Solid Texturing on a Per-Pixel Basis

Riidiger Westermann, Thomas Ertl

University of Erlangen, Computer Graphics Group
Am Weichselgarten 9, D-91054 Erlangen, Germany
Email: wester@informatik.uni-erlangen.de

Abstract

Over the last years OpenGL has positioned it-
self as the favored API in high-end graphics pro-
gramming. In particular, by providing access to
hardware supported texture interpolation a fun-
damentally new class of algorithms was initiated.
When 3D textures became available interactive
rendering of volumetric data sets showed up as
a potential application. However, space filling
textures can be seen in a more general context.
In this paper we will show an efficient way for
carving arbitrary shapes out of solid textures
by exploiting 3D pixel textures coming along as
OpenGL extension on SGI Impact architectures.
We make extensive use of the fragment operations
in the rasterization stage thus providing interac-
tive parameter control. Arbitrary changes in the
orientation of the object to be textured relative
to the solid block can be realized efficiently by
our approach.

1 Introduction

Recent advances in the performance and func-
tionality of graphics workstations [1, 6] spawned
many new algorithms in computer graphics ap-
plications. Dedicated hardware now available on
the desktop side provides massive resources on
geometry processing, texture mapping and frag-
ment operations. Simultaneously, OpenGL has
been manifested as a de-facto standard in graph-
ics programming allowing easy and intuitive ac-
cess to advanced graphics operations. As a result,
over the past years the benefits of high-end graph-
ics workstations have been exploited in many dif-
ferent algorithms.

In particular, 3D texture interpolation and
pixel blending operations have positioned them-
self as a potential machinery enabling real-time

rendering of complex volume data sets [2, 10, 3.
Apparently, 3D texture mapping is performed on
a per-vertex basis, texture coordinates interpo-
lated properly across triangles.

However, when accomplished in this way accu-
rate and direct modifications of texture coordi-
nates across polygons can hardly be achieved. On
the other hand, even when solid textures [7, 8, 4]
are to be evaluated it is often desired to change
the assignment of texture coordinates relative to
the object, or to directly control the generation of
texture coordinates in a more flexible and subtle
way.

In this paper we propose an efficient technique
for carving arbitrary shapes out of solid objects
via 3D texture maps. In this way we

o cnable solid texturing in real-time by taking

advantage of hardware supported geometry
processing, color interpolation and texture
re-sampling

e qvoid topological constraints by performing

texture mapping on a per-pixel basis

e provide direct control of texture coordinates

by exploiting simple pixel transfer opera-
tions.

The remainder of this paper is organized as
follows. First, we briefly outline the benefits of
3D textures by exemplifying the traditional way
they are used in volume rendering applications.
Then the mechanism and the advantages of pixel
textures are described. We demonstrate their use
for solid texturing of arbitrary objects and sketch
ways they can be exploited for real-time texture
animations.

2 Texture mapped volume ren-
dering

The basic idea in volume rendering via 3D tex-
tures [3, 2, 10] is to exploit texture mapping



hardware for the re-sampling of material values
defined on regular grids. Once the scalar data
is loaded into a texture map, planes parallel to
the image plane are clipped against the paramet-
ric texture domain (see Figure 1). The texture
mapped cross-sections are blended appropriately
into the framebuffer thereby approximating the
continuous volume rendering integral.

Figure 1: Volume rendering via 3D textures.

During rasterization texture coordinates issued
at the vertices of each slice are smoothly inter-
polated across the polygon and mapped to the
texture. Since texture coordinates are assigned
on the per-vertex basis subtle control of texture
values generated within polygons can hardly be
achieved. By defining texture coordinates on the
per-pixel basis the functionality of texture map-
ping can be improved considerably.

3 Pixel textures

On the SGI Impact architectures the pixel tex-
ture extension is now available which allows the
user to directly control texture coordinates on
the per-pixel basis. Specified in the same way
traditional 3D textures are, rather than issuing
texture coordinates at vertices they are issued
at pixel locations. Before pixel data from main
memory is drawn into the framebuffer the RGB
components are interpreted as 3D texture coor-
dinates and mapped appropriately. Finally, the
re-sampled texture values are drawn.

Figure 2 demonstrates the basic mechanism.
First, a squared polygon is rendered. At each of
the four vertices the color values are assigned as
shown. Then the framebuffer is read into main
memory and it is written back with enabled pixel
texture. Color values are mapped to the specified
texture and the corresponding texture values are
drawn.

Obviously, the same effect can be achieved by
specifying texture coordinates at the vertices and
rendering the textured square. However, let us

Texture

Colors
(0,1,0) (1,1,0)

Mapped

Figure 2: Texture mapping via 3D pixel textures.

assume that we want to arbitrarily distort tex-
ture values within the square. When texturing is
performed on the per-vertex basis this can only
be achieved if the square is represented by a large
number of smaller elements for which the texture
coordinates have to be modified. The benefit of
pixel textures is that we just have to modulate the
color values appropriately before they are written
into the framebuffer.

Modulation can be accomplished in software,
but more efficiently pixel transfer operations can
be used. If the OpenGL color matrix extension
is supported, when color components are written
they are first modified by multiplying them with
a 4x4 matrix. Then each component is scaled and
biased by specified values. Arbitrary distortions
can thus be achieved by initializing the matrix
and both vectors properly.

In the following we will outline an efficient way
to evaluate solid textures often used in photo-
realistic rendering on the per-pixel basis.

4 Solid textures

Solid texturing can be viewed as creating a 3D
texture space in which the object to be textured
is included. The object is being sculptured out
of the texture volume. For each surface point
the texture value is evaluated and mapped to the
object (see Figure 3). Maybe the most common
examples are marble and wood textures used to
simulate natural objects.

Figure 3: Solid texturing.



Traditionally, solid textures are evaluated by
procedural shaders [5, 9]. Once a procedural de-
scription to generate the texture has been found,
for each point to be textured the shader is evalu-
ated based on the objects geometry. In this way
explicitly storing the texture can be avoided and
modifications of the texture can be accomplished
by simply varying parameters in the procedural
definition.

However, the shader has to be evaluated for
each surface point, which slows down the render-
ing process considerably. Obviously, solid tex-
turing in real-time can be achieved by using 3D
textures in the usual way. Texture coordinates
are assigned at vertex locations and used to map
the texture to the object. But to change the
mapping the entire geometry has to be traversed
thereby updating the texture coordinates. As a
consequence, display lists can not be generated
in advance, and the size of details which can be
directly controlled depends on the size of the tex-
tured primitives.

\
.
11

\\x
h A

s

/{
c"”/

;\,?f
(,j\

Figure 4: Coding texture coordinates into color
values.

Pixel textures provide an even more efficient
alternative. Therefore, we store an additional
copy of the object to be textured, and we assign
color values at each of its vertices. The RGB
color components are taken to be equivalent to
the vertices local coordinates in the [0,1] texture
space. Then the object is rendered with disabled
lighting thereby smoothly interpolating the color
values across triangles (left image in Figure 4).

Thus for all visible surface points the coordi-
nates are now present in the RGB framebuffer
values. We read the pixel data into main mem-
ory and render the original object as usual (right
image in Figure 4). Finally, the pixel data is writ-
ten back into the framebuffer with enabled pixel
texture. Pixel values are first mapped to the ac-
tive 3D texture before they are blended with the
values already in the framebufffer. By choosing

an appropriate blending function the modulation
of the objects surface properties by the solid tex-
ture can be flexibly changed. The result is shown
in Figure 5.

Figure 5: Modulating the dragon’s surface by a
solid texture.

To restrict the drawing of pixel values to those
locations to which a surface point was projected
the OpenGL stencil buffer is used. When the
shaded object is rendered the stencil buffer is set
wherever a pixel is drawn. At every other loca-
tion it is locked for further modifications.

5 Real-time animations

By applying pixel transfer functions effects can
be simulated which can hardly be achieved when
texture coordinates are assigned on the per-
vertex basis. For example, to arbitrarily rotate
the object within the texture space only the color
matrix has to be initialized properly.

When the pixel data has been read all visible
surface points are available in the color compo-
nents, each of which is within the unit interval.
For the rotation to proceed properly they have
to be scaled to the range [-1,1]. Then the cur-
rently selected rotation is applied. Finally, before
the transformed surface points get written to the
framebuffer they have to be scaled back to the
range [0,1]. The color matrix to be applied looks
as follows:

CM =
1 1
3 00 3 2 00 —1
0o 301 020 -1
00%%<M’"°t>002—1
000 1 000 1

Note, that even without drawing the object
multiple times we can simulate movements of the



texture around the object by simply drawing the
pixel data successively with the color matrix up-
dated in each pass.

6 Conclusion

In this paper we have shown a novel approach
for solid texturing arbitrary objects in real-time.
General ideas have been proposed to exploit
advanced features offered by high-end graphics
workstations. A non usual way to perform the
mapping of 3D textures has been demonstrated
on the per-pixel basis. The use of pixel textures
allows flexible control of texture coordinate gen-
eration thus providing an efficient mechanism for
the simulation of interactive changes in the orien-
tation of the object or the texture. Furthermore,
texture lookup tables allow direct modifications
of the solid textures to be used.

References

[1] K. Akeley. Reality Engine Graphics. ACM Com-
puter Graphics, Proc. SIGGRAPH ’93, pages
109-116, July 1993.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated
Volume Rendering and Tomographic Reconstruc-
tion Using Texture Mapping Hardware. In ACM

Symposium on Volume Visualization ’94, pages
91-98, 1994.

[3] T.J. Cullip and U. Neumann. Accelerating Vol-
ume Reconstruction with 3D Texture Hardware.
Technical Report TR93-027, University of North
Carolina, Chapel Hill N.C., 1993.

[4] Ebert, D. and Musgrave, F. and Peachey, D. and
Perlin, K. and Worley, S. Texturing and Mod-
eling, A Procedural Approach. Academic Press
Tnc., 1994.

[5] P. Hanrahan and J. Lawson. A Language for
Shading and Lighting Calculations. ACM Com-
puter Graphics, Proc. SIGGRAPH ’90, pages
289-298, August 1990.

[6] J. Montrym, D. Baum, D. Dignam, and
C. Migdal. Infinite Reality: A Real-Time Graph-
ics System. Computer Graphics, Proc. SIG-
GRAPH ’97, pages 293-303, July 1997.

[7] D. Peachey. Solid Texturing of Complex Sur-
faces. ACM Computer Graphics, Proc. SIG-
GRAPH ’85, pages 279-286, July 1985.

[8] K. Perlin. An Image Synthesizer. ACM Com-
puter Graphics, Proc. SIGGRAPH ’85, pages
287-296, July 1985.

[9] Upstill, S. The RenderMan Companion. Addi-
sion Wesley, 1990.

[10] O. Wilson, A. Van Geldern, and J. Wilhelms. Di-
rect Volume Rendering via 3D Textures. Techni-
cal Report UCSC-CRL-94-19, University of Cal-
ifornia, Santa Cruz, 1994.



