Parallel Volume Rendering

Ridiger Westermann

Scientific Visualization Group

German National Research Center for Computer Science

Sankt Augustin, Germany

Abstract

During the last years serveral methods have been developed
to visualize three dimensional volume data on multiprocessor
computer systems. Most of these algorithms were strongly
adapted to the underlying target architecture, and often did
not take account of requirements such as scalability, portabil-
ity, or memory minimization. The following paper outlines
a new approach to rendering large scale volume data on dis-
tributed memory parallel computers. Waithin this framework,
the only limiting factor concerning the resolution of the pro-
cessed data is the node local memory. Furthermore, port-
ing to other multiprocessor systems s straight forward, and
scalability with increasing numbers of processors is achieved.

Keywords and Phrases: volume rendering, massively par-
allel computer, MIMD

1 Introduction

The visualization of three dimensional volume data is one of
the most time consuming and memory intensive techniques
in computer graphics. Although there exist fast back-to-
front projection methods (splatting [6][17] or cell-projection
[18]) that allow for almost interactive speed on high perfo-
mance single processor workstations, the general front-to-
back evaluation of the transport equation integral [5] results
in rendering times far from interactivity. This is due to the
numerical complexity of the solution process. Only the use
of acceleration techniques, taking advantage of the underly-
ing data, overcomes these difficulties in some cases.

A further restriction becoming more and more impor-
tant is the limited memory capacity of single processor ma-
chines. The rapidly increasing resolution of the available
data sets makes it almost impossible to process these sets
on the whole. With the development of massively parallel
supercomputers, the possibility of rendering high resolution
volume data in an acceptable amount of time has arrived.
Based on specialized multiprocessor architectures, a variety
of volume rendering algorithms have been developed during
recent years. Most of these algorithms were strongly wed-
ded to particular systems and neither portability onto other
architectures nor scalability with increasing number of pro-
cessors was accounted for. In addition, a rather restricted

and memory intensive evaluation of the physically based ren-
dering integral has been applied in many implementations.

1.1 Goals

Since we are interested in a general framework for the visual-
ization of scalar volume data sets on message-passing based,
distributed memory multiprocessor architectures, some ba-
sic requirements have to be taken into account throughout
the implementation:

e portability => message-passing based
e scalability

e load balancing

e memory minimization

e coarse grain parallelization

e communication minimization

To reach these aims, a minimum of machine dependent
features is integrated into the presented approach.

2 Volume Rendering Integral

The basic problem one is confronted with in the visualization
of three dimensional volume data is the accurate evaluation
of the well known volume rendering integral

t1 - ft o(s)ds
I(tosts) = / a(t)e de=i0 " gy (1)
t=to

where o(s) defines the attenuation function, ¢(¢) is the vol-
ume source term, and to and #; are the start and end points
on the view ray. Starting at the point of view, the light along
a ray scaled by a material dependent attenuation factor is
summed up to get the final intensity. The general formula-
tion, which also takes into account multiple and higher order
scattering within the volume, along with the lighting effects
of external sources, yields a more complex equation. As we
are interested in comparing our results with other parallel
rendering algorithms based on equation (1), this reduced

formulation will also be used in our implementation. Never-
theless we will show, that a general solution of the complete
transport equation integral, considering second and higher
order rays, can be easily integrated into our approach. The
general solution of equation (1) can be calculated using one
of the standard integration rules as instances of the more
general Newton-Cotes-Quadrature formulae [15]. Using an
Eulerian sum for the evaluation of the outer integral, and
assuming the source term and the attenuation factor for a
certain segment ¢ as constants ¢; and «;, the integration is
reduced to a finite sum over the accumulated opacity

I:quak ﬁ(l—a,‘) (2)

which can be evaluated in time linear in the length of the ray.
The volume functions, which are defined on the grid points
of a regular, three-dimensional, discrete grid, are continued
between the grid points using tri-linear or higher order in-
terpolation methods.

To speed up the complex evaluation of the rendering
integral, many acceleration techniques are available, tak-
ing advantage of the properties of the underlying signal.
The most frequently used acceleration techniques, which
can now be considered standard, are presence-acceleration,
homogeneity-acceleration and a-termination [2][7]. The for-
mer takes advantage of a reorganization of the volume data
into a pyramid data representation [19], allowing fast traver-
sal of empty or homogeneous subblocks, while the latter
stops the integration after a certain attenuation is reached,
and the contribution of further values is negligible.

Due to the fact that these acceleration methods are be-
coming more and more a standard in current implementa-
tions, they should be integrated into parallel rendering ap-
proaches as well.

2.1 Previous Work

The majority of parallel volume rendering algorithms can
be classified into one of the two ray tracing variants:

e object space driven
e image space driven

The former technique is based on a volume data trans-
formation to align the volume coordinate axis with the view
coordinate axis, while the latter resamples the volume along
the view rays.

Two object space methods, which utilize factorings of ro-
tations into a sequence of one-dimensional shears [3], where
proposed by Schréder et al. [13] and Vezina et al. [16].
Both implementations take advantage of fast nearest neigh-
bor communications between processing nodes on the CM2
respectively the Mas-Par MP-1.

Schroder and Stoll [14] introduced another image space
method that describes the ray tracing step as discrete line
drawings, reducing the communication patterns to slice-wise
toroidial shifts along specific axis.

The above mentioned implementations are intimately re-
lated to specialized SIMD architectures. As a result the
former uses large amounts of memory together with an ef-
fective pre-filtering of the data during the shear steps, while

the latter exhibits rather poor scalability with increasing
number of processors.

Both methods are closely connected to the fast nearest
neighbor communication primitives of the underlying net-
work implying fine grain parallelization only.

Hsu [4] proposed a distribution of smaller subvolumes of
the original data set to the processing elements of a DECmpp
12000/Sx, where the rendering is performed on each node
separately. According to the actual view direction, a front-
to-back sorting of the subblocks has to be performed, along
with a final global communication step to merge the result-
ing subpictures.

A high speed implementation on a DASH shared mem-
ory architecture was presented by Nieh et al. [12]. Due to
the fast memory access, coupled with first and second order
level data caches and the utilization of spatial data coher-
ences, impressive results were achieved. In terms of the over-
all rendering times, a comparison with other parallel imple-
mentations appears rather difficult. This is due to the close
adaption of the implementation to the specialized shared
memory architecture and the hardware supported handling
of data cache structures. A drawback of this method, even
for the interconnection of large numbers of processors, is
the competetive memory access which leads to non optimal
scalability. Additionally the hardware does not take advan-
tage of explicit knowledge of the underlying data domain
and caches neighboring data segments only.

Montani et al. [10] proposed to replicate the volume data
along processor clusters on a MIMD nCUBE architecture,
taking advantage of the fast communication primitives be-
tween processing elements inside a certain cluster. Each
cluster is respounsible for a certain region of the screen, pro-
cessing only the corresponding rays. The bottleneck of this
implementation appears to be scalability with the size of
the cluster as well as the immense overhead, arising from
the replication of the data across clusters.

A fully message passing based algorithm was proposed
by Ma et al. [9] on a CM5 MIMD architecture. The sub-
division of the volume data into smaller subblocks together
with their assignment to different nodes allows for indepen-
dent rendering of these blocks. Due to the associativity of
the over operator — used to compute the color and opacity
accumulation during the rendering process — the sub pieces
of the final screen image, which exist on each node, can be
merged into the final image. With respect to the indepen-
dent but complete rendering of each subblock, the size of
the screen tiles is strongly related to the extend of the sub-
blocks. Furthermore, a large region of the whole screen has
to be stored, and merged with other subregions on different
nodes, to get the final image.

2.2 Basic Ideas

A major drawback of the majority of the mentioned paral-
lel volume rendering algorithms, with the exception of the
one proposed by Nieh, is the impossibility to perform a gen-
eral front-to-back evaluation of the transport integral. In
this context, the integration of multiple scattering effects,
volume shading, and any of the standard volume rendering
acceleration techniques, seems to be rather difficult, if not
impossible. Additionally, great effort is required to adapt
these implementations to other architectures. Even if this

is possible, the resulting performance will often be unac-
ceptable, due to the close relationship between the applied
methods and specialized hard- or software architectures.

The present paper introduces a new general approach to
parallel volume rendering on distributed memory multipro-
cessor systems, which avoids the disadvantages of the pre-
viously described methods. Taking into account the grow-
ing distribution of massively parallel MIMD systems that
are based on the standard message-passing communication
primitives, a general approach should fit into this class of
systems. In this context it is most important to rid the im-
plementation of any machine dependent features, as well as
to adapt the used communication patterns to the character-
istics of distributed memory parallel computers.

Instead of traversing the volume based on the original
volume elements (voxels), a much coarser resolution is as-
sumed in our implementation, treating subblocks of many
voxels as the new volume primitives. These macro voxels
are equally distributed over the nodes. Based on the new
larger voxel size, fast ray-generators can be applied, deter-
mining the subblocks that are hit by a certain view ray.
These blocks have to be fetched from other nodes, forcing a
global communication step, if they do not exist in the local
memory of the requesting node.

A further subdivision of the screen into smaller regions
and the utilization of the spatial coherence of neighbor-
ing rays within these regions, leads to a reduced number
of macro voxels that have to be fetched from other nodes.
These macro voxels can be stored in local memory, simulat-
ing an explicit data cache structure.

This approach is closely related to the method used by
Nieh for parallel volume rendering on a shared memory
DASH architecture. The advantage of our method is its
portability to other distributed memory multiprocessor sys-
tems together with a more rigorous exploitation of data do-
main knowledge during the rendering process.

In the following the applied data distribution scheme used
in our implementation will be introduced, followed by a de-
scription of the so called ray-generator process. Some imple-
mentation dependent details will be given, and the results
of our approach will be discussed.

3 Data Distribution

One of the major goals of our approach is portability onto
other distributed memory multiprocessor systems, together
with a minimization of the amount of memory needed dur-
ing the rendering process. In this context a complete and
coherence free distribution of the data incurred during the
rendering process should be achieved, avoiding dependency
of a special machine architecture. To reach the highest pos-
sible efficiency, the distribution of the volume data as well
as the screen data all over the nodes is performed in our
implementation.

3.1 Volume Data Distribution

The volume data is divided into smaller but connected sub-
blocks or macro voxels of equal size. The subblock resolution
should be equal for each major axis so as to be independent
of arbitrary view directions. To support interpolations and

1€

9\]\1_

Figure 1: Sequence of subblocks that are traversed while
processing a certain screen region

gradient computations, an additional shell with an extent of
two voxels has to be stored with each subblock.

In general, more than one block exists on every node
depending on the macro voxel resolution. For each of these
blocks the integration of the previously mentioned presence-
or homogeneity-acceleration can be applied easily, resulting
in the separate extraction of empty or homogeneous subre-
gions from within each block. In general, this will force some
communication with other nodes, but it has to be done only
once as a pre-processing step. Of course this kind of data ex-
tension leads to a more memory consuming representation,
but speeds up the rendering process to some extent.

If we assume an independent evaluation of the rendering
integral for each ray, and each data item has to be fetched
from other nodes, the total number of original voxels sent
over the network can be calculated as

N?«kxRES (3)

where N is the number of rays, RES the resolution of the
original volume data set, and k& a view direction dependent
factor. This number, not taking into account further voxels
needed for interpolations, increases to

RES 3

—_— %

SUBRES SUBRES (4)
for our subdivision scheme, where SUBRES is the resolu-
tion of the macro voxel. This number is a multiple of the
original amount, but this comparison only makes sense, if
the communication costs for sending a block of n voxels is
equal to the costs for sending n times one voxel. Todays mul-
tiprocessor architectures achieve their highest communica-
tion rates when transfering large, connected blocks. This is
due to startup overhead including address calculations and
global routing mechanisms. As a result the somewhat larger

N% sk«

amount of data transmitted in our implementation does not
lead to a proportional increase of the overall communication
times, taking into account that we transfer large, connected
data segments only. From the point of view of distributed
multiprocessor systems with local memory, this is the pref-
ered approach to using global communication. Whenever
possible, many small block communication steps should be
replaced by few large block communication steps. Even for
our implementation we find that for high resolution sub-
blocks the communication times are almost negligible, com-
pared to the overall rendering times.

In a typical host-node environment the host reads the
data slice by slice or subblock by subblock, and distributes
partitions to the nodes on which the corresponding macro
voxel “lives”. This method turns out to be rather slow but
does not depend on a globally accessible file system, from
which each node can read his subblocks separately.

Apart from the above, the other main advantage of the
described distribution scheme lies in clustering and distribut-
ing the screen data. Due to the spatial coherence of neigh-
boring rays and information about the actually fetched sub-
block, overall communication costs can be minimized.

3.2 Screen Data Distribution

In addition to the volume data layout across the nodes, a
subdivision and distribution of the screen data is also per-
formed. It is more correct to talk about task distribution
than data distribution in this case, because the pixel data
will be generated after the distribution process. This strat-
egy implies the assignment of a certain number of screen
regions to each node, which have to compute the intensity
distribution for the corresponding pixels.

To obtain optimal load balancing, a non-static distribu-
tion strategy for the screen regions has to be found. As-
suming that each node processes more than one region, an
optimal distribution can be computed in a pre-processing
step. Starting with a static assignment, every node shoots
one or more rays that are equally distributed over the sub-
screen areas, through the volume, and sumes up the lengths
each ray stays within the volume. Finally, each node carries
a list with the accumulated lengths, which can be used as
a load estimator for the processing of a given region. Each
node sorts his local list in decreasing load order and broad-
casts the list along with a specification of the corresponding
subscreens to the host. The host merges all incoming lists to
obtain an ordererd global load list for all subscreens which
have to be processed. At each time step a node sends a
request to the host announcing its willingness to process an-
other region. The host sends back the identification of the
actual subscreen determined by a pointer into the load list,
and increments this pointer by one. Due to the max-to-min
order of the list, computationally complex screen regions
will be processed earlier, which results in an almost optimal
load balancing as a function of the overall number of screen
regions and processors.

Based on the described clustering of the view rays, their
spatial coherence can be utilized during the rendering pro-
cess. In many cases, neighboring rays hit the same macro
voxel on their way through the volume. The global commu-
nication step to fetch these blocks need be done only once.
To determine which subblock is hit by a given ray, efficient
methods (so called ray-generators) can be applied.

4 Ray-Generators

Based on the described distribution strategies, the front-to-
back traversing of the volume data to evaluate the rendering
integral has to take place. At any time, every node processes
a certain subscreen, storing all necessary information for the
corresponding pixel values and view rays respectively. For
each pixel the ray from the view point through that pixel as
well as the intersection with the volume has to be computed.
To obtain the final intensity for a certain pixel, all voxels
which are hit consecutively by the corresponding ray have
to be determined. The generation of this sequence can be
accelerated drastically using so called ray-generators [1] [11],
which are based on a uniform subdivision of the traversed
space.

Instead of applying the ray-generator process based on
the subdivision given by the original data resolution, the
virtual macro voxel resolution will be taken into account (see
Fig. 2). As a matter of fact, the next hit with a macro voxel
can be determined using only additions and comparisons.

4.1 Traversing

For each ray the actually hit subvolume can be extracted
according to the described method. In Figure 1 a sequence
of subvolumes is outlined, which have to be fetched for a
certain screen region. Due to the spatial coherence of rays
belonging to the same region, each subvolume that is hit will,
in most cases, be traversed by several rays. Once the macro
voxel has been fetched, the integration process for all these
rays can be performed, avoiding multiple fetch operations
for the same subblock. The traversal of the macro voxel
can be done using equation (2), interpolating between the
original voxel values within this block. If there is a need
for different blocks on the same node, only the nearest one
in relation to the viewpoint will be fetched. If this block
does not exist in the local memory of the node, it will be
fetched from another node in a general communication step.
For each ray that determines an intersection with the actual
subvolume, the traversal of that block takes place and the
next cell to traverse will be determined immediately.

The same method works equally well for the integration
of higher order rays which might be shoot from a given sam-
ple into other directions, taking advantage of the spatial co-
herence of n-th order rays starting on a certain ray of order
n-1. A disadvantage is that the integration of higher order
rays generally requires more than one temporary subblock
on each node. Also the spatial coherence will be lost with
increasing ray order.

Due to the applied image space parallelism coupled with
the front-to-back traversal of the volume subblocks, all pre-
viously described acceleration techniques can be easily inte-
grated into this approach. Totally empty or homogeneous
macro voxels do not have to be sent, and the integration step
size can be adapted to the underlying subblock quantities or
the accumulated opacity.

Another well known and often used technique is the ex-
traction of iso-surfaces from within the volume [8]. Based on
a certain threshold, only regions in which this threshold is
hit are extracted and visualized. The visualization of these
iso-surfaces can be accomplished by applying different shad-
ing models to the surface gradients. The gradient vector for

oA
ﬁc/ LY

DY AX LX
D

Figure 2: Uniform subdivision and cell traversal process
based on macro voxel resolution. LX,LY and LZ are the
distances from plane to plane. DX,DY and DZ specify
the normalized ray direction. AX, AY and AZ are the dis-
tances from the entrance point of the ray to the planes
parallel to the axes. Furthermore the distances from the
entrance point to the planes on the ray are PX,PY and
PZ. Given TX = ££.TY = £L and TZ = £%£, and
PX = 2X PY = 4% and PZ = £Z, the minimum of the
distances PX, PY and PZ is the actual distance to the exit
point. The new values of PX, PY and PZ can be computed

from their old values and the values of TX,TY and TZ.

a arbitrary location in space can be computed by interpo-
lations between the gradients defined at the discrete voxel
values. These gradient vectors ¢ = (g, gy, g-) for a lattice
point (z,y, z) are estimated from the neighboring voxel val-
ues using central differences:

gz=f(I—1,y,Z)—f(I+1,y,Z) (5)
gy=f(a;,y—1,z)—f(z,y+1,z) (6)
gz=f(a:,y,z—1)—f(z,y,z+1) (7)

If a certain threshold is given, each node can process his
local subblocks, checking if a hit with the surface is possible
or not. If there is no hit possible, the corresponding subblock
can be skipped, and needs never be transferred during the
iso-surface extraction process.

5 Memory Requirement vs. Speed-up

Although one major goal of our approach is the memory
minimization during the rendering process, even for imple-
mentations on loosely connected workstation clusters, pro-
vided with large scale local memory, this requirement be-
comes less important in relation to the overall speed-up. A
more memory intensive but faster extension of our approach
is the implementation of an explicit data cache structure
with adjustable number of cache segments. Before the pro-
cessing of a certain screen region takes place, each proces-
sor computes all macro voxels which will be fetched during
the traversal process. While a processor is waiting idle for

the transmission of a requested subblock, it sends further
requests to other nodes for subblocks that will be needed
later. Upon transmission of these blocks, they are stored in
the segments of the data cache structure. Each time a given
macro voxel is required, the node traverses the cache list
first, checking whether this block has already been fetched
and transmitted. Of course this method increases the total
amount of memory to some extent, but minimizes the over-
all idle times and prevents bottlenecks due to requests from
different nodes for the same subblock. This strategy can
be extended efficiently if the data cache structure is large
enough to take up all subblocks that will be fetched dur-
ing the processing of a certain screen region. All requested
blocks are stored within the cache segments and can be used
during the processing of the next screen region. If the host
tries to distribute neighboring screen regions to the same
node, a large number of cache segments can be used for
the evaluation of the next region. As another possibility
the nodes themselves could find and process the next region
within their neighborhood. In this case the host would be
responsible to store a flag for each screen region, indicating
whether this region has already been processed.

The explicit data cache structure reduces the total num-
ber of global communication steps, and benefits from the
spatial coherence of rays belonging to neighboring screen
regions.

6 Implementation

Our approach has been implemented on a 64 node CM5
(TMC) with partitions of 16, 32 or 64 nodes. Each parti-
tion is managed by a local partition manager, which is also
respounsible for the host program in our host-node imple-
mentation. Each node is provided with a Sparc 2 processor
along with 32 MB of local memory.

The host is responsible for receiving the processed sub-
screens from the nodes and flushes the evaluated intensity
values to a X/Motif window. Additionally, the host broad-
casts visualization parameters, that can be changed interac-
tively by the user, to the nodes. All communication was
perfomed using the CMMD message-passing library with
the restriction to only a few communication primitives, fa-
cilitating fast and easy implementation on other message-
passing based systems. In this context, the only primitives
we used in our implementation were CMMD-send-async and
CMMD-receive-async. The routines perform a non-blocking
sent /receive operation.

A node which wants to fetch a subblock from another
node, first sends an asynchronous request to the destina-
tion node. Two bytes have to be transferred that specify
the number of the subblock on the destination node and
the definite identification of the source node within the ac-
tual partition. Subsequently, the source node has to poll for
the transmission of the requested block or for requests from
other nodes. If a node receives a request for a certain sub-
block, an asynchronous send operation with the requested
block is performed.

The disadvantage of this protocol is that there have to
be distinguished synchronization points, at which the nodes
perform the polling to check the network for incoming mes-
sages from other nodes. This task is performed at every time
a node starts traversal of a new subblock.

7 Results

The implementation has been tested with three data sets
consisting of 256, 512° and 1024® 8 bit voxel values. All
measurements have been performed with a zero length data
cache structure, storing only the actual subblock which has
to be processed. To show the full scalability of the presented
method, the implementation has been tested on all available
partitions of the CM5. Tables 1-7 show the speed up due
to the increasing number of processors. To be most flexi-
ble, the resolutions for both the macro voxels (SB) and the
screen regions (SS) have been changed independently. To
streamline the behavior of the proposed method in more de-
tail, all partitions have been compared using a fine to coarse
grain parallelization. For each partition the rendering times
as well as the communication times for different resolutions
have been measured. The final times are average times for
a 360 degree rotation with a 5 degree increment around the
y-axis.

It turns out that a larger subblock resolution leads to
shorter rendering times in general, profiting from the fact
that only a few hits with the macro voxel have to be deter-
mined. With constant subblock resolution, the overall ren-
dering times decrease with growing resolution of the screen
regions. This depends on the implementation of the ray-
generator which takes advantage of the spatial coherence
of the rays, and the fact that fewer subscreens have to be
processed on every node. In the case of much larger sub-
screen extents than subblock extents, the rendering times
grow rapidly, because more and more coherence between
neighboring rays is lost. We see the opposite behavior for
much larger subblock extents than subscreen extents. In
this case the rendering times decrease due to the spatial co-
herence. Nevertheless, this leads to an increase of the com-
munication times. Large subblocks together with relatively
small subscreens result in a large number of screen areas on
each node, for which the blocks have to be fetched indepen-
dently. On the other hand a smaller subscreen size takes
better advantage of the spatial coherence and for a given
region fewer subvolumes have to be fetched.

Due to the complete and coherence free distribution of all
the used data segments, the only limiting factor for the reso-
lution of the processed volume data sets is the local available
memory on every node. Even for a 16 nodes partition, this
allows us to render data sets up to 512° (see Table 1-2).

The full adjustability of either the subvolume size or the
subscreen size enables us to determine precisely the opti-
mal resolutions in relation to the underlying target archi-
tecture. For larger subvolumes, the amount of memory
transferred during the traversing process increases rapidly,
while neighboring rays are much more able to take advan-
tage of their spatial coherence. On the other hand, larger
subscreens change the behavior to the opposite, also forc-
ing frequent communication steps in addition to decreasing
subblock sizes.

This adjustibility makes the implementation fully adap-
tive to other system architectures, taking advantage of the
special structure of the nodes as well as a given intercon-
nection network. Using high performance nodes with large
local memory but rather poor transfer rates favors increas-
ing subblock sizes. For computationally weak nodes, which
are connection via high performance networks, a decrease of
the segment resolution leads to better performance.

We also tested the explicit data cache structure, and ad-
justed the number of cache segments to take up all subblocks
which are traversed for a given screen region. The overall
rendering times remained constant, but the communication
times decraesed approximately 20 - 30 %, due to the mini-
mized global fetch operations and idle times.

8 Conclusion

A fully scalable and less memory intensive approach for the
visualization of three-dimensional data sets on distributed
memory multiprocessor systems has been presented. Due
to the applied data distribution schemes, only the locally
available memory on each node limits the resolution of the
volume to be visualized. In addition to the distribution of
the original data set across the nodes, only one further mem-
ory segment has to be allocated, to store the subblock that
is actually fetched from another node. Based on the straight
forward front-to-back processing together with the subdivi-
sion of the original data set into connected subblocks, a gen-
eral evaluation of the volume rendering integral can be per-
formed. Furthermore, many acceleration techniques based
on subblock quantities can be applied.

The flexibility to accommodate the macro voxel resolu-
tion as well as the subscreen resolution, allows one to switch
between less or more communication intensive strategies,
based on a used architecture.

Due to the fact, that only a few standard message pass-
ing primitives have been used, the presented approach is
fully portable onto other message passing based machines or
workstation clusters. In general, only the moduls in which
the communication takes place have to be adapted. They
can also be implemented on shared memory architectures.
The introduced data cache structure allows a switch between
more or less memory intensive strategies.

9 Acknowledgement

The author wish to thank the TMC-Team of GMD for their
valuable advices concerning the programming of the CMS5,
and Bernd Froehlich for fruitful discussions and comments.

REFERENCES

[1] Amanatides, John and Andrew Woo, A Fast Voxel
Traversal Algorithm for Ray Tracing”. Proceedings of
Eurographics 1987, (Bruessels, Belgium, August 24-28,
1987).

[2] Danskin, John and Pat Hanrahan, ”Fast Algorithms for
Volume Rendering”, Proceedings of the 1992 Workshop
on Volume Visualization, (Boston, MA, October 19-20,
1992).

[3] Hanrahan, Pat, ”Three-Pass Affine Transforms for Vol-
ume Rendering”. Computer Graphics, Vol.24, No. 5,
1990.

[4] Hsu, W.M. "Segmented Ray Casting for Data Paral-
lel Volume Rendering”, Parallel Rendering Symposium,
San Jose, October 1993, pp. 7-14.

[5]

[6]

[18

[19]

Krueger, Wolfgang. ”The Application of Transport
Theory to the Visualization of 3-D Scalar Fields”. Com-
puters in Physics, July 1991, pp. 397-406.

Laur, David and Pat Hanrahan. ”Hierarchical Splat-
ting: A Progressive Refinement Algorithm for Volume
Rendering”. Computer Graphics, Vol. 25, No. 4, July
1991.

Levoy, Marc. 7Efficient Ray Tracing of Volume Data”.
Transactions on Graphics, Vol. 9, No. 3, July 1990.

Levoy, Marc. “Display of Surface from Volume Data”.
Computer Graphics and Applications, Vol. 8, No. 3,
May 1988.

Ma, L-K.; Painter, J.; Hansen, C.D. and M. Krogh. ”A
Data Distributed, Parallel Algorithm for Ray-Traced
Volume Rendering”. Parallel Rendering Symposium,
San Jose, October 1993, pp. 15-22.

Montani, C; Perego, and R. Scopignio. ”Parallel Vol-
ume Visualization on a Hypercube Architecture”.
Workshop on Volume Visualization, Boston 1992, pp.
17-24.

Mueller, Heinrich. "Ray Tracing Complex Scenes by
Grids”, Karlsruhe 1989.

Nieh, Jason and Marc Levoy. ”Volume Rendering on
Scalable Shared-Memory MIMD Architectures”. Work-
shop on Volume Visualization, Boston, October 19-20,

1992, pp. 17-24.

Schroder, Peter and J.B. Salem. "Fast Rotation of Vol-
ume Data on Data Parallel Architectures”. Visualiza-
tion’91, San Diego, October 1991.

Schroder, Peter and Gordon Stoll. ”Data Parallel Vol-
ume Rendering as Line Drawing”. Workshop on Volume
Visualization, Boston, October 19-20, 1992. pp. 25-32.

Stoer, Josef and Roland Bulirsch. ”Introduction to Nu-
merical Analysis”. Springer Verlag, New York 1980.

Vezina, Guy; Fletcher Peter and Philip Robertson.
”Volume Rendering on the MasPar MP-1”. Workshop
on Volume Visualization, Boston, October 19-20, 1992,
pp. 3-8.

Westover, Lee. "Footprint Evaluation for Volume Ren-
dering”, Computer Graphics, Vol. 24, No. 4, August
1990.

Wilhelms, Jane and Allan van Gelder. ”A Coherent
Projection Approach for Direct Volume Rendering”,
Computer Graphics, Vol. 25, No. 4, July 1991.

Williams, L. ”Pyramidal Parametrics”. Computer

Graphics, Vol. 17, No. 3, July 1983, pp. 1-11.

Table 1: Timings in seconds on 16 node partition. Data res-

olution: 256%. Picture resolution: 2562
[SB/SS [16/16 | 32716 | 64716 | 16/32 | 32/32 | 64/32 |
render 29.3 26.6 25.3 34.2 26.8 25.8
comm 2.0 2.6 4.6 1.5 1.8 2.0
final 31.3 29.4 29.9 35.7 28.6 27.8
Table 2: Timings in seconds on 32 node partition. Data res-
olution: 256%. Picture resolution: 2562
[SB/SS | 16/16 [32716 [64/16 [16/32 | 32/32 | 64/32 |
render 13.8 12.7 12.1 16.9 13.3 12.4
comm 1.2 1.5 3.2 1.0 1.0 1.3
final 15.0 14.2 15.3 17.9 14.3 13.7
Table 3: Timings in seconds on 64 node partition. Data res-
olution: 256%. Picture resolution: 2562
[SB/SS [[16/16 | 32/16 | 64/16 | 16/32 | 32/32 | 64/32 |
render 6.3 6.1 5.7 7.7 6.4 6.0
comm 0.6 0.7 2.0 0.4 0.3 0.6
final 6.9 6.8 7.7 8.1 6.7 6.6
Table 4: Timings in seconds on 168 node partition. Data res-
olution: 512°. Picture resolution: 5127
[SB/SS][32/32 [64/32 | 128/32 | 32/64 [64/32 [128/64 |
render 230.6 214.6 210.3 245.3 215.2 209.2
comm 18.6 20.1 37.0 18.6 16.2 18.3
final 248 234 247 263 231 227
Table 5: Timings in seconds on 32 node partition. Data res-
olution: 512°. Picture resolution: 5127
[SB/SS][32/32 [64/32 | 128/32 | 32/64 [64/32 [128/64 |
render 114.1 106.0 104.1 121.3 106.7 103.4
comm 10.8 12.2 28.0 9.2 9.7 12.1
final 124.9 118.2 132.1 130.5 116.4 115.5
Table 6: Timings in seconds on 64 node partition. Data res-
olution: 512%. Picture resolution: 5122
[SB/SS][32/32 [64/32 | 128/32 | 32/64 [64/32 | 128/64 |
render 55.1 52.2 51.6 58.1 52.0 51.3
comm 4.0 4.7 13.2 3.6 3.0 4.9
final 59.1 56.9 64.8 61.7 55.0 56.2
Table 7: Timings in seconds on 64 node partition. Data res-
olution: 10243. Picture resolution: 10242
[SB/SS || 32/64 | 64/64 | 128/64 | 32/128 | 647128 | 128/128 |
render 437 417 411 455 419 409
comm 32 35 100 32 26 40
final 469 452 511 487 445 449

