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Abstract

An important challenge in the visualization of three dimen�

sional volume data is the e�cient processing and render�

ing of time�resolved sequences� Only the use of compression

techniques� which allow the reconstruction of the original do�

main from the compressed one locally� makes it possible to

evaluate these sequences in their entirety� In the following

paper a new approach for the extraction and visualization

of so called time�features from within time�resolved volume

data will be presented� Based on the asymptotic decay of

multiscale representations of spatially localized time evolu�

tions of the data� singular points can be discriminated� Also

the corresponding Lipschitz exponents� which describe the

signals local regularity� can be determined� and can be taken

as a measure of the variation in time� The compression

ratio and the comprehension of the underlying signal will be

improved� if we restore the extracted regions �rst� which con�

tain the most important information�

Keywords and Phrases� volume rendering� wavelet trans�

forms� singularities� Lipschitz exponents

� Introduction

In recent years several methods have been developed to vi�
sualize static three dimensional volume data sets� Most of
the proposed methods try to approximate more or less ac�
curately the volume rendering integral �����������
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where ��s	 de�nes the attenuation function� q�t	 is the vol�
ume source term� and t� and t� are the start and end points
on the view ray� This reduced formulation of the more gen�
eral and physically based transport equation ��
�� describes
the summation of the light along a ray� which is scaled by
a material dependent attenuation factor to get the �nal in�
tensity� Basically� all methods can be classi�ed into fast ob�

ject space driven back�to�front projection methods ��
������
and in general slower but more accurate image space driven
methods� The latter technique resamples the volume along
the ray of sight� and is closely related to general integration
rules� which evaluate the rendering integral numerically�

With the rapidly increasing resolution of the available
data sets� it becomes more important to evaluate e�cient
compression techniques� which allow the computation of the
rendering integral on the compressed domain� One possible
solution is to evaluate the volume rendering integral on mul�
tiresolution representations of the original three dimensional
signal ������������ Due to the sparse representation of pro�
jections into cascades of di�erence spaces� impressive com�
pression ratios can be achieved� Furthermore� the rendering
process can be performed on the compressed data directly�
which avoids the memory consuming global reprojection of
the data�

Even for the visualization of time�resolved volume se�
quences� the requirement to reduce the data as much as
possible becomes most important� In this context� it is not
only of special interest to process these time series in their
entirety� but also to extract and enhance special features
from within the sequences�

In the following� one new approach to deal with time�
resolved volume data will be presented� The key idea is to
compress each volume separately� but also to obtain infor�
mation concerning the time evolution of certain parts of the
volumes� This can be done by examining the time develop�
ment of spatially localized multiresolution information� An
additional compression of such regions that remain constant
or vary slightly over time� and also an implicit description
of the time dependence of certain regions is reached in this
way�

The question that remains to be answered is how to ex�
tract the interesting information of the time varying volume
sequences� This question implies that we de�ne �rst the
focus of interest of such sequences� In our approach we con�
centrate on the areas with strong variation over time� A
measurement of this variation can be found by inspecting



the signals wavelet transform� It has been shown that sin�
gular points within the data can be determined from the
signals multiscale representation� Additionally� the Lips�
chitz exponents of such singularities can be measured from
the asymptotic decay of the wavelet coe�cients� as the scale
goes to zero� The Lipschitz exponents characterize the local
regularity of the signal� and can thus be used for the dis�
crimination of those regions which should be reconstructed
within high accuracy� In between these regions a less accu�
rate reconstruction will be applied�

In the following� a short introduction to the theory of
wavelet transforms is given� together with a short expla�
nation of how to evaluate the volume rendering integral on
multiresolution spaces� We will then focus on the singularity
detection procedure and the integration into our approach
will be outlined� Finally� some speci�c implementation de�
tails will be given� and results based on two data sequences
will be compared�

� Wavelet Transforms

Wavelet transforms can be seen as an e�ective tool to sep�
arate and analyse multiscale phenomena of the underlying
data� Due to the fact that wavelets are well localized in
both time and scale� they provide a useful method to exam�
ine these phenomena locally� This is the reason why wavelet
transforms are of great interest in the �eld of volume ren�
dering� Many researchers have investigated in more detail
the basic concept and theory of wavelet transforms and mul�
tiresolution analysis over the past few years� and some in�
troductions can be found in ���������� and �����

Basically� a wavelet decomposition is built up from scales
and dilates of an in�nite energy� self�similiar basis function
��x	 with
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At each scale �j � the translates of the scaled wavelet func�
tions form a basis of some vector space Wj � which is the
orthogonal complement of some approximation space Vj �
These approximation spaces are built up from the scaling
functions �j

k�x	� which generate a multiresolution analy�
sis �MRA	 of L��R	� if the nested sequence of subspaces
Vj 
 Vj�� �Wj�� has certain properties�

In general� the so called di�erence spaces Wj contain the
information that is lost when projecting a function from
one approximation space Vj to the next coarser Vj��� The
projection operators for a certain function f �x	 into Vj and
Wj respectively can be written as�
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de�ning the smooth information P jf and the detail infor�
mation Qjf which is needed to go from a certain resolution
approximation space to the next �ner one�

The wavelet coe�cients Sj

k andD
j

k can be computed from
the inner products � of the function with the dual scaling
function and the wavelet�
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An e�cient method to perform the inner product calcu�
lations has been proposed by Mallat� whose pyramid algo�
rithm runs in linear time with the number of function sam�
ples ����� Basically� this algorithm stems from the so called
two�scale relation� de�ning the basis functions on a certain
level as linear combinations of basis functions on the next
�ner one� This combination can be expressed with some low
pass and high pass �lter sequences� which have do be applied
recursively on the smooth approximations of the signal�

For the case of separable MRA�s the extension to higher
dimensions can be easily done� constructing the three di�
mensional basis functions from the tensor products of the
one dimensional ones�

An important property of the wavelet transform is� that
the original signal can be reconstructed from its expansion
coe�cients locally�
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Taking this reconstruction property into account� the vol�
ume rendering integral can be evaluated on the projected
signal directly� The major advantage of this change of basis
stems from the sparseness of the projections into the di�er�
ence spaces� Based on the number of vanishing moments
of the wavelet� which is the largest number p for which all
integrals
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vanish� polynomials up to a degree of p�� can be reproduced
without error within the approximation spaces only� This
implies that a large number of coe�cients will be zero or less
than a prede�ned threshold� and can be neglected without
increasing a given error tolerance�

� Multiscale Singularity Detection

For the characterization of signals it is often of major in�
terest to discriminate singular points of the signal� and to
determine those parts where the signal behaves in a less
regular manner� This is due to the fact that singularities
or irregular structures contain most of the interesting signal
information� and often allow one to determine the important
features�

�An inner product of two functions is de�ned as�
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Additional information is given� if one is able to measure
the regularity of the signal at these singularities� This can
be done with Lipschitz exponents� which de�ne the local
regularity of functions�

Given a subset S � D�f	 and a constant M � 
� a
function f�x	 is said to be Lipschitz � � 
 over S� if for two
points t� �t � S the following holds�

jf�t	� f��t	j � M jt � �tj�

For this case we write f � LIPS�M� �	�
As a result it can be shown that f�x	 � C� over S� if

f � LIPS�M��	� If � � � over a certain interval �a� b��
and f � LIP�a�b��M��	� then f is constant over �a� b�� If
the derivative of f�x	 is bounded by some constant K� that
is jf ��t	j � K� and f � C� over an interval �a� b�� then
f � LIP�a�b��M� �	�

In general� increasing Lipschitz exponents indicate a more
regular behaviour� and there is also a strong relationship
between the di�erentiability of f �x	 and the Lipschitz reg�
ularity� If f�x	 � LIPS�M��	 at a point x� with � � n�
then f is n times di�erentiable at x�� For functions that are
discontinous but bounded at a certain point� the Lipschitz
exponent equals 
 at this point�

Another interesting case occurs at sharp peaks� where the
signal tends to be more singular than discontinous� In this
case the Lipschitz regularity is negative at this point�

The extraction of the signals singularities and the com�
putation of corresponding Lipschitz exponents� permits the
classi�cation of parts of the signal� and the distinction be�
tween these parts by considering their local regularity� The
question that remains to be answered is how to detect the
singularities and how to compute the Lipschitz exponents�

Ja�arth ��� proved a general theorem� which states that
the singularities of a signal can be detected from its multi�
scale representation� and that the local Lipschitz regularity
can be computed from the decay of the wavelet transform
across scales�

The key idea is to measure the asymptotic behaviour of
the wavelet coe�cients as the scale goes to the �nest reso�
lution� Formally� the relation between the absolute values
of the wavelet transform and the Lipschitz regularity at a
point x� can be described as�

jWf�s� x	j � A � �s� � jx � x�j�	 ��	

whereWf�s� x	 describes the wavelet transform on a certain
scale s� This relation holds for points x within a neighbor�
hood of x�� but depending on the location of x� the decay
of the multiscale coe�cients behaves di�erently� For points
x at a certain scale s� with jx� x�j � s� ��	 implies a O�s�	
decay� whereas for other points the decay is controlled by
their distance to x�� For practical computations of the Lip�
schitz exponents� Mallat et al� ���� proposed an e�cient
method� which is based on the observation� that the local
maxima of the wavelet transform on every scale de�ne scale�
space curves� Connecting those maxima which proceed from
a certain scale to the next coarser one� the resulting maxima

Figure �� Original signal and local maxima of the wavelet trans�
form� One clearly realizes the maxima lines pointing to the sin�
gular points�

lines point exactly to the singular points of the signal on the
�nest scale �see Figure �	� For isolated singularities the lo�
cal Lipschitz regularity at a point x� can now be determined
from the asymptotic decay of the coe�cients along the max�
ima lines pointing to x�� For a function to be � LIPS�M��	
at x�� it has to be hold that the decay behaves as�

jWf �s� x	j � K � �s�	 ��	

K and � can then be measured� only taking into consid�
eration the local maxima along the scale�space lines� This
allows the discrimination of singular points� and the sep�
aration of parts of the signal taking into account its local
behaviour and characteristics�

� Time�Feature Extraction

Once we are able to detect the singularities of a given signal
as well as to characterize their regularity� the question is how
to integrate this method into a multiresolution approach for
the visualization of time�resolved volume data� Since we
wish to extract those features from the volume sequence
that vary strongly over time� the key idea is to separate
spatially corresponding regions from within each volume�
and to examine their relation in more detail�

Instead of applying the mentioned approach to the time
evolution of each voxel separately� we relate the time evo�
lution of corresponding multiscale components� respectively
wavelet coe�cients �see Figure �	�

Basically� this approach has two main advantages�

� In a pre�processing step each volume can be separately
transformed� and compressed with respect to its sparse
multiresolution representation� During this compu�
tation� no information from neighboring volumes is
needed� and an optimal compression ratio for each time
step is reached� In this way we avoid the storage of the
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Figure �� Tree like data structure to store multiresolution information for each time step� Corresponding multiresolution information is
reorganized as a one dimensional signal� to obtain the time evolution of certain regions�

whole sequence� and we always minimize the memory
requirement� Furthermore� a large number of entries
for each wavelet coe�cient time evolution will be zero�
This is due to the sparse representations of changes in
time� even for scarcely varying structures�

� Due to the fact that we examine the relation between
multiscale components of each volume� we divide low
frequency regions� which remain constant over time
within each time step� from those high �uctuating parts�
which vary strongly� This allows us to separate tur�
bulent or irregular structures as well as to determine
those structures� which are present within all volumes�
This regions can be found by considering all coe��
cients which remain constant within all multiresolution
representations�

Once the compressed multiscale structures for each vol�
ume have been constructed� we examine the time evolution
of each component successively� starting at the �nest level�
For each of the generated one dimensional signals� which
contain information concerning the time behaviour of a cer�
tain region� an additional wavelet expansion has to be com�
puted� The singularity detection process can now be applied
on the generated multiscale representation directly� Inequal�
ity ��	 implies that one has to �nd thoseK and �� which lead
as close as possible to an equality for each scale s� These
values can be found by minimizing the derived �energy��
function

smaxX
s��

�log�jWf �s� x	j	 � log�K	� � � log�s		� ��	

Both� the function value itself and also its �rst derivative�
can be calculated for arbitrary K and �� so that a steepest
descent algorithm to solve the minimization problem can
be used� Starting at a random point on the �nest scale�
successive steps into the direction of the steepest gradient
have to be performed to �nd the next point� Of course this
method will not necessarily �nd the global minima� but it
is often su�cient only to determine the overall behaviour of
the decay along the maxima lines� In practice� this com�
putation has only to be done for a small number of points

on the �nest scale� and some kinds of coarse pre�separation
allow one to distinguish between speci�c classes of singular�
ities� In general� increasing coe�cients indicate sharp sin�
gular peaks with Lipschitz exponent less than zero� discon�
tinous regions are classi�ed by coe�cients that remain con�
stant across scales which implies Lipschitz exponent equal to
zero� while more regular behaviour is indicated by increasing
Lipschitz exponents� Furthermore� one can assume that for
sharply varying regions� the coe�cients on all scales have to
exist� For example� Mallat et al� ���� proved that random
noise can be separated from the original signal� extracting
those singularities for which the scale�space maxima lines
disappear at the next scale�

Considering the evolution of the wavelet coe�cients across
scales� we are able to discriminate points where the time
course behaves singular� and also to estimate the Lipschitz
regularity from the asymptotic decay as the scale goes to
the �nest resolution� These computed values indicate those
singularities which are of interest and de�ne the important
time�features within the volume sequence�

In our approach we take the singular points for which the
Lipschitz regularity is not greater than a given bound� to
determine which regions to reconstruct most accurately� In
between these regions we increase the error tolerance for the
reconstruction process� which allows us to eliminate a larger
number of coe�cients� This method is closely related to
the wavelet probing algorithm� proposed by Deng et al� ����
They split up the signal into smooth segments that can be
compressed separately� based on wavelets which are de�ned
over an interval� Compared to our approach� their method
also prevents discontinuities to be blurred� but instead of
separating smooth segments in between the discontinuities�
we prefer to separate the discontinuities themselves�

Another approach is to enhance only those features which
behave irregularly over a certain time interval� while other
regions will be completely neglected� Based on the gener�
ated multiscale representation� this method implies the stor�
age of those coe�cients� which are needed to reconstruct the
irregular structures without error� All other parts will be ne�
glected� Due to the increasing support of the basis functions
on the coarser level� they will overlap most of the singular



points� and the smooth approximations of the signal in be�
tween these points are retained�

In general� the additional transformation and singularity
processing of the time evolutions leads to increased compres�
sion of the time domain� This allows the processing of large
scale time�resolved sequences in their entirety on standard
workstations without additional memory�

� Implementation

One major goal of our implementation is to integrate the
earlier proposed multiresolution framework ���� into the cur�
rent approach for the visualization of time�resolved volume
sequences� To visualize volume data which corresponds to
a certain time step� the multiresolution representation for
that time step has to be reconstructed from the transformed
time sequence �rst� Each wavelet coe�cient for that time
step has to be reconstructed from the already compressed
multiscale time evolution of this coe�cient� The process�
ing of these time evolutions� including the singularity de�
tection and the determination of the Lipschitz regularity� is
performed for each coe�cient separately in a pre�processing
step� As a result� we obtain a multiresolution representation
for each coe�cient� which describes the �uctuations over
time at di�erent scales� The standard reduction and com�
pression techniques �thresholding� quantization� coding	 can
then be applied to each multiscale �uctuation separately�

This approach increases the numerical complexity of the
rendering process to some extent� but due to the interpo�
lating properties of the basis functions used� arbitrary inter�
polations between successive data sets can be reconstructed�
Even for static regions the reconstruction process will be ac�
celerated� due to the sparseness of the multiresolution rep�
resentation�

��� Choice of basis

Two basic requirements have to be taken into account in
choosing the optimal basis functions for our implementa�
tion� On the one hand� the support of the basis functions
used should be as compact as possible� accelerating the re�
construction process as much as possible� On the other
hand� the number of vanishing moments of the wavelets used
should be as high as possible� leading to better compression
ratios� For the expansion along the time axis� we are also
interested in good interpolation properties of the basis func�
tions� For the generation of smooth interpolants between
successive time steps� the basis functions should have good
regularity properties and should oscillate as little as possible
between given samples�

Another important feature that has to be considered� is
the maximal Lipschitz regularity we want to be able to de�
termine� Basically� one needs to use wavelet basis functions
with more than � vanishing moments to characterize sin�
gularities of Lipschitz regularity �� Only in this case the
Lipschitz regularity of the function can be measured from
the decay of the wavelet coe�cients along the maxima lines�

Based on these preconditions� we decided to use di�er�
ent wavelets for the construction of the three dimensional
multiresolution representations of each static volume� and
for the additional processing of the time evolutions of each
multiscale component� For the �rst task we used Daubechies
wavelets with two vanishing moments �see Figure �	� They
are the most compact orthogonal ones with respect to the
number of vanishing moments� Due to the orthogonality of
the Daubechies wavelets� they are dual to each other� and
the same basis functions can be used for the construction
and reconstruction process�

For the singularity detection process we used non�ortho�
gonal� but compactly supported B�Spline wavelets� This
choice was motivated by the regularity property of polyno�
mial splines� which are indeed the interpolants which os�
cillate the least among all other interpolants for a certain
degree� Unser et al� ���� proposed a general framework for
the generation of polynomial splines of certain degree and
the corresponding �lter sequences for the wavelet expansion�
This allows us to increase the number of vanishing moments
arbitrarily� Due to the higher Lipschitz regularity that can
be characterized� polynomial splines can be adapted e��
ciently to the kinds of irregular structures one wants to be
able to detect�

The disadvantage of standard B�Splines is that they are
not orthogonal� and that the corresponding dual basis func�
tions are of in�nite support� This leads to in�nite �lter
sequences� either for the construction� or the reconstruction
process� As we are mostly interested in simplifying the re�
construction process as much as possible� it has to be done
with the compactly supported B�Splines wavelets� To avoid
the in�nite �lter sequences for each stage of the construction
process� we �rst project the original signal in the dual basis�
which allows to use the compactly supported �lter sequences
for the wavelet transformation of the one dimensional time
evolutions� Finally� we perform an additional change of ba�
sis of the multiresolution information� reprojecting into the
standard B�Spline basis� Because the duals span the same
residual spaces as the standard B�Splines do� we do not have
to worry about errors during the projections from one basis
to another� Care has to be taken for the accurate evalua�
tion of the projection operators� As the corresponding �lter
sequences are in�nite� boundary problems and the error due
to the necessary cut o� of the sequences have to be taken
into consideration� We used an inverse mirroring at the
start and end points of the signal� and �lter entries below a
certain threshold are neglected�

Within our implementation cubic B�Spline wavelets �see
Figure �	 with � vanishing moments have been applied for
the examination of the time developments of the multiscale
components� As a result� sharp variation points such as
peaks� discontinuities or turbulent structures with a Lips�
chitz regularity between 
 and � can be detected� A good
localization of varying structures has been reached in this
way�



Figure �� Daubechies wavelet with � vanishing moments� The
support of the basis function is ��

Figure �� Compactly supported cubic B�Spline wavelet� The
number of vanishing moments is � and the support is ��

� Results

The implementation has been tested on two volume sequen�
ces� The �rst data sequence� which was built up from ��
���	 volume data sets� was generated from a time vary�
ing stochastic fractal� simulating three dimensional cloud
structures� The generation process is based on Perlins hy�
pertexture function ����� adding multiple scaled and dilated
copies of a random noise function� to obtain the typical ��f�

spectrum of stochastical fractals� Based on Taylors frozen
turbulence hypothesis ���� the variations of the fractal in
time are equivalent to its spatial behaviours and properties�
This observation allows the generation of each time step as a
snapshot of a four dimensional stochastic fractal� To show as
well as possible the application of the proposed time�feature
extraction technique� we modi�ed the generation process lo�
cally� Away from the center of the volumes� we decreased
the number of summed octaves used for the simulation of
the fractal in time� neglecting more and more high frequen�
cies� Within a sphere around the midpoints we simulated
the time behaviour on full resolution� which leads to high
�uctuating structures inside the sphere� whereas outside the
sphere all structures remain constant� In this way� we obtain
for each time step a three dimensional fractal with equiva�
lent properties within the whole volume� but with di�erent
properties for certain regions in time� Figure � shows a snap�
shot of an arbitrary time step from this sequence� The top
left side shows the reconstructed volume� rendered on full
resolution out of the whole sequence with ��� MB� On the

top right side the same time step is reconstructed out of the
already compressed sequence� which consists only of �� MB�
One can clearly observe that almost all information is re�
tained� whereby for this speci�c example the compression of
the time evolutions saved ��
 MB of memory� The render�
ing method we used for this example is well adapted to the
visualization of low albedo� low density volumes� summing
up the density values along the ray only� Figure � below
shows the same time step as above� but visualized based on
the described time�feature extraction method� On the bot�
tom left side we retain all coe�cients� which contribute to
the detected singularities in time� up to a Lipschitz regu�
larity of �� Due to the fact that on the coarser resolution
level the static regions are in�uenced by coe�cients that
belong to the turbulent areas� the smooth approximations
of the volumes contribute to these static regions also� It
can be realized away from the center� where the structures
are more and more blurred� This behaviour leads to better
compression ratios� and also allows one to discriminate those
structures� which vary strongly over time� The application
of the time�feature enhancement approach is shown on the
bottom right side of Figure �� We only reconstructed those
structures accurately� which behave irregular over time� All
other regions� for which we do not determine any singular�
ities within their time evolution� are suppressed� The time
varying structures are retained completely within the sphere
around the center� whereas outside the sphere all informa�
tion is neglected�

The second time series was built up from ��� ��	 vol�
umes� which are homogeneous everywhere� but a high den�
sity object� moving along a sine wave from one corner of
the volume to the opposite� An interesting behaviour of
the multiscale processing of each time evolution of certain
regions appears� if we use only the coarsest levels for the re�
construction of each time step� In our example we took only
the � �left side of Figure �	� respectively � �right side of Fig�
ure �	 coarsest levels out of �� Due to the low pass �ltering
in the time domain� more and more global information from
neighboring time steps is projected into each volume� The
amount of information that is integrated from other time
steps is controlled by the level up to which the reconstruc�
tion is performed� Using the coe�cients from all resolution
levels� each volume can be rebuilt completely� With decreas�
ing resolution level� more and more neighbors contribute to
the �nal volume� This can be seen on the right of Figure ��
where we obtain information from the whole sequence within
one static volume� Basically� this technique can be seen as
a blurring in the time domain� which allows to examine the
location of certain objects at di�erent time steps and their
movement over time in more detail�

� Conclusion

Amemory minimizing approach for the visualization of time�
resolved volume data based on multiresolution representa�
tions of both the spatial distribution and the time evolutions
of multiscale components has been proposed� With respect



to the evolution of certain features across scales� those re�
gions that vary strongly over time can be separated and
rendered prominently� whereas scarcely varying structures
can be suppressed� This leads to an additional compression
of the overall amount of data� and enhances the understand�
ing of a wide variety of special kinds of volume data to some
extent� Even for the extraction of irregular structures from
time varying �uid �elds� but also for the discrimination of
static parts within time�resolved sequences� the presented
method leads to good results� Of special interest within this
context is the extraction and prediction of motion paths for
certain well de�ned objects� Due to the fact that the wavelet
transform splits up the frequency domain into dyadic fre�
quency bands� a careful examination and comparison of the
time behaviour of corresponding bands could give some new
insights to these kinds of problems�

The main disadvantage of the proposed method is the in�
creasing numerical complexity of the rendering process� In
addition to the time consuming evaluation of the rendering
integral based on the wavelet expansion of the original vol�
ume� a further reconstruction step has to be done� which
generates for each time step the multiresolution representa�
tion� Additionally� a complex pre�processing step has to be
performed� determining the singularities and the local Lip�
schitz regularity� On the other hand this process has to be
done only once� and due to the spatial localization of the
wavelet transform� the presented approach can be easily im�
plemented on distributed memory� parallel computers� Di�
viding the volume into subblocks� which will be distributed
over the nodes� the wavelet transform of each of these blocks
can be performed individually� Of course this forces some
global communication depending on the length of the �lter
sequences� but once the multiresolution representation for a
certain block has been computed� equivalent subblocks for
the next time steps are stored on the same node� The sin�
gularity detection procedure based on the time evolutions of
the subblocks wavelet coe�cients� as well as the �nal com�
pression of these blocks� can then be done locally�
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Figure �� Stochastic Fractal� top left shows a time step rendered on full resolution from the sequence with ��� MB� top right
shows the same time step rendered from the compressed sequence with �� MB� bottom left shows the time step reconstructed
only from those coe�cients� which contribute to varying structures� bottom right shows the reconstruction of the varying
structures only�

Figure �� Moving object� left shows the reconstruction of a certain time step from the � coarsest resolution level� right shows
the same time step reconstructed from the � coarsest resolution level�


