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1 The Volume Rendering Integral

In our work, we assume a low-albedo emission plus absorption model for volume
rendering [Max95]. Let τ : [0, 1]→ R+

0 be the absorption due to a given density,
and C : [0, 1] → R+

0 the assigned self-emission, both specified via a transfer
function. Then, the transparency of the line segment from t = a to b is written
as

T (a, b) = exp

(
−
∫ b

a

τ(V (s(t)))dt

)
. (1)

The transparency is 1 if the medium between a and b does not absorb any light
and approaches zero for complete absorption. Then, the light intensity reaching
the eye is

L(a, b) =

∫ b

a

g(V (s(t)))T (a, t)dt, (2)

were g(v) = τ(v)C(v). Usually, the emission is not given as a single scalar
intensity, but as an RGB tuple. In this case, Equation 2 becomes a vector
quantity.

2 Splitting the volume integral at ray segment
boundaries

The general volume integrals, Equation 1 and Equation 2, are impossible to
evaluate directly for arbitrary functions τ and Le. Therefore, these integrals are
subdivided into smaller parts and integrated for each part separately. How to de-
rive the equations for the parts and how to build them together are summarized
here. The notation here is based on Max [Max95] and de Boer et al. [dBGHM97]
and they serve as a summary and remainder on where the equations originate.

2.1 Absorption

First, we have a look at the transparency T (a, b) based on the absorption coef-
ficient τ . Given a subdivision of [a, b] into N parts,

a = t0 < t1 < ... < tN = b,
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the integral in Equation 1 can be split into smaller parts as following:

T (a, b) = exp

(
−
∫ b

a

τ(s(t))dt

)

= exp

(
−

N−1∑
i=0

∫ ti+1

ti

τ(s(t))dt

)

=

N−1∏
i=0

exp

(
−
∫ ti+1

ti

τ(s(t))dt

)
︸ ︷︷ ︸

=T (ti,ti+1)=:Ti

.

(3)

Hence, the final transparency is given by T =
∏N−1

i=0 Ti where 1 indicates fully
transparent, 0 fully opaque. Alternatively, one is usually more interested in
the opacity α with 1 being fully opaque and 0 being fully transparent. The
relationship between α and T follows

α := 1− T ⇔ T = 1− α. (4)

Substituting Equation 4 into Equation 3 gives rise to

1− α =

N−1∏
i=0

(1− αi) with αi = 1− Ti

⇔ α = 1−
N−1∏
i=0

(1− αi).

(5)

Let α(k) :=
∏k−1

i=0 (1 − αi) be the evaluation of Equation 5 up to k terms. By
induction we have:

k = 0 : α(0) = 0

k → k + 1 : α(k+1) = α(k) + (1− α(k))αk.
(6)

This leads to the well-known front-to-back algorithm:

Algorithm 1 Front-to-back algorithm for absorption

1: α = 0
2: for i = 0, ..., N − 1 do
3: evaluate αi = 1− Ti
4: α = α+ (1− α)αi

5: optional early-out if α gets close to 1
6: end for

The important aspect in this algorithm is to compute αi. In the simplest
form, the following approximation schemes, summarized by Max [Max95], are
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used:

αi = 1− exp

(
−
∫ ti+1

ti

τ(s(t))dt

)
approx. by left factor

≈ 1− exp(−τ(s(ti))(ti+1 − ti︸ ︷︷ ︸
=:∆ti

)) Taylor

≈ 1−max(0, 1−∆ti τ(s(ti)))

= min(1, ∆ti τ(s(ti))) .

(7)

In special cases, e.g. hexahedral grids with tri-linear interpolation, analytical
solutions for the transparency are possible.

2.2 Emission

Next, we analyze the emission term L, based on the emission coefficients Le,
again subdivided over intervals t0, ..., tN .

L(a, b) =

∫ b

a

Le(s(t))T (a, t)dt

=

N−1∑
i=0

∫ ti+1

ti

Le(s(t))T (a, t)dt

=

N−1∑
i=0

T (a, ti)

∫ ti+1

ti

Le(s(t))T (ti, t)dt

=

N−1∑
i=0

T (a, ti)

∫ ti+1

ti

Le(s(t))T (ti, t)dt︸ ︷︷ ︸
=:Li

.

(8)

Hence the final emission is given by L =
∑N−1

i=0 T (a, ti)Li where T (a, ti) =∏i−1
j=0 Tj , see Equation 3. Using the substitution α = 1− T , we arrive at

L =

N−1∑
i=0

(1− α(i))Li (9)

which gives rise to the following extension of Algorithm 1, now incorporating
emission:

Algorithm 2 Front-to-back algorithm for absorption and emission

1: α = 0, L = 0
2: for i = 0, ..., N − 1 do
3: evaluate αi = 1− Ti and Li

4: L = L+ (1− α)Li

5: α = α+ (1− α)αi

6: optional early-out if α gets close to 1
7: end for
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Note that the emission here is presented as a scalar quantity, but the compu-
tations can be easily extended to vector quantities, e.g. RGB-colors or spectra.

Again, the crucial part of this algorithm is the computation of Li, we will
again present the simple approximation, commonly used in rendering here [Max95]:

Li =

∫ ti+1

ti

Le(s(t))T (ti, t)dt approx. by left factor

≈ (Le(s(ti))T (ti, ti)︸ ︷︷ ︸
=1

)(ti+1 − ti︸ ︷︷ ︸
=:∆ti

)

= Le(s(ti))∆ti

(10)

For more precise evaluation, quadrature schemes like Simpson’s scheme have to
be used.
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