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Abstract

As three-dimensional data sets resulting from simulations or measurements be-
come available at ever growing sizes the need for visualization tools which allow
the inspection and the analysis of these data sets at interactive rates is increasing.
One way to deal with the complexity is the compression of the data in such a way
that the number of cells which have to be processed by the visualization mapping
is reduced. Since this compression will be lossy, it is up to the user to choose be-
tween quality or speed. The decision will usually be made interactively requiring
fast access to a complete hierarchy of representations of the data set at various lev-
els of resolution. Two different approaches and visualization algorithms based upon
them are presented in this paper: wavelet analysis deriving a hierarchy of coarser
representations from the original data set and multilevel finite elements generating
successively refined tetrahedral grids from an initially coarse triangulation.

1 Introduction

Scientific visualization is the process of generating a visual representation of
the information contained in abstract data fields resulting from computer sim-
ulations or sensoric measurements. The standard model of this process com-
prises a pipeline of three stages. The filter stage is a preprocessing step con-
verting the raw input data into visualization data which is usually reduced by
operations like sampling, slicing, cropping, etc. The mapper stage performs a
mapping of the abstract data fields into a visual representation consisting of
geometric primitives like points, lines, surfaces or voxels and associated graph-
ical attributes like color, transparency, texture, etc. The renderer, finally, uses
this scene description to generate images by means of 3D graphics APIs such
as OpenGL or Openlnventor, possibly exploiting 3D graphics hardware to
achieve interactive frame rates. Many different mapping algorithms have been
developed for various scenarios. A crude classification of these methods distin-
guishes between the dimensionality of the data set, the underlying data type,
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such as scalar, vector, multivariate, and the supported grid structure, such as
regular, curvi-linear or unstructured. In this paper we focus on scalar 3D data
sets on Cartesian grids, although some of the ideas involve unstructured grids
and can be extended to vectorial data sets.

Since volumetric data sets are intrinsically huge, a lot of efforts have been
undertaken during the last years to come up with optimized visualization al-
gorithms. The goal is to develop algorithms which react to changes of mapping
parameters (e.g. varying the iso-value) by regenerating within seconds the cor-
responding geometrical representation which can then be rendered with several
frames per second. Only with this type of real-time interaction and naviga-
tion is it possible to analyze an unknown data set and to compensate for the
information lost during the projection of the 3D scene onto the screen. How-
ever, despite all the sophistication incorporated into these methods, does it
seem that the data sets are growing faster than algorithmic progress is made.
For example data volumes from 3D medical imaging like CT are approaching
sizes of 5123 which amounts to more than 100 million of voxel cells. It is ob-
vious that visualization methods which essentially have to access each cell of
a data set in order to derive a visual mapping might not catch up to the goal
of interactive processing. Thus, we have to reduce the number of cells which
have to be visually mapped, which means that we have to compress the data
set in a preprocessing filtering step. Since we strive to reduce the number of
cells by at least an order of magnitude only lossy compression schemes will be
employed. However, this does not always have to lead to a significant loss of
information. On the contrary, the compression scheme will be chosen in such a
way, that only redundant or irrelevant information (e.g. CT voxels containing
air) is discarded, while important features like high gradients, edges, etc. are
retained or even emphasized.

Nevertheless, if an error is introduced in such a scheme, the user has to be given
control over the threshold letting him choose between a fast visualization of
a very crude approximation of the data and an almost perfect representation
of the data which took perhaps minutes to compute. This requirement can
only be met if not only one compressed version of the data, but a complete
hierarchy of representations of the data set at different levels of resolution is
available or can be generated on the fly. There are various ways to derive such
a multiresolution hierarchy and this paper will focus on two of them which
are well suited for scalar volumes on Cartesian grids: wavelet analysis and
multilevel finite elements.

Developing efficient algorithms for generating a multiresolution hierarchy of
a volumetric data set by compressing redundant information with respect
to an error measure is only one side of the visualization pipeline. On the
mapping side we need just as efficient algorithms which can take advantage
of the hierarchical data structures. It turns out that this is by no means a



trivial task as in general the traversal of a hierarchy is slow compared to
full grid algorithms which have been optimized over years. However, ideally,
a mapping algorithm exploiting the hierarchical representation of the data
fields will automatically generate geometrical representations at various levels
of detail, thus allowing incremental and progressive rendering. With respect to
such adaptive visualization algorithms we will focus on the two fundamental
techniques for scalar volumes: iso-surfaces and direct volume rendering.

The interactive visualization of very large datasets requires multiresolution
analysis and hierarchical methods, new and highly sophisticated, possibly par-
allelized mapping algorithms, but also fast rendering of the resulting complex
3D scenes. One important aspect of accelerating the rendering phase, besides
hardware support and scene graph optimization, is the simplification of polyg-
onal meshes and the associated level-of-detail (LOD) generation, both of which
have attracted significant attention in recent research (for a survey see [45]).
While there definitely is a certain overlap in ideas, methods, and vocabulary
with the topic of this paper, we like to point out some of the differences. Many
of the proposed methods for mesh reduction are geometric in nature, which
is reasonable because the goal is a coarse approximation of a given geometry.
Usually, every single node of the mesh is analyzed with some local geometric
error criterion like curvature or Hausdorff distance in order to decide whether
it can be eliminated followed by a re-triangulation. In contrast, in volume sim-
plification, we try to generate approximations of data sets which we consider
to be samples of a continuous function. Thus, we prefer a functional approach
which derives a hierarchy of approximations of the underlying function based
on functional error measures like the Ly norm.

The rest of the paper is organized as follows. In section 2 we will introduce
some of the basic concepts and discuss related work. Our own contributions
to hierarchical volume visualization are presented in section 3 based on mul-
tiresolution analysis and in section 4 based on adaptive mesh optimization
with multilevel finite elements. Some conclusions and ideas for future work
are summarized in section 5.

2 Related Work

2.1 Volume Visualization Algorithms

The problem of rendering visual representations of scalar volume data is still
one of the main research areas of scientific visualization [46]. Besides a wide
number of variations there are basically two main classes of techniques: iso-
surfaces and direct volume rendering [12].



Isosurfaces are an indirect way of visualizing a scalar volume. An opaque sur-
face which passes through all cells which include a specific function value only
represents one aspect of the data set, since volume features at other values are
ignored. This is a good approach for objects with sharply determined borders
(like bones in CT), where the illumination of the surface greatly enhances its
3D structure, but it is inadequate for amorphous objects with small value gra-
dients which can hardly be represented by mathematically thin surfaces. The
structure of a unknown data set, e.g. of a smoothly varying function, can only
be understood if surfaces can be extracted for many iso-values and viewed from
all directions at interactive rates. The standard Marching Cubes algorithm [31]
traverses all cells and determines the triangulation within each cell based on
trilinear interpolation of the values of the cell vertices. Special treatment of
ambiguities is required to avoid inconsistencies visible as holes [40]. While the
generated polygonal iso-surfaces seem to be an appropriate volume visualiza-
tion technique when using graphics workstations, it turns out, that this is not
the case for data set sizes typically found in medical applications. Here, the
surface extraction takes on the order of minutes and generates up to a million
triangles and more which both severely restrict interactive manipulation. Var-
ious methods to deal with these problems include discretized algorithms [36],
efficient cell search with interval data structures [30] and polygon reduction
[48].

Direct volume rendering tries to convey a visual impression of the complete
3D data set by assigning different color and opacity values to different objects
or value ranges within the volume. The resulting image is then computed by
taking into account the so defined emission and absorption effects as seen by
an outside viewer. The underlying theory of the physics of light transport
is simplified to the well known volume rendering integral in the case of ne-
glecting scattering and frequency effects [23,24]. Given the emission ¢ and the
absorption x the intensity I along the ray s can be computed from:

I(s) = / g(s"e s mEa" gt
S0

The discretization of this integral together with the assumption that the map-
ping from scalars to RGBA values can be described by transfer functions
results in the compositing formulas for computing the intensity contribution
along one ray of sight:

n k—1
I=> Croy [T(1 — wi)
k=1 =0

The color of the voxel Cy and its opacity a4 are derived by a table lookup after
tri-linear interpolation of the scalar value from the discrete sample points.

Again, a few standard algorithms exist enhanced by a wide variety of optimiza-



tion strategies. The basic ray tracing idea [27] is to shoot a ray of sight through
every pixel into the volume, reconstructing the function value at appropriately
chosen sample points along the ray and blending the mapped color and opac-
ity values. Acceleration of this expensive technique is achieved by adaptive
sampling [11,9], by exploiting coherence [25], by parallelizing in image and
object space, and by exploiting hardware in graphics workstations [3] or in
special purpose architectures [43].

2.2 Hierarchical Approaches

The first hierarchical approaches applied in volume visualization were based
on octrees. The basic idea is to recursively split a cubed volume into eight
sub-volumes working bottom-up from the original data set and to store addi-
tional information at each node which allows to skip uninteresting parts of the
volume. The octree is seldomly used for the mapping itself, i.e. the iso-surface
extraction, because neighboring octree leaves at different levels of resolution
exhibit hanging nodes which lead to interpolation discontinuities.

Levoy [28] exploited a pyramid of binary volumes to encode the presence of
non-transparent material in order to accelerate ray tracing through empty
space. Laur and Hanrahan [26] stored averaged RGBA information as well
as an error indicator in the nodes of a pyramid in order to eventually stop
the traversal before splatting cells with only marginal contributions to the
final image. Wilhelms and van Geldern [54] accelerated the marching cubes
algorithm for iso-surface extraction by speeding up the search for cells which
are passed by the surface. At each level of an octree they store the minimum
and maximum value of all the vertices beneath allowing a fast skip over regions
which cannot contain the surface. The simplicity of the pyramidal structure
still attracts researchers. Ghavamnia and Yang [13] use a simple Laplacian
pyramid to compress a volume data set and to reconstruct the voxel values on
the fly while integrating along the ray. Haley and Blake [21] employ an octree
to reduce the memory overhead of the shear-warp volume rendering approach.

So far the hierarchical decomposition was space-based, i.e the decision to which
subtree a voxel belongs was derived from the vertex coordinates. Alternatively,
range-based approaches classify the voxels according to the range of the scalar
values present in the cell [49]. The resulting span space is again accessed
through hierarchical data structures: Livnat et al. [30] use kd-trees, Cignoni
et al. [7] adopt an interval tree .

Although we focus in this paper on volumes originally given on regular grids we
will see in section 4 that the conversion of such a data set into an unstructured
i.e. a tetrahedral representation provides many advantages. The most impor-



tant aspect here is the possibility of adaptive refinement without introducing
hanging nodes. Thus, we will also look shortly at related work in this area.
Cignoni [8] gives a good overview of tetrahedra based volume visualization. He
also introduced a multiresolution algorithm for simplical complexes by itera-
tively inserting vertices and performing a Delauney triangulation [6]. Liirig [32]
extended this basically geometric idea into a two-step procedure: structural or
reconstruction analysis and tetrahedrization. Rumpf et al. [39,42,47] describe
hierarchical and adaptive visualization algorithms on nested grids which are
the result of modern numerical simulations like hierarchical finite element and
multi-grid methods. They derive an error indicator which relates the gradient
of the function to the curvature of an iso-surface, giving an estimate of the
lower and upper bounds of the function for the hierarchical traversal.

2.3  Multiresolution Analysis and Wavelets

One benefit of a hierarchical data representation is the possibility to localize
features at increasingly coarser resolution. Unnecessary evaluations of data
samples can be avoided by appropriately selecting the desired level of detail.
The error that is introduced by reconstructing the signal from a certain reso-
lution level strongly reflects in the algorithm used to generate the hierarchy.

In typical octree based approaches data samples are simply averaged and every
other sample is pushed up to the next level in the tree. Thus, the resolution at
each level is decimated by a factor of two thereby increasing the size of details
which can be reconstructed accordingly.

Formally, this is equivalent to projecting the original signal into a hierarchy of
appropriately scaled piece-wise constant basis functions. Then, the underlying
function basis is the Haar system, which in the univariate case is built from
scales and dilates of the box function ®(x) defined to be 1 on the interval
[0,1) and 0 otherwise. Since the Haar family ®}(z) = 27/2®(2/z — k) defines
an orthonormal basis of Ly(R), arbitrary functions f € Ly(R) can be written as
linear combinations of the basis functions: f(z) = 32, x(f, ®3)®;,. Additionally,
since the Haar functions are self-similar in the sense that ®(z — k) = ®(2(z —
k))+®(2(x—Fk)—1), the vector space spanned by translates of ®(z) is contained
in the vector space spanned by translates of ®(2z). If only coefficients (f, ®})
up to a certain level J are used to reconstruct the original function f, then an
approximation of f with no details smaller than 277 is generated.

Despite the advantages of the Haar series it can only be used to a limited
extend for the analysis of arbitrary signals. Particularly this representation
does not allow for a precise localization of features in the frequency domain
due to the infinite support of the box function’s spectrum. Wavelet theory and



multiresolution analysis provide a theoretical framework for the hierarchical
decomposition of signals into properly designed function bases which enable
the localization of signals in both time and space.

By a wavelet we will mean a function ¥ which has exponential fast decay
at infinity and for which [ ¥ (z)dz = 0. For a family ¥ (z) to define a
basis of Ly(R) it is build from scales and dilates of ¥ in such a way that any
function f € Ly(R) has a series expansion of the form f(z) = ¥, ; ¢; e U3 (2).
The coefficients c;j represent the wavelet transform of f at level j. If the
family W} (x) provides an orthogonal basis then the coefficients are obtained
by computing the inner products (f, ¥ (z)) between f and W. Throughout
this paper we take the translations to be integer values and the scales to be
of the form 2/, j € Z, so that ¥ has the form ¥ = 29/2F(2iz — k).

Multiresolution analysis (MRA) [5,10] comes up with a general theory to derive
wavelets U € Ly(R) from a so called scaling function ®. A MRA of Ly(R) is
defined as a sequence of closed subspaces V; C Ly(R), j € Z, with V; C V4
and U72° V; is dense in Ly(R), and a unique scaling function ® € Ly(R).
Again, the family ®(z) = 2/2®(2/x — k), k € Z, is derived by translating
and dilating ®. For a fixed j each series generates a basis of V;. To each of
the vector spaces V; there exists the complementary vector space W; with
Viq1i = W; @ Vj. The sequence W; defines the so called difference spaces, in
which all the information is retained that is lost from one approximation space

V; to the next coarser one (see Figure 1). The wavelets ¥; are derived from ¥

Difference

Fig. 1. Original signal and it’s reconstruction from different multiresolution spaces.

in such a way that they span the difference spaces W;. Since both functions
U, and ®; are € Vj;; they can be expanded in the basis ®;,,. Sub-band filter



pairs h and g describe exactly how to get from the projection into Vj;; to
the projections into V; and W; and vice versa. The filter h is used to select
input frequency components up to a band-pass frequency, whereas g selects
frequencies from V; which are larger than this frequency. Usually, the pyramid
algorithm [35] is applied to perform the projection in linear operations with
the number of function samples.

Especially in the case of a separable MRA the theory can be extended straight
forwardly to higher dimensions. In three dimensions we construct scaling
functions of the form &, (z,y,2) = ®](x)®} (y)®/(z). Three dimensional
wavelets are build by taking all other products of scaling functions and wavelets
at a certain scale, thus providing a basis of Ly(R?).

Although an infinite number of wavelets exist which can be distinguished
based on certain properties only some of them are of major relevance in vol-
ume visualization. The smaller the support of the basis functions the less
coefficients have to be considered for the reconstruction of a function value.
Smoothness of the involved basis functions corresponds to better frequency
localization of the used filters. And finally, the expected compression ratios
strongly depend on the number of vanishing moments provided by the used
wavelets. This is defined to be the largest integer number p for which all inte-
grals (z")g = [°° U(z)2"dz,n = 0,...,p — 1 vanish, and it thus determines
the convergence rate of wavelet coefficients.

3 Multiscale Volume Visualization and Segmentation
3.1 Compression Domain Volume Rendering

Due to the approximation properties of wavelets, the expansion of discrete
signals into a wavelet basis result in sparse representations. It is thus of par-
ticular interest to study wavelet transforms in the field of volume visualization
where we have to deal with intrinsically large data sets.

The core ideas for exploiting wavelet transforms in volume rendering applica-
tions have first been introduced by Muraki [37]. Thus, this work can be seen as
the forerunner to a variety of wavelet based techniques [51,29,14] specifically
designed to take advantage of the hierarchical nature of wavelet transforms
and the resulting properties. Particularly in volume rendering applications
wavelet techniques show up as a remedy to locally reconstruct the original
signal within arbitrary approximation spaces. As a consequence, the volume
rendering integral can be directly evaluated on the signal now expanded into
a wavelet basis. Encoding the data in its entirety is avoided thus providing an



effective way to render large scale data sets on a compressed domain.

Instead of solving the volume rendering integral over the original domain the
signal is first projected into the sequence of difference spaces Wy, ..., W, and
the final smooth approximation space V;. Consequently only an approximation
to the final pixel intensity is obtained. The accuracy of the integral evaluation
strongly depends on the size of details present in the subspaces from which the
density distribution is reconstructed. By expressing the signal as a linear com-
bination of wavelet coefficients at different scales the integration takes place
only where coefficients don’t vanish and where the influence of the correspond-
ing basis functions is not zero. The more sparse the representation is the less
coefficients have to be involved. Compression domain rendering of large scale
data sets as well as progressive rendering and transmission is accomplished
easily by exploiting the multiresolution representation.

Apparently it is not possible to directly expand the exponential attenuation
term into a wavelet series since it depends on the direction of the line of sight.
However, it acts as a smoothing operator which does not introduce high fre-
quencies. Additionally, since both terms, the emission and the absorption, are
derived from the available density distribution, it seems to be fairly accept-
able to correlate the accuracy of the integration process to the distribution
originally provided. Even more efficiently, when absorption effects are com-
pletely neglected, also an analytic solution of the integral based on a wavelet
expansion of the volume emission can be found [14]. This is achieved by con-
structing piecewise polynomial splines with knot sequences directly derived
from the wavelet coefficients.

Solving the integral as described exhibits several desired features. Particu-
larly, in rather smooth areas only a limited number of coefficients have to be
considered since they are small in magnitude. This is due to the approxima-
tion convergence determined by the number of vanishing moments the wavelet
provides. Additionally, when orthonormal wavelets are used the L, error in-
troduced by neglecting certain coefficients can be determined, but more accu-
rately, as a consequence of the spatial localization of the coefficients also an
upper bound of the pixel-wise error accumulated along a particular ray can be
predicted. Furthermore, the adaptive nature of the wavelet representation is
considered by adjusting the integration step size to the scale of the underlying
basis functions. In regions where only low frequency details are present the
step size is increased accordingly whereas a finer sampling frequency is chosen
in regions of high density variations.

As can be seen in Figure 2, wavelets provide a powerful tool for compressing
large scale volume data and for visualizing them in an adaptive manner thereby
controlling the introduced error. Faster rendering can be achieved using ob-
ject space approaches [29] where weighted footprints of wavelet coefficients, so



Fig. 2. Volume ray-casting of an iso-surface from a human head MRI-Scan. On the
left the surface was rendered from the original data set with 32 MB. On the right
the same surface was rendered from the compressed data set with 0.58 MB.

called wavelet splats, are projected to the image plane. The advantage of these
techniques shows up in applications where progressive transmission with re-
spect to the importance of wavelet coefficients is requested. This is particular
useful in client-server applications where on-the-fly visualization at a coarse
resolution level is often required for preview purposes [15]. Efficiently coding
the hierarchical representation and building data structures allowing for fast
access [17] is one of the major challenges in these kinds of applications. How-
ever, in projective approaches attenuation effects have to be completely aban-
doned since the accurate ordering of coefficients with respect to the present
viewing definition can not be achieved in an acceptable amount of time.

3.2 Structural Analysis

As outlined in the previous section, wavelet techniques can be effectively used
to decompose the original signal into a hierarchy in which copies of the data
at ever coarser scales are included and where the size of details maintained
within these copies scales up accordingly. The hierarchical representation al-
lows locating the significant structures of the original signal at arbitrary scales.
Moreover, the signal’s local characteristics can be determined quite accurately
from the variation of these structures across scales.

One key technique often applied in image processing is to determine the local
sharp variation points in a smoothed version of the original signal by detect-
ing the zero crossings of the signal convolved with the second derivative of the
smoothing function [33,4]. Small fluctuations are removed in the blurred ver-
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sion, while the significant structures are retained. Successively performing this
procedure with appropriately scaled versions of the smoothing function yields
the edges at multiple scales. Now a characterization of the relevant features
can be obtained by combining the edge information across all levels.

Obviously, the accuracy by which edges can be detected strongly depends
on the kernel functions used. Traditionally, a Gaussian kernel is employed.
On the other hand, since it is the high frequency information in particular
which is retained in the difference spaces of a MRA, wavelet transforms in
general provide a powerful tool to localize and analyze the multiscale edges.
In [38] DOG wavelets were exploited to decompose the signal into a hierarchy
of 3D edges, which were then used to enhance the significant structures by
appropriately blending edges from multiple scales. More generally, assuming
0 to be the integral over a wavelet ¥, §(x) = [*._ ¥(t) dt and setting ¢’ (z) =
21/2(29z) and W/ (z) = 29/2F(27z), then the wavelet transform at scale 2/ can
be written as Wi f(z) = f* W/ (z) = f* (P9) = 271 (f * 67)(x). It is thus
proportional to the derivative of the original signal smoothed by 6 (z). As a
result, the multiscale edges of f can be completely determined by repeatedly
convolving ¥/ with the smoothed version f * #7(x) and by locating the local
maxima of WY f(x) [34].

By constructing derivative wavelets W(Z), U5(Z) and W3(Z) which are the
partial derivatives of a three dimensional smoothing function §(Z) along =,
y and z, respectively, the approach can be lifted to higher dimensions. This
procedure was successfully applied to images [34], and extended to discrete
scalar volume data in [53,20]. Similar to the one dimensional case, the gradient
vector at scale 2/ can then be written as

Wi f(7) 2(f *07)(@)
V(f#0)(@) = | Wif(@) | =2 | 2(f+0)(@)
Wi £ () 2(f »09)()

By computing the magnitude from the squares of the gradient components
we are now ready to determine those points where the gradient magnitude is
locally maximum along the direction the gradient is pointing to. In practice,
however, since it is only possible to consider a finite number of directions
spanned by [f * Uy (Z), f * Ua(Z), f * U3(F)] a discretization has to be applied.

Although the significant structures are maintained in the difference spaces
across the multiscale hierarchy, the entropy of the decoded information slightly
decreases since the gradient maxima are computed from the low frequent parts.
Less significant structures disappear at one of the coarser scales. On the other
hand, it can be shown that from the evolution of the gradient maxima across
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scales the original signal can be locally characterized. In particular, it is pos-
sible to estimate the signal’s smoothness, which is commonly measured by
the Lipschitz regularity from the asymptotic decay of the wavelet coefficients
to the finest scale [22]. For this method to proceed properly, those maxima
which proceed from a certain scale to the next coarser one have to be sep-
arated. By connecting neighboring locations across scales so called maxima
chains are constructed. By the decay, then, of the magnitude of wavelet coef-
ficients along these chains the smoothness of the original signal at points the
chains are pointing to can be determined.

In [20,52,53] these procedures were applied to determine the sharp variations
of features in stationary 3D volume data and in time-resolved sequences. The
extracted information can be efficiently used to enhance or suppress more
or less significant structures. Furthermore, by adaptively traversing the data
with respect to the multiscale representation of the 3D edges during the ray
traversal the rendering process can be accelerated considerably. Figure 3 shows
how this concept can applied to automatically render results which compare
quite well to traditional segmentation techniques.

V

Fig. 3. Volume rendering of the vessel structures in a data set from brain angiogra-
phy. The structural analysis leads to an automatic enhancement of the vessels and a
significant noise reduction (right) compared to the standard linear transfer function
(left).

4 Adaptive Mesh Optimization for Volume Visualization

It should have become obvious from the last section, that the wavelet based
MRA exhibits many advantages in the area of signal analysis and compression,
but that the evaluation of the hierarchy introduces some additional overhead.
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Thus, we are looking for a representation of our data which consists of a hier-
archy of full grids where we can apply the existing sophisticated algorithms on
each level. It turns out that the numerical mathematics community has devel-
oped such an adaptive mesh optimization technique for the field of multilevel
finite elements [1,55]. One important aspect of this approach for visualization
is that it proceeds from a very coarse approximation to finer levels of resolu-
tion, stopping whenever a given error threshold is fulfilled. This is in contrast
to the wavelet decomposition which always has to start at the finest level of
resolution. In this section we will summarize our application of this technique
to volume visualization [19].

4.1 Multilevel Finite Element Mesh Refinement

We start out with an intentionally very coarse triangulation of our domain €.
Depending on the geometry of the domain it may be a complex task to gen-
erate such a grid, but for a cube this is the standard partition into five or six
tetrahedra. We construct a N-dimensional finite element subspace S € Ly(R?)
with basis functions {¢;}~, consisting of all piecewise linear functions asso-
ciated with the vertices and with their support restricted to the tetrahedra
containing the vertex. Then we search for the best approximation u € S of the
function f € Ly(R*) which is represented by our data set. This least squares
approrimation problem is reduced to the solution of a linear system AU = F
which is solved by a conjugate gradient method. The coefficients are given by
Aij = <¢ja¢i>L2a F; = <f7 ¢i>L2 and v = 37 U;¢; with <f; g>L2 = fQ Jgdz. The
evaluation of the inner products and the assembling of the corresponding ma-
trices and vectors are carried out using standard finite element techniques. The
inner products (f, ¢;) are computed using a five point third order integration
formula. In order to evaluate the quadrature we use tri-linear interpolation
of f from the original data. A global error of our best approximation can be
found by summation of all the local errors Ea = [, (f — u)?dQ computed in
each tetrahedron. If the local error coeflicients exceed a certain threshold the
corresponding mesh elements are marked for refinement. After the error anal-
ysis, the mesh is refined and the iteration starts all over again determining the
best approximation of the function on the new level. The algorithm terminates
when the global error is less than a user-specified threshold.

At the core of the method is a local refinement algorithm which generates
a hierarchy of adaptively refined meshes. Each triangulation in the sequence
is required to be conforming, i.e. the intersection of two elements consists of
a common face or a common edge or a common vertex or it is empty. This
condition prevents hanging nodes, which are difficult to treat in finite element
computations and which are problematic for rendering purposes. For the same
reasons the triangulation sequence has to be stable with respect to some mea-
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sure of degeneracy, e.g. all interior angles are bounded away from zero. Finally,
in order to build a hierarchy of nested spaces the triangulation sequence has
to satisfy the nestedness condition, which means that an element in a trian-
gulation is obtained by subdividing an element in a coarser triangulation of
the sequence.

We extend an algorithm which combines regular and irreqular mesh refine-
ment rules [2]. Elements which are marked for refinement are split regularly:
a tetrahedron is cut into four tetrahedrons at the corners and one octahedron
inside. Instead of subdividing the octahedron immediately into tetrahedra we
treat them as a regular element type and define another regular refinement
rule for them by which they are split into six octahedra and eight tetrahedra.
In this way we avoid ambiguities and reduce the number of cells. The regu-
lar refinement rules can be applied to neighbor elements without consistency
problems. In the case of adaptive refinement, however, only a subset of the
given elements will be regularly refined. Thus, the partition has to be closed by
irregular refinement of neighboring elements in order to avoid hanging nodes.
We restrict irregular refinement to tetrahedra and if an octahedron has to be
irregularly refined, it will be first subdivided into eight tetrahedra by connect-
ing the vertices with the barycenter. All elements generated by the irregular
refinement are constructed using the vertices introduced by the regular refine-
ment of neighbor elements. We have implemented a full set of refinement rules
which fits all possible edge and face refinement patterns. In order to avoid sta-
bility problems irregularly refined tetrahedra must not be refined again. If a
subdivision is required, the originally refined tetrahedron must be re-refined
with the regular rule. Finally, these local rules are combined and rearranged
into a global refinement algorithm which guarantees for stability and confor-
mity. Figure 4 demonstrates the algorithm and the quality of the generated
meshes for a 2D example of a MRI slice of a medical data set.

4.2 Adaptive Volume Visualization

If the described algorithm is applied to a Cartesian scalar volume, an adap-
tively refined tetrahedral mesh is computed which is coarse in homogeneous
regions of the volume but fine in regions with a strong variation of the under-
lying function, i.e. around edges or surfaces. Depending on the error threshold,
which gives a measure of the quality of the approximation, we achieve a signifi-
cant reduction in the number of cells compared to the original voxels and thus
an enormous compression of our data set while retaining relevant features.
We point out that the algorithm is progressive in the sense that the coarser
the desired approximation is, the faster can it be computed. Furthermore, the
amount of work to find the approximation to a certain error threshold is nearly
independent of the data size, thus very large data sets can be processed as
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Fig. 4. Adaptive mesh refinement for a 5122 medical data set. The left image shows
regular refined triangles and the irregular closure at level 3, the right image demon-
strates the quality of the triangulation.

long as they can be interpolated at any point in the domain.

Arbitrary visualization algorithms for unstructured meshes can be used to de-
rive visual mappings from the approximated fields. They will be much faster
than the visualization of the original data set for several reasons. First, the
number of cells to be traversed will be reduced by at least one order of magni-
tude. This automatically reduces the number of output primitives. Second, no
special algorithms are necessary, since we deal with full grids on each level of
the hierarchy. Interpolation within a tetrahedron is linear and thus even sim-
pler, but normal estimation is a little bit more involved. Third, the adaptivity
of the mesh automatically leads to adaptive visualization algorithms. This is
obvious for the search of iso-surface cells which proceeds fast through homoge-
neous regions with large tetrahedrons. For ray-casting we integrate from cell
boundary to cell boundary which automatically leads to an adaptive step size.

Figure 5 shows iso-surfaces of a CT data set of a human abdomen. The original
volume is 5122 x 181 which is about 47 million voxels. A standard marching
cubes algorithm runs for about a minute to generate an iso-surface consisting
of 1,4 million triangles. In the left image an iso-surface with only 70,000 trian-
gles is extracted from an adaptively refined mesh at level 5 (50,000 vertices)
in 1.2 seconds. The right image shows the result for level 7 (180,000 vertices)
with 340,000 triangles extracted in 4.4 seconds. All the relevant structures
of the iso-surface are already clearly visible at level 5 and even lower levels
would be sufficient for fast previewing. Comparing the surface at level 7 with
the iso-surface extracted from the full resolution exhibits some approxima-
tion errors in the smoothness of the surface, however this was to be expected
when reducing the number of cells to about 2% and this can be improved by
incorporating the Sobolev norm which brings gradient information into the
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Fig. 5. Iso-surface extraction from an abdomen CT data set. The original 47 million
voxels were compressed to adaptive tetrahedral meshes of various resolution (left
level 5, right level 7) which allow the fast extraction of surfaces with less triangles.

approximation [18].

4.8 Progressive Iso-surface Extraction

So far, only one level of the multiresolution hierarchy of the volume was actu-
ally used during the visualization with standard algorithms for unstructured
grids. We will now outline a new iso-surface algorithm which explicitly ex-
ploits the data hierarchy and generates iso-surfaces of varying resolution [16].
The scenario we are aiming at is the interactive visualization of huge data
sets in a distributed environment where the user at the graphics workstation
requests the multiresolution data set from a remote server. The server starts
sending the coarsest resolution and incremental information on how to refine
the mesh. The client begins with the reconstruction of the hierarchy from the
data stream and at the same time with the iso-surface extraction on the al-
ready built levels. This iso-surface is locally refined as soon as higher levels
of the volume hierarchy have been reconstructed up to a maximum level or a
user interaction changes parameters like iso-value or resolution depth. The al-
gorithm is based on a very efficient abstract representation of the mesh which
consists of the coordinates of the vertices at the coarsest level, a set of integer
indices describing the refinement, and the function values at the finest level
of resolution. The abdomen data set refined up to level 7 can thus be stored
in approximately 1 MB which corresponds to a compression factor of 50. The
reconstruction of the hierarchy from this representation can be performed at
interactive rates. This is in part due to the concept of virtual elements: irregu-
larly refined elements, which are usually more than regularly refined elements,
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are not actually stored, but are computed on demand. Finally, the progressive
iso-surface extraction which inserts and deletes only triangles resulting from a
mesh refinement or coarsening also needs on the average less than one second
when switching from one level to the next.

5 Conclusions

We have presented an overview of multiresolution and hierarchical methods for
the visualization of volume data. Besides reviewing related work in this field we
have described in more detail two complementary approaches: wavelet-based
multiresolution analysis and finite-element-based adaptive mesh optimization.
We have shown how compressed representations of the volume data can be
exploited by a variety of visualization algorithms ranging from structural anal-
ysis and ray casting to progressive iso-surface extraction. The availability of
increasingly huge data sets will promote exciting new research in the area
of multiresolution modeling and visualization of volumes, similarly as it hap-
pened for polygonal models. We expect contributions from applying geomet-
rical approaches to 3D [44], from extending wavelets to non-regular grids [41],
and from other hierarchical bases representations like sparse grids [56,50].
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