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Abstract

An important challenge in the visualization of three dimen-
stonal volume data is the efficient processing and render-
ing of time-resolved sequences. Only the use of compression
techniques, which allow the reconstruction of the original do-
main from the compressed one locally, makes it possible to
evaluate these sequences in their entirety. In the following
paper o new approach for the extraction and visualization
of so called time-features from within time-resolved volume
data will be presented. Based on the asymptotic decay of
multiscale representations of spatially localized taime evolu-
tions of the data, singular points can be discriminated. Also
the corresponding Lipschitz exponents, which describe the
stgnals local reqularity, can be determined, and can be taken
as a measure of the variation in time. The compression
ratio and the comprehension of the underlying signal will be
improved, if we restore the extracted regions first, which con-
tain the most important information.

Keywords and Phrases: volume rendering, wavelet trans-
forms, singularities, Lipschitz exponents

1 Introduction

In recent years several methods have been developed to vi-
sualize static three dimensional volume data sets. Most of
the proposed methods try to approximate more or less ac-
curately the volume rendering integral [4][9][11]:
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where o(s) defines the attenuation function, ¢(¢) is the vol-
ume source term, and ¢ and #; are the start and end points
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on the view ray. This reduced formulation of the more gen-
eral and physically based transport equation [10], describes
the summation of the light along a ray, which is scaled by
a material dependent attenuation factor to get the final in-
tensity. Basically, all methods can be classified into fast ob-

ject space driven back-to-front projection methods [20][21],
and in general slower but more accurate image space driven
methods. The latter technique resamples the volume along
the ray of sight, and is closely related to general integration
rules, which evaluate the rendering integral numerically.

With the rapidly increasing resolution of the available
data sets, it becomes more important to evaluate efficient
compression techniques, which allow the computation of the
rendering integral on the compressed domain. One possible
solution is to evaluate the volume rendering integral on mul-
tiresolution representations of the original three dimensional
signal [6][14][19]. Due to the sparse representation of pro-
jections into cascades of difference spaces, impressive com-
pression ratios can be achieved. Furthermore, the rendering
process can be performed on the compressed data directly,
which avoids the memory consuming global reprojection of
the data.

Even for the visualization of time-resolved volume se-
quences, the requirement to reduce the data as much as
possible becomes most important. In this context, it is not
only of special interest to process these time series in their
entirety, but also to extract and enhance special features
from within the sequences.

In the following, one new approach to deal with time-
resolved volume data will be presented. The key idea is to
compress each volume separately, but also to obtain infor-
mation concerning the time evolution of certain parts of the
volumes. This can be done by examining the time develop-
ment of spatially localized multiresolution information. An
additional compression of such regions that remain constant
or vary slightly over time, and also an implicit description
of the time dependence of certain regions is reached in this
way.

The question that remains to be answered is how to ex-
tract the interesting information of the time varying volume
sequences. This question implies that we define first the
focus of interest of such sequences. In our approach we con-
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measurement of this variation can be found by inspecting

centrate on the areas with strong variation over time.



the signals wavelet transform. It has been shown that sin-
gular points within the data can be determined from the
signals multiscale representation. Additionally, the Lips-
chitz exponents of such singularities can be measured from
the asymptotic decay of the wavelet coefficients, as the scale
goes to zero. The Lipschitz exponents characterize the local
regularity of the signal, and can thus be used for the dis-
crimination of those regions which should be reconstructed
within high accuracy. In between these regions a less accu-
rate reconstruction will be applied.

In the following, a short introduction to the theory of
wavelet transforms is given, together with a short expla-
nation of how to evaluate the volume rendering integral on
multiresolution spaces. We will then focus on the singularity
detection procedure and the integration into our approach
will be outlined. Finally, some specific implementation de-
tails will be given, and results based on two data sequences
will be compared.

2 Wavelet Transforms

Wavelet transforms can be seen as an effective tool to sep-
arate and analyse multiscale phenomena of the underlying
data. Due to the fact that wavelets are well localized in
both time and scale, they provide a useful method to exam-
ine these phenomena locally. This is the reason why wavelet
transforms are of great interest in the field of volume ren-
dering. Many researchers have investigated in more detail
the basic concept and theory of wavelet transforms and mul-
tiresolution analysis over the past few years, and some in-
troductions can be found in [8][1][12] and [17].

Basically, a wavelet decomposition is built up from scales
and dilates of an infinite energy, self-similiar basis function
¥(x) with
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At each scale 27, the translates of the scaled wavelet func-
tions form a basis of some vector space W;, which is the
orthogonal complement of some approximation space Vj.
These approximation spaces are built up from the scaling
functions @1(%)7 which generate a multiresolution analy-
sis (MRA) of L*(R), if the nested sequence of subspaces
V; = V;_1 @ W;_1 has certain properties.

In general, the so called difference spaces W; contain the
information that is lost when projecting a function from
one approximation space V; to the next coarser V;_;. The
projection operators for a certain function f(z) into V; and
W; respectively can be written as:
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defining the smooth information P’ f and the detail infor-
mation ()7 f which is needed to go from a certain resolution
approximation space to the next finer one.

The wavelet coefficients S’J and Di can be computed from
the inner products ! of the function with the dual scaling
function and the wavelet:
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An efficient method to perform the inner product calcu-
lations has been proposed by Mallat, whose pyramid algo-
rithm runs in linear time with the number of function sam-
ples [12]. Basically, this algorithm stems from the so called
two-scale relation, defining the basis functions on a certain
level as linear combinations of basis functions on the next
finer one. This combination can be expressed with some low
pass and high pass filter sequences, which have do be applied
recursively on the smooth approximations of the signal.

For the case of separable MRA’s the extension to higher
dimensions can be easily done, constructing the three di-
mensional basis functions from the tensor products of the
one dimensional ones.

An important property of the wavelet transform is, that
the original signal can be reconstructed from its expansion
coefficients locally:
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Taking this reconstruction property into account, the vol-
ume rendering integral can be evaluated on the projected
signal directly. The major advantage of this change of basis
stems from the sparseness of the projections into the differ-
ence spaces. Based on the number of vanishing moments
of the wavelet, which is the largest number p for which all
integrals
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vanish, polynomials up to a degree of p—1 can be reproduced
without error within the approximation spaces only. This
implies that a large number of coefficients will be zero or less
than a predefined threshold, and can be neglected without
increasing a given error tolerance.

3 Multiscale Singularity Detection

For the characterization of signals it is often of major in-
terest to discriminate singular points of the signal, and to
determine those parts where the signal behaves in a less
regular manner. This is due to the fact that singularities
or irregular structures contain most of the interesting signal
information, and often allow one to determine the important
features.

LAn inner product of two functions is defined as:
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Additional information is given, if one is able to measure
the regularity of the signal at these singularities. This can
be done with Lipschitz exponents, which define the local
regularity of functions.

Given a subset S C D(f) and a constant M > 0, a
function f(z) is said to be Lipschitz a > 0 over §, if for two
points £, € § the following holds:

|F(¢) = F(B)] < Mt —°

For this case we write f € LIPs(M, «).

As a result it can be shown that f(z) € C° over S, if
f € LIPs(M,a). If @« > 1 over a certain interval [a,b],
and f € LIP, y(M,a), then f is constant over [a,b]. If
the derivative of f(xz) is bounded by some constant K, that
is |f'(t)] < K, and f € C' over an iuterval [a,b], then
f S LI-P[a,,b](Mv ]-)

In general, increasing Lipschitz exponents indicate a more
regular behaviour, and there is also a strong relationship
between the differentiability of f(z) and the Lipschitz reg-
ularity. If f(z) € LIPs(M,a) at a point zo with a > n,
then f is n times differentiable at 2¢. For functions that are
discontinous but bounded at a certain point, the Lipschitz
exponent equals 0 at this point.

Another interesting case occurs at sharp peaks, where the
signal tends to be more singular than discontinous. In this
case the Lipschitz regularity is negative at this point.

The extraction of the signals singularities and the com-
putation of corresponding Lipschitz exponents, permits the
classification of parts of the signal, and the distinction be-
tween these parts by considering their local regularity. The
question that remains to be answered is how to detect the
singularities and how to compute the Lipschitz exponents.

Jaffarth [7] proved a general theorem, which states that
the singularities of a signal can be detected from its multi-
scale representation, and that the local Lipschitz regularity
can be computed from the decay of the wavelet transform
across scales.

The key idea is to measure the asymptotic behaviour of
the wavelet coefficients as the scale goes to the finest reso-
lution. Formally, the relation between the absolute values
of the wavelet transform and the Lipschitz regularity at a
point xp can be described as:

[W(s,x)| < Ax(s" 4|z —20]") (2)

where W f (s, z) describes the wavelet transform on a certain
scale s. This relation holds for points  within a neighbor-
hood of gy, but depending on the location of x, the decay
of the multiscale coefficients behaves differently. For points
z at a certain scale s, with |2 — zo| < s, (2) implies a O(s®)
decay, whereas for other points the decay is controlled by
their distance to z¢. For practical computations of the Lip-
schitz exponents, Mallat et al. [13] proposed an efficient
method, which is based on the observation, that the local
maxima of the wavelet transform on every scale define scale-
space curves. Connecting those maxima which proceed from
a certain scale to the next coarser one, the resulting maxima

Figure 1: Original signal and local maxima of the wavelet trans-
form. One clearly realizes the maxima lines pointing to the sin-
gular points.

lines point exactly to the singular points of the signal on the
finest scale (see Figure 1). For isolated singularities the lo-
cal Lipschitz regularity at a point 2¢ can now be determined
from the asymptotic decay of the coefficients along the max-
ima lines pointing to zy. For a function to be € LI Ps(M, )
at o, it has to be hold that the decay behaves as:

[Wf(s,2)] < K (s7) (3)

K and « can then be measured, only taking into consid-
eration the local maxima along the scale-space lines. This
allows the discrimination of singular points, and the sep-
aration of parts of the signal taking into account its local
behaviour and characteristics.

4 Time-Feature Extraction

Once we are able to detect the singularities of a given signal
as well as to characterize their regularity, the question is how
to integrate this method into a multiresolution approach for
the visualization of time-resolved volume data. Since we
wish to extract those features from the volume sequence
that vary strongly over time, the key idea is to separate
spatially corresponding regions from within each volume,
and to examine their relation in more detail.

Instead of applying the mentioned approach to the time
evolution of each voxel separately, we relate the time evo-
lution of corresponding multiscale components, respectively
wavelet coefficients (see Figure 2).

Basically, this approach has two main advantages:

e In a pre-processing step each volume can be separately
transformed, and compressed with respect to its sparse
multiresolution representation. During this compu-
tation, no information from neighboring volumes is
needed, and an optimal compression ratio for each time
step is reached. In this way we avoid the storage of the



Multiscale Time-Evolution [ l

“oln
AN/

Volume O

Volume 1

[ [ [ J ..58\
ANV

Volume n

Figure 2: Tree like data structure to store multiresolution information for each time step. Corresponding multiresolution information is
reorganized as a one dimensional signal, to obtain the time evolution of certain regions.

whole sequence, and we always minimize the memory
requirement. Furthermore, a large number of entries
for each wavelet coefficient time evolution will be zero.
This is due to the sparse representations of changes in
time, even for scarcely varying structures.

e Due to the fact that we examine the relation between

multiscale components of each volume, we divide low
frequency regions, which remain constant over time

within each time step, from those high fluctuating parts,

which vary strongly. This allows us to separate tur-
bulent or irregular structures as well as to determine
those structures, which are present within all volumes.
This regions can be found by considering all coeffi-
cients which remain constant within all multiresolution
representations.

Once the compressed multiscale structures for each vol-
ume have been constructed, we examine the time evolution
of each component successively, starting at the finest level.
For each of the generated one dimensional signals, which
contain information concerning the time behaviour of a cer-
tain region, an additional wavelet expansion has to be com-
puted. The singularity detection process can now be applied
on the generated multiscale representation directly. Inequal-
ity (3) implies that one has to find those K and «, which lead
as close as possible to an equality for each scale s. These
values can be found by minimizing the derived “energy”-
function

Smax
> (log([W F(s,2)]) — log(K) — axlog(s))”  (4)

s=1

Both, the function value itself and also its first derivative,
can be calculated for arbitrary K and «, so that a steepest
descent algorithm to solve the minimization problem can
be used. Starting at a random point on the finest scale,
successive steps into the direction of the steepest gradient
have to be performed to find the next point. Of course this
method will not necessarily find the global minima, but it
is often sufficient only to determine the overall behaviour of
the decay along the maxima lines. In practice, this com-
putation has only to be done for a small number of points

on the finest scale, and some kinds of coarse pre-separation
allow one to distinguish between specific classes of singular-
ities. In general, increasing coefficients indicate sharp sin-
gular peaks with Lipschitz exponent less than zero, discon-
tinous regions are classified by coefficients that remain con-
stant across scales which implies Lipschitz exponent equal to
zero, while more regular behaviour is indicated by increasing
Lipschitz exponents. Furthermore, one can assume that for
sharply varying regions, the coefficients on all scales have to
exist. For example, Mallat et al. [13] proved that random
noise can be separated from the original signal, extracting
those singularities for which the scale-space maxima lines
disappear at the next scale.

Considering the evolution of the wavelet coefficients across
scales, we are able to discriminate points where the time
course behaves singular, and also to estimate the Lipschitz
regularity from the asymptotic decay as the scale goes to
the finest resolution. These computed values indicate those
singularities which are of interest and define the important
time-features within the volume sequence.

In our approach we take the singular points for which the
Lipschitz regularity is not greater than a given bound, to
determine which regions to reconstruct most accurately. In
between these regions we increase the error tolerance for the
reconstruction process, which allows us to eliminate a larger
number of coefficients. This method is closely related to
the wavelet probing algorithm, proposed by Deng et al. [3].
They split up the signal into smooth segments that can be
compressed separately, based on wavelets which are defined
over an interval. Compared to our approach, their method
also prevents discontinuities to be blurred, but instead of
separating smooth segments in between the discontinuities,
we prefer to separate the discontinuities themselves.

Another approach is to enhance only those features which
behave irregularly over a certain time interval, while other
regions will be completely neglected. Based on the gener-
ated multiscale representation, this method implies the stor-
age of those coefficients, which are needed to reconstruct the
irregular structures without error. All other parts will be ne-
glected. Due to the increasing support of the basis functions
on the coarser level, they will overlap most of the singular



points, and the smooth approximations of the signal in be-
tween these points are retained.

In general, the additional transformation and singularity
processing of the time evolutions leads to increased compres-
sion of the time domain. This allows the processing of large
scale time-resolved sequences in their entirety on standard
workstations without additional memory.

5 Implementation

One major goal of our implementation is to integrate the
earlier proposed multiresolution framework [19] into the cur-
rent approach for the visualization of time-resolved volume
sequences. To visualize volume data which corresponds to
a certain time step, the multiresolution representation for
that time step has to be reconstructed from the transformed
time sequence first. Each wavelet coefficient for that time
step has to be reconstructed from the already compressed
multiscale time evolution of this coefficient. The process-
ing of these time evolutions, including the singularity de-
tection and the determination of the Lipschitz regularity, is
performed for each coefficient separately in a pre-processing
step. As a result, we obtain a multiresolution representation
for each coefficient, which describes the fluctuations over
time at different scales. The standard reduction and com-
pression techniques (thresholding, quantization, coding) can
then be applied to each multiscale fluctuation separately.

This approach increases the numerical complexity of the
rendering process to some extent, but due to the interpo-
lating properties of the basis functions used, arbitrary inter-
polations between successive data sets can be reconstructed.
Even for static regions the reconstruction process will be ac-
celerated, due to the sparseness of the multiresolution rep-
resentation.

5.1 Choice of basis

Two basic requirements have to be taken into account in
choosing the optimal basis functions for our implementa-
tion. On the one hand, the support of the basis functions
used should be as compact as possible, accelerating the re-
construction process as much as possible. On the other
hand, the number of vanishing moments of the wavelets used
should be as high as possible, leading to better compression
ratios. For the expansion along the time axis, we are also
interested in good interpolation properties of the basis func-
tions. For the generation of smooth interpolants between
successive time steps, the basis functions should have good
regularity properties and should oscillate as little as possible
between given samples.

Another important feature that has to be considered, is
the maximal Lipschitz regularity we want to be able to de-
termine. Basically, one needs to use wavelet basis functions
with more than « vanishing moments to characterize sin-
gularities of Lipschitz regularity «. Only in this case the
Lipschitz regularity of the function can be measured from
the decay of the wavelet coefficients along the maxima lines.

Based on these preconditions, we decided to use differ-
ent wavelets for the construction of the three dimensional
multiresolution representations of each static volume, and
for the additional processing of the time evolutions of each
multiscale component. For the first task we used Daubechies
wavelets with two vanishing moments (see Figure 3). They
are the most compact orthogonal ones with respect to the
number of vanishing moments. Due to the orthogonality of
the Daubechies wavelets, they are dual to each other, and
the same basis functions can be used for the construction
and reconstruction process.

For the singularity detection process we used non-ortho-
gonal, but compactly supported B-Spline wavelets. This
choice was motivated by the regularity property of polyno-
mial splines, which are indeed the interpolants which os-
cillate the least among all other interpolants for a certain
degree. Unser et al. [18] proposed a general framework for
the generation of polynomial splines of certain degree and
the corresponding filter sequences for the wavelet expansion.
This allows us to increase the number of vanishing moments
arbitrarily. Due to the higher Lipschitz regularity that can
be characterized, polynomial splines can be adapted effi-
ciently to the kinds of irregular structures one wants to be
able to detect.

The disadvantage of standard B-Splines is that they are
not orthogonal, and that the corresponding dual basis func-
tions are of infinite support. This leads to infinite filter
sequences, either for the construction, or the reconstruction
process. As we are mostly interested in simplifying the re-
construction process as much as possible, it has to be done
with the compactly supported B-Splines wavelets. To avoid
the infinite filter sequences for each stage of the construction
process, we first project the original signal in the dual basis,
which allows to use the compactly supported filter sequences
for the wavelet transformation of the one dimensional time
evolutions. Finally, we perform an additional change of ba-
sis of the multiresolution information, reprojecting into the
standard B-Spline basis. Because the duals span the same
residual spaces as the standard B-Splines do, we do not have
to worry about errors during the projections from one basis
to another. Care has to be taken for the accurate evalua-
tion of the projection operators. As the corresponding filter
sequences are infinite, boundary problems and the error due
to the necessary cut off of the sequences have to be taken
into consideration. We used an inverse mirroring at the
start and end points of the signal, and filter entries below a
certain threshold are neglected.

Within our implementation cubic B-Spline wavelets (see
Figure 4) with 2 vanishing moments have been applied for
the examination of the time developments of the multiscale
components. As a result, sharp variation points such as
peaks, discontinuities or turbulent structures with a Lips-
chitz regularity between 0 and 2 can be detected. A good
localization of varying structures has been reached in this
way.



Figure 3: Daubechies wavelet with 2 vanishing moments. The
support of the basis function is 3.

Figure 4: Compactly supported cubic B-Spline wavelet. The
number of vanishing moments is 2 and the support is 6.

6 Results

The implementation has been tested on two volume sequen-
ces. The first data sequence, which was built up from 64
128% volume data sets, was generated from a time vary-
ing stochastic fractal, simulating three dimensional cloud
structures. The generation process is based on Perlins hy-
pertexture function [16], adding multiple scaled and dilated
copies of a random noise function, to obtain the typical l/fﬁ
spectrum of stochastical fractals. Based on Taylors frozen
turbulence hypothesis [5], the variations of the fractal in
time are equivalent to its spatial behaviours and properties.
This observation allows the generation of each time step as a
snapshot of a four dimensional stochastic fractal. To show as
well as possible the application of the proposed time-feature
extraction technique, we modified the generation process lo-
cally. Away from the center of the volumes, we decreased
the number of summed octaves used for the simulation of
the fractal in time, neglecting more and more high frequen-
cies. Within a sphere around the midpoints we simulated
the time behaviour on full resolution, which leads to high
fluctuating structures inside the sphere, whereas outside the
sphere all structures remain constant. In this way, we obtain
for each time step a three dimensional fractal with equiva-
lent properties within the whole volume, but with different
properties for certain regions in time. Figure 5 shows a snap-
shot of an arbitrary time step from this sequence. The top
left side shows the reconstructed volume, rendered on full
resolution out of the whole sequence with 512 MB. Ou the

top right side the same time step is reconstructed out of the
already compressed sequence, which consists only of 74 MB.
One can clearly observe that almost all information is re-
tained, whereby for this specific example the compression of
the time evolutions saved 150 MB of memory. The render-
ing method we used for this example is well adapted to the
visualization of low albedo, low density volumes, summing
up the density values along the ray only. Figure 5 below
shows the same time step as above, but visualized based on
the described time-feature extraction method. On the bot-
tom left side we retain all coefficients, which contribute to
the detected singularities in time, up to a Lipschitz regu-
larity of 2. Due to the fact that on the coarser resolution
level the static regions are influenced by coefficients that
belong to the turbulent areas, the smooth approximations
of the volumes contribute to these static regions also. It
can be realized away from the center, where the structures
are more and more blurred. This behaviour leads to better
compression ratios, and also allows one to discriminate those
structures, which vary strongly over time. The application
of the time-feature enhancement approach is shown on the
bottom right side of Figure 5. We only reconstructed those
structures accurately, which behave irregular over time. All
other regions, for which we do not determine any singular-
ities within their time evolution, are suppressed. The time
varying structures are retained completely within the sphere
around the center, whereas outside the sphere all informa-
tion is neglected.

The second time series was built up from 128 64% vol-
umes, which are homogeneous everywhere, but a high den-
sity object, moving along a sine wave from one corner of
the volume to the opposite. An interesting behaviour of
the multiscale processing of each time evolution of certain
regions appears, if we use only the coarsest levels for the re-
construction of each time step. In our example we took only
the 3 (left side of Figure 6), respectively 2 (right side of Fig-
ure 6) coarsest levels out of 7. Due to the low pass filtering
in the time domain, more and more global information from
neighboring time steps is projected into each volume. The
amount of information that is integrated from other time
steps is controlled by the level up to which the reconstruc-
tion is performed. Using the coefficients from all resolution
levels, each volume can be rebuilt completely. With decreas-
ing resolution level, more and more neighbors contribute to
the final volume. This can be seen on the right of Figure 6,
where we obtain information from the whole sequence within
one static volume. Basically, this technique can be seen as
a blurring in the time domain, which allows to examine the
location of certain objects at different time steps and their
movement over time in more detail.

7 Conclusion

A memory minimizing approach for the visualization of time-
resolved volume data based on multiresolution representa-
tions of both the spatial distribution and the time evolutions
of multiscale components has been proposed. With respect



to the evolution of certain features across scales, those re-
gions that vary strongly over time can be separated and
rendered prominently, whereas scarcely varying structures
can be suppressed. This leads to an additional compression
of the overall amount of data, and enhances the understand-
ing of a wide variety of special kinds of volume data to some
extent. Even for the extraction of irregular structures from
time varying fluid fields, but also for the discrimination of
static parts within time-resolved sequences, the presented
method leads to good results. Of special interest within this
context is the extraction and prediction of motion paths for
certain well defined objects. Due to the fact that the wavelet
transform splits up the frequency domain into dyadic fre-
quency bands, a careful examination and comparison of the
time behaviour of corresponding bands could give some new
insights to these kinds of problems.

The main disadvantage of the proposed method is the in-
creasing numerical complexity of the rendering process. In
addition to the time consuming evaluation of the rendering
integral based on the wavelet expansion of the original vol-
ume, a further reconstruction step has to be done, which
generates for each time step the multiresolution representa-
tion. Additionally, a complex pre-processing step has to be
performed, determining the singularities and the local Lip-
schitz regularity. On the other hand this process has to be
done only once, and due to the spatial localization of the
wavelet transform, the presented approach can be easily im-
plemented on distributed memory, parallel computers. Di-
viding the volume into subblocks, which will be distributed
over the nodes, the wavelet transform of each of these blocks
can be performed individually. Of course this forces some
global communication depending on the length of the filter
sequences, but once the multiresolution representation for a
certain block has been computed, equivalent subblocks for
the next time steps are stored on the same node. The sin-
gularity detection procedure based on the time evolutions of
the subblocks wavelet coefficients, as well as the final com-
pression of these blocks, can then be done locally.
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Figure 5: Stochastic Fractal: top left shows a time step rendered on full resolution from the sequence with 512 MB; top right
shows the same time step rendered from the compressed sequence with 74 MB; bottom left shows the time step reconstructed
ounly from those coefficients, which contribute to varying structures; bottom right shows the reconstruction of the varying
structures only.

Figure 6: Moving object: left shows the reconstruction of a certain time step from the 3 coarsest resolution level; right shows
the same time step reconstructed from the 2 coarsest resolution level.



