-
ariesor soucesare shownasscalarvaluesat eat grid point.

into alevel-setrepresentatiorwe canexploit texturemappinghard-
warein orderto shav the intrinsic dynamicbehaior. Thoughin
the following we will shift emphasigo 3D flow fields, the basic
approacttanbe utilized for thevisualizationof 2D vectorfieldsas
well.

Volumerenderingvia 3D texture mapshasbecomea powerful
tool to interactiely display andthus analyzecomplex scalardata
sets[2]. Interpretingvolumerenderingasthere-samplingof a dis-
crete3D texturemapon cutting planegarallelto theviewing plane
allows oneto efficiently usehardware-supportedexture interpola-
tion to simulatethe physicsof light transportin semi-transparent
media. The sameprincipal techniquecanalso be usedto display
lighted iso-surfices[30] by re-sampling3D gradientmapswhich
storethe pre-scaledyradientsandthe scalardatasamplesn aRGB
anda texture,respectrely.

The commonprocedureemployedin ray tracingfor iso-surfice
rendering,wherethe ray is traceduntil the first intersectionwith
the surfaceis found, cannow be simulatedby meansof OpenGL
perfragmentoperations.Combiningalpha-anddepth-testsiuring
re-samplingguaranteeshat only thosetexture samplesclosestto
theviewpointandabove/belav a userdefinedthresholdaredravn
into the frame buffer. Pekrpixel diffuse lighting is accomplished
by multiplying the RGBa componentswhich now storethe gra-
dient vector with a color matrix [18] asavailableon SGI IR and
Octanesystems.This matrix hasto beinitialized properlyto per
form scaling,modelviev rotationandthe scalamproductcalculation
with thelight sourcedirectionvector Key featureof this extended
approachareillustratedin Figure3.

2.2.1 Multiple animated time surfaces

Themethoddescribedn [30] allows only for therenderingof solid
objects. Even more importantly this method makes impossible
thesimultaneouslisplayof surfacescorrespondingo differentiso-
valuesor time-stepsn the currentapplication. Thereforewe mod-
ified the algorithm by letting the a-valuesof texture samplesbe
replacedby the contentsof the texture color table beforethe per
fragmenta-testis performed.Thus,by allowing texture samplego
bedrawn only if the a-valueis greatethanzero,we canrenderar-
bitrary time surfacesby simply windowing theappropriatex-range
in the color table. This rangecanbe arbitrarily scaledin orderto
changehethicknessf the surfacesto be extracted.

In orderto simulatethe dynamicsof the currentflow, we have
implementedcyclic shifts of the contentsof the a-componentsn
the texture color table. Now, we canshaw the directionin which
the evolving structuregproceedaswell astheir speedgelative to
eachother

2.2.2 Two sided lighting

We developeda two-passapproachthat allows for the two-sided
lighting of time surfaces. Therefore,we consecutiely modulate
pixel valueswith two differentcolor matricesasshavn belov. Note
thatwe shav only thatpartof thematriceshatis neededo perform
diffuselighting on the alreadyscaledand rotatedgradients. The
first matrix, Mo, includeslight sourcedirection (L, Ly, L) and
its inverseto obtainthe contritutions from front- and back-sided
lighting in the RedandGreenpixel componentsiespectiely. Note
thatnegative valueswill be clampedto zerobeforethey aredravn
into theframebuffer. Thus,eithertheRedor theGreenchannelwill
be zeroandcannow beaddedn orderto take over the appropriate
valuesby multiplying the color component®f eachpixel with the
matrix M; in thesecondoass.
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In orderto performthe color matrix multiplicationandthuscopy
theframebuffer only once,we furtheroptimizedthe outlinedtech-
nique. The first row in matrix Mp is duplicatedinto the 2nd and
3rd row. Now, after the color matrix hasbeenappliedwe obtain
color componentsn the rangeof (—1,1). Fortunately prior to
OpenGL clamping, thesecomponentsan be scaled,biased,and
finally mappedinto the postcolor matrix lookup table. Thus, by
issuinga scaleanda biasof 0.5,andby initializing the color table
with atwo-sidedrampthatrangesrom oneto zeroin thefirst half
andfrom zeroto onein the secondhalf, we arrive at the correct
results.Althoughtheaccurag of theresultsis limited by thewidth
of the color table,in our testsno visual degradationof the image
quality couldbeobsered.

Figure3: Theseimagesillustrate the extensionswe developedfor
3D texture-basedsurfacerendering Multiple time surfaceswith
differentthicknessare rendeed usingone-andtwo-sidedighting.

2.3 Stream boundaries

As we have claimedin the introduction, our approachshouldbe
effective in revealinghomogeneoustreamsn the flow, which, in
generalcannotbe determinedy just analyzingthe vectordatalo-
cally. Evenif the vectordatais locally homogeneous termsof
directionand speedwe will find regionswheredifferentstreams
proceedparallelto eachotherover a certaindistancebut will be
separatingigain.As a solutionto this problem,we have developed
alocal techniquethattakesinto accountglobalinformationby ac-
cumulatingflow quantitiesalongtheintegral curves.

ThereforeJet us pictureflux by treatingit like theflow of alig-
uid, animperfectanalogythatis nonethelessiseful for visualiza-



tion purposes. Let us considerthe unsteadyflux, andlet us as-
sumethat the magnitudeof the vectorfield, in somesensegives
usa measuref how muchflux or matteris transportedThen,the
time distribution we computeasproposedn Section2.1 just indi-
catesthe netinward flux at a certainpositionalongtheline aftera
particulartime. Sinceat eachpositionwe addthe total incoming
matterto the actualcontritution, the differencebetweenadjacent
valueson neighboringlines now indicateshov muchthe accumu-
lated matteralongthe line differs. Consequentlywithin homoge-
neousstreamshe distortionsof level-setscorrespondingo equal
accumulatecamountsare smallin general whereashey are high
betweendifferentstreamsWe will subsequentlgall thesekind of
boundarieghe streamboundaries

Streamboundariesasintroducedare definedby thosepositions
wherewe have high variationin the change®of theflux ata certain
time. Mathematically this corresponds$o positionswherethe Ja-
cobianof theflux, —, hashigh variation. Sincethe integral
cunwesof thevectorfield, ontheotherhand,arethesolutionsto the
differential equation with initial boundary
condition , canbe computedwith respecto the
following differentialequation:

with initial boundarycondition , where is theidentity.

Notethattheright handsideis time-dependentn fact,the Jaco-
bianof thevectorfield  alongthewholepathinfluencegheJaco-
bian of theflow at a specifiedposition andtime . The Jacobian
depend®on the history alongthe path,thusleadingto a non-trivial
solutionfor . In the next paragraptwe will proposeananalogue
for computing by curvaturebasedmeasure.

If we changethe inflow situationin termsof position,thenthe
time until streamboundarieareformedchangesswell. However,
sincewe depictthevariationof theflow with respecto thedynamic
evolution alongthe streamsandrelative to eachother the feature
lineswill befeaturedindependentlyof theinflow situation. Thus,
by changingthe inflow setting,we will alsoappropriatelychange
the distribution of the scalarfield , while retainingboundaries
betweerdifferentstreams.

2.4 Curvature based analysis of time surfaces

The studyof time surfacesis of particularinterestbecausehey ef-
fectively visualizethe geometricand topologicalmodificationsof
their evolving structures By helpingusto discriminateamongar-
easof flow shawving different characteristicsthesemodifications
shouldallow usto moreaccuratelyanalyzethe flow underconsid-
eration. As a consequenceye needto develop a measurdor the
variationsof theflux asspecifiedabove thatcanbe usedto indicate
thepresencandtheimportanceof streamboundaries.

Oneapproacho detectandcharacterizesurfacefeaturesin ge-
ometricmodelingis to analyzethe local curvatureacrossthe sur
face. Methodsfor the efficient calculationof the curvaturecanbe
foundin mary text bookse.g.[8]. Theuseof thiskind of informa-
tionin surfacefairing[24, 15, 7] is stronglyrelatedto our approach.

In the presentscenariothe local cunatureof the time surfaces
tells us wheredistortionsof thesesurfaceswith respectto the in-
fluenceof the flow field are mostsignificant. Basedon theseob-
senations, we want to derive a methodthat allows us to locally
estimatethe cunatureof ary iso-surfice . Since
we have alreadycorvertedtheflow field into the discretelevel-set
representationywe restrictour attentionto the questionof how to
estimatehe cunatureof thetrilinearinterpolantwithin eachcell of
theunderlyinggrid.

Therefore let us assumehat ary time surfaceis definedasan
elevationoverthe planeandcanthusbeparameterizetly the

. Here,we assumehata function
suchthat

equation
existsin thevicinity of

Thus,we have animplicit descriptiorof thetime surfaceatary reg-
ular pointin theunit cube thatallows usto approximateary
curvaturemeasurewithin eachcell. Typical measuresor the cur-
vaturecanbe obtainedfrom thefirst () andsecond| ) funda-
mentalformsfor thesurface.With thestandardotation

for thepartialderivativesof ~ we obtainthetotal cunature

( )

)

( )

of thesurface whereall partialderivativesareeval-
uatedat

In orderto estimatethe cunaturewithin a certaincell, we eval-
uateequation2 at randomlyselectedpointsin the interior of that
cell. Themaximumvalueis the curvaturemeasurehatwill beused
to analyzethetime surfaces.High cunaturewithin a cell indicates
thatgrid pointsdefiningthatcell belongto differentstreamsThus,
a streamboundarythat isolatesstreamsfrom eachother passes
throughthecell.

As canbe seenin Figure4, the cunatureplot naturallyleadsto
the discriminationof separatestreamshat flow in differentdirec-
tions and/orwith differentspeeds.In laminar streamswherethe
distortionsof the time surfacesarelow, the cunaturewill be low
aswell. In the next section,we will demonstraténow to usethis
informationto derive amultiscalerepresentatiofor flow fields.

Figure4: Two curvatue plots of the time distribution for different
inflow situationsare shown.Notethat smallcurvatue valueshave
beenremwedby thresholding

3 Multiscale Flow Representation

Thenew curvaturemeasurave have derivedallows usto detectand
separatestreamsthat are homogeneougn termsof directionand
speed Thefeaturelineswe extractby mean=f this measurelepict
theboundariebetweerseparablstreamswithin thesestreamghe
topologyof thetime surfacesis presered over time andthe main
shapeandlengthof streamlinesis similar.

As with discretefairing of meshes,where the geometryis
smoothedvith respecto thelocal curvatureof the mesh,our goal



is to developa techniquethatallows usto successiely smooththe
flow field with respecto thecunatureof thetime surfaces. Streams
that have beenseparatedhouldnot be meiged, whereasmall de-
viationsbetweenthe streamlines within themshouldbe remaved
without significantlydegradingtheir mainshape.

3.1 Iterative smoothing scheme

Letusstartby assuminghatalocalsmoothingoperatoiis available
thatcanbe emplg/ed to computethe incrementaupdateto a flow
vectorwith respectoits neighborsUnfortunatelyin contrasto the
smoothingof meshesvherethetopologyof themeshtells uswhich
of the neighborshave to be consideredthis kind of topologicalin-
formationis notapparentn theflow field. Noticein particularthat
including all adjacenigrid pointsinto the local smoothingprocess
resultsin the dispersiorof disturbancesicrosdifferentstreamsas
well asalongthe streamlines. However, neithereffectis suitable,
sincebothleadto undesirablesmoothingorthogonato the streams
andequallyundesirablalistortionof the streamlines’ mainshape.
In orderto avoid thesedravbacks,we have incorporatedhe local
cunatureinto the smoothingprocess.

We startwith a Cartesiargrid andtheinitial distribution of the
functionvalues ateachgrid point. We subsequentlyisit
eachvoxel andlocally reconstructhetime surfacepassinghrough
that voxel by meansof the marchingcubes(MC) algorithm[16].
Note that we computethe discretecurvature not from the MC-
surfacebut from the discretetime distribution . Reconstruction
is to bediscontinuedn cellswherewe have computedhigh cuna-
ture. Thus,we avoid including informationfrom separatestreams.
At eachvertex spanninghe small pieceof thetime surface,we in-
terpolatethe velocity vectors  from the original flow field. The
new velocity vectorat the currentgrid pointis obtainedby inverse
distanceweightingwith respecto the lengthof theedges from
this pointto all

= D

Here, if then =1, and . We performthe
sameprocedureto locally smooththe flow magnitudes. Finally,
afterprocessingll grid points,we endup with the smoothedlow
field from which we computethe new values to beused
in thenext iteration.

We concludeby shifting emphasigo a slightly differentformu-
lation of the proposedechnique For a certaintime surface,alocal
smoothingoperatorasproposedn [24, 7] for thefairing of polygo-
nal meshesouldbeemplo/ed. Giventhe surfacecorrespondingo
aspecifictime, theiterative solvingscheme

successiely diffusesdisturbances thevectorfield acrosghetime

surfacewith respecto thedampingfactor andthediscretecurva-

ture asderivedin Section2. In contrastto the fairing approach
wherepositionsof meshverticesare updated,n our approactthe

vectorfielddata givenontheverticesof thetime surfaceis itera-

tively smoothedIn eachiterationwe derive a new vectorfield and

thecurvaturehasto bere-calculated.

3.2 Principal stream selection

Oncewe have constructedrersionsof theinitial flow field in which
the integral curveswithin separategtreamsare containedat ever
coarsemesolution,our goalis to placea sparsesetof particlesin
thefield andto shaw their streamlines. By takinginto accounthe
cunvaturevaluesgiven at eachgrid cell, we intendto selectthe set

Figure5: Theleft image showsa part of the original oceandata
set. On theright the explicit smoothingschemewasappliedusing
9 iteration steps.

of particlesin sucha way that at leastone particletraceis placed
within eachseparatedtream.

Thereforewe proposeatechniquehataccountdor thetopology
of thetime surfacesn theflow. We startby generatingbinarydata
set in thefollowing way:

{

Now we randomlyselectpositionsin the flow field andrecur
sively checkwhethertherearecells in acertain
region aroundthat position. If so,we selecta new position. Other
wise, the entire streamline passingthroughthat positionis traced
andthebinaryfield is updatedasfollows:

{

Thisprocedureés repeatedvith asmary particlesasdesired.The
sizeof theregionin whichwe checkfor cellsthathave alreadybeen
setdeterminesiow closeto thestreamboundariesindto eachother
particletracesareplaced(seeFigure6). As with thetechniquepro-
posedn [14], we cannow arbitrarily selecthe informationdensity
of thevisualization.

In orderto animatethe dynamicsalong the streams,eachex-
tractediraceline is alsostoredasa setof line sggmentsandthetime
value is storedfor eachvertex thatis included
in theline. Thesevaluesarethenissuedas1D texture coodinates
which allows the depictionof the relative speedalongthelines by
colortablelookupasoutlinedin Section2.

stream
boundaries ———a.

principal
streams

Figure6: Principal streamsare displayedfor thosecells that are
far enoughfromthe streamboundariegleft). Ontheright, cell 1is
notgoingto beselectedecausehetimesurfacepassinghroughit
intersectghepreviouslyextractedprincipal streampassinghrough
cell 3. Cell 2istoocloseto a streamboundaryandwill bediscaded
aswell.

As a consequencef the distancecriterion, no lines will be
placedin streamsthat are too thin or for which no particle has



beenrandomlyselected. Thesestreamscanbe easily detectedby

inspectinghesetof cellsin  thathave notbeenset. By following

the time surfacepassingthroughsucha cell until a streambound-
ary is reachedye cancheckwhetherthe surfaceintersectswith a
particleline ( ). If so,thena particletracehasalreadybeen
selectecandwe proceedo thenext cell. Otherwisewe eitherselect
anarbitrarycell thesurfaceis passinghroughasthenew seecboint
for astreanline, or we try to find thecell in thecurrentstreanthat
hasa distanceasequalaspossibleto all streamboundariesThisis

doneby shrinkingthe setof cellsfrom the streamboundariesuntil

only onecell remains. This will be the startingpositionof a new

streamline. Shrinkagas similarto amorphologicakrosionwhere
we iteratively remove cells adjacento streamboundariesthereby
narraving theboundariesimultaneouslyandselectinga seedpoint
in themiddle of a stream(seeFigure7).

Figure 7: Thisillustration showsthe narrowing of the discretized
streamsurfacein order to find a seedcell in the ‘center’ of the
surface The procedue is stoppedwhenwe are left with one or
multipleisolatedcells.

Figure8 shaws the principal streamswithin the ocearfluid flow
extractedwith the proposedmethodandscan-cowertedinto a 2D
texture. Note that in high-turtulenceregions where the cuna-
ture oscillatesvery irregularly, no principal streamsare found be-
causewe do not considerpositionsthatarecompletelysurrounded
by other high curvature cells due to the selecteddistancecrite-
rion. However, by changingour selectioncriterion appropriately
we could usethe sameprocedureto determineturbulent regions
explicitly.

Figure8: Theleftmostimage showsa part of the original dataset.
In the imageson the right the principal streamsare shownbefoe
andafter thin or notyetfoundstreamshavebeenextracted.

4 Results and Analysis

In this sectionwe discusdurtherresultsandanalyzehemainmod-
ulesandfeaturesof our system. All testswererun on anSGI IR
equippedwith one R12000,300 MHz processqr64 MB texture
memoryand 256 MB main memory Although our testswerere-
strictedto Cartesiargrids,we shouldmentionherethatothertypes
of gridscanbe processedvith only slight modifications.In partic-
ular, the particletracerhasto be modifiedappropriatelybut abose
all, analgorithmis requiredthatallows for thesamplingof thevec-
tor dataandfor the cunatureestimation.For curvilineargrids, for

example,for whichwe know how to computepartialderivativesin
orderto evaluateequation2, our approactcanbe appliedstraight-
forwardly. For unstructuredyrids,hovever, wereconstructhetime
surfaceslocally andcomputethe discretecunatureon the triangle
mesh.In ary case 3D textureshave to beabandonedor rendering.

The mosttime consumingelementof the presentedpproachis
the computatiorof thetime distribution , whichis accomplished
by tracingthe integral curvesbackin time until a sourceor thein-
flow boundariesarereached.The actualsystemimplementedhe
Runge-Kitta schemein a straightforvard way without taking ad-
vantageof coherencen the data. The naive approach,jn which
every particletraceis computedrom scratchtakesroughly28 min-
utesfor the flow datasetshavn in Figure10.

Oncethe scalartime field  hasbeengeneratedthe time sur
facesaswell astheir dynamicscanbe displayedinteractvely via
3D texturesandcolortableanimation.For example,ontheusedar
chitecturethe flow field mentionedbefore,including multiple time
surfacesand color tableanimation,canbe renderedwith approxi-
mately12fpsontoa viewportusing \/_ slices.

The proposedmultiscale representatiorenablesus to remove
noisefrom flow fields andto generatecopiesof the original flow
atever coarseresolutionasit is shavn in Figure5. Onecaneasily
recognizehatthe mainshapeof the streandinesis retainedashigh
frequeng oscillationsaresuccessiely removed. Consequentlyfor
an adaptve multi-stepintegration schemethat explicitly attempts
to usefewer integration stepswith decreasingsize of details,the
computationalcost will be considerablydecreased.In this way,
unnecessargomputationsand invalid streamlines, which might
occurwhenboundariebetweenseparatestreamsare crossedcan
be avoidedeffectively. In thisrespecthowever, the criterionwhich
letsusallow to separatstreamsrom eachotherplaysanimportant
role.

As we have pointedout, our techniqueis intendedto extract
streamboundariesdasedon the proposedliscretecurvaturecrite-
rion. As amatterof fact, theclassificatiorof streamboundariesnd
consequentlyhesmoothingorocesstronglyreliesonthecunature
thresholdwe selectasthe importancemeasure.The specification
of a propererrortoleranceraisesthe sameintrinsic problemasin
other areaswhere techniquesattemptto discriminatenoise from
features.On the otherhand,althoughthe discretecunatureis lo-
cally investigatedit givesa global measuréecause point onthe
time surfacecarriesinformationalongthe entire streamup to the
currentposition. Consequentlynoisealongthe streamlines will
beincreasinglyremorved dueto integration,while we expectturbu-
lenceto introducehigh frequeng oscillations. This is dueto the
factthatflow directionwill be changedsignificantly thusaltering
thestreamlines’ mainshape.

Oncethe streamboundarieshave beenextractedby meansof
a cunature measure the placementof the principal streamscan
be accomplishedstraightforvardly. Even without this step,when
we initially placeparticlestreamsn the flow, it is guaranteedhat
all separatedtreamswill be found emplogying the erosionlik e ex-
tractionof suitableseedpoints (seeFigure12). However, by just
placingstreamliineswith a staticdistanceto eachotherall streams
broadeithanthis distancecanbe extracted.

5 Conclusion

In this work we have emphasized generalapproachfor the vi-
sualizationof flow fields by meansof the dynamicsof time sur
faces.The major contritution hereis to considerevel-setswithin
this field asthe fundamentalstructuresshawing the dynamicsof
theflow. Theevolution of theselevel-setsin spaceandtime is ana-
lyzedin termsof theirlocal cunature whichenablesaisto separate
homogeneoustreamdrom eachother



We have developedtwo beneficialextensionsfor 3D texture-
basedso-suracerenderingallowing for the interactize andsimul-
taneousdisplay of multiple, two-sidedlighted time surfacesand
their evolution over time usingcolortableanimations.

We introducedan explicit schemeto effectively smoothflow
fields. In particular we have shavn how to obtain streamlines
at ever coarsemesolutionby dispersingsmall disturbancescross
the time surfacesat the sametime retainingthe integral cunes’
main shapes Finally, this methodhasbeenextendedfor the auto-
maticplacemenof principalstreaminesin multi-dimensionaflow
fields. Thus,with a sparsesetof lines,we arestill ableto indicate
therelevantfeaturesn the data. However, our approactdoeshave
somedrawbacks:

Our approachs expensve in termsof numericaloperations
andstoragefor large-scale3D flow fields. This is dueto the

voxel-wisegrid traversalandthe memorizatiorof intermedi-

ateresults.

Our methodrelieson a heuristiccurvature-basedriterion. A
moreaccuratanvestigationof the thresholdingo be applied
in orderto separatstreamdgrom eachotherneedgo bedone.

In particular our methodfails if the datais highly turbulent
by nature,suchthatno regular streamboundariesanbe de-
tected.However, in this caseno homogeneoustreamsexists
- animportantcharacteristiour approachs ableto indicate.

Neverthelesswe are corvincedthat the ideaspresentecherewill
beinfluentialfor future developments:

We have derived a multiscalerepresentatiorfior flow fields.
This canleadto a multiresolutionframework for flow, where
only principal streamson a lower resolutionlevel and the
differenceinformationneededor the next finer levelsis in-
cluded.

We have demonstratedhat flow field direction and speed
canbevisualizedvery effectively via texture-basedendering
and by automaticextraction and placementf the principal

streams.This enablesusto appropriatelyisualizedense3D

flow fields.

The multiscalerepresentatiomight resultin even more ef-

ficient integration schemedor particletracing. By employ/-

ing the multiscalenatureof the analyzedflows, aswell as
theirgeometricandtopologicstructuretraditionalintegration
schemesanbeextendedn orderto controlthestepsizeadap-
tively andthusto improve their efficiengy.
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Figure9: Bothimagesshowthe LIC volumeof the flow aroundthe bad of the car. Only by meansof an additional, manuallypositioned
clipping planetherelevantstructuescanbe extracted(seecolor plate).

Figure 10: Both images showthe curvatue volumecomputedfrom the flow field around the bad of the car. Dark grey indicateshigh
curvatue. Therelevantstructuescanbe clearly distinguishedvenwithoutany manualmodificationgseecolor plate).

Figurel11: First, we showstreamlines automaticallyselectedyy our curvatue basedoracle in the oceandata set. Next, multiple two-sided
lighted iso-surfacesn the enginedata setand multiple time surfacescomputedromthe flow aroundthe car are displayed.Notethe fuzzy
structueswhele we haveturbulentflow (seecolor plate).

Figurel2: First,the deviation betweerstreamlinesbefoe (colored blue) and after (coloredred) smoothingheflow field is shown.Although
the deviation is low, we need30% lessintegration stepsto geneate the streamlines colored red. Next, we showthe initially placedstream
lines. Finally, additional streamlinesare placedautomaticallyin sepaable streamg(seecolor plate).



