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ABSTRACT  

In biological fluid mechanics powerful image acquisition systems which guarantee biocompatibility 
are required for making progress towards a better understanding of natural phenomena being 
optimized by evolution in nature. For this advanced evaluation methods enabling the sophisticated 
analysis and description of flow fields are also necessary. In the present contribution, a novel so 
called neurohybrid is presented which allows detecting artefacts in experimental PIV data of 
microorganismic flow fields caused by ciliates. The management of artefacts is performed by the  
neurohybrid using a priori knowledge of the flow physics formulated in numerical expressions and 
the enormous potential of artificial neural networks in predicting artefacts and correcting them. In 
fact, a neuronumerical hybrid based on the physical knowledge provided by the Taylor-hypothesis 
can detect not only spurious velocity vectors but also additional phenomena like the contraction of 
the zooid. 
This paper additionally deals also with a non-linear optical novelty filter which has decisive 
advantages in image processing as it automatically enhances the contrast of the biological tracer 
particles and removes quiescent image objects such as unavoidable dirt spots on the optical 
windows. Furthermore, the biocompatibility of novelty filtering has been shown to be excellent. Last 
but not least, model based reconstruction on GPU (Graphical Processing Unit) is proven to provide 
a powerful tool for recognizing data inconsistencies as well as for visualizing and analyzing flow 
field images. 
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1  INTRODUCTION 
 
Making substantial progress in biological fluid mechanics strongly depends on the availability of 
powerful optical whole field systems. Such systems as Particle Image Velocimetry (PIV) or Particle 
Tracking Velocimetry (PTV) for example, deliver images of the considered flow field. But 
unfortunately, artefacts introduced during the image processing substantially complicate the 
extraction of the velocity information. Thus, advanced evaluation methods for the analysis and 
description of flow fields are of vital interest. This is especially the case when flows induced by 
living microorganisms are studied as they impose considerable restrictions on the experimental setup 
and in the flow evaluation methods. To overcome these restrictions in the determination of the 
microorganismic flow field generated by ciliates the current work presents a biocompatible image 
generating method which manages artefacts by using a novel neuronumerical hybrid. For enhancing 
the quality of the captured images non-linear optical novelty filtering provides substantial advantages 
in comparison to the direct evaluation of the illuminated field usually done in PIV and PTV. Last but 
not least, the present contribution also proposes a model based approach for the reconstruction of 
flow fields from the image sequences implemented on the GPU (Graphical Processing Unit).  

The underlying microorganismic induced flow field is generated by a peritrich ciliate, 
opercularia asymmetrica, which plays a vital role in biofilm growth. These ciliates generate a flow 
field to access the nutrients in the surrounding fluid by ciliary beating. The generated flow pattern 
shows a vortex ring inducing strong shear in the fluid. Apart this, the mass transport to the biofilm 
and thus also the nutrition of the biofilm is greatly influenced [1]. 

The restrictions on the experiment result from the necessity to keep biocompatibility. This 
means, any changes in the environment of the ciliates must be avoided, since the ciliates react very 
sensitive to them. Thus, the illumination may not be too powerful and the seeding density of the 
tracer particles is naturally limited, since the properties of the surrounding fluid will be influenced 
otherwise, to name only two influences. To handle and overcome these restrictions, a hybrid 
approach of both 
experimental and 
analysis methods is 
necessary. Fig. 1 
gives an overview 
of this combination 
which will be 
explained in the 
following. Starting 
with the 
experimental setup, 
including the 
cultivation of the 
microorganisms as 
well as the biotic tracer particles in suitable bioreactors, the sample being analysed contains the 
Opercularia Asymmetrica. Basically, the phase contrast microscopy leads to digital images which 
are further processed using PTV or PIV.  Subsequently, a neurohybrid approach is used for artefact 
detection. As an alternative, optical novelty filter microscopy [2] can be employed for generating 
images instead of phase contrast microscopy. An alternative flow field reconstruction based on 

Fig. 1- Alternative images generating and evaluating investigated methods  
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optical flow method followed by the visualisation of the flow topology is performed in a step 
abbreviated with GPU reconstruction [3]. 

Apart from the particularities connected with biocompatibility and concerning the 
experimental setup, there are three main independent methods presented in this work. 

Neurohybrid for artefact detection combines the learning ability of neural networks with 
basic fluid mechanical equations. Assuming that artefacts in image acquisition and image evaluation 
result in an additive error in the velocity field, the neural network learns a correcting velocity field 
necessary to minimize a Taylor-hypothesis based error term. As a result, the corrected velocity field 
is obtained. In combination with the local extrema of the Taylor-hypothesis error term it can also 
localize artefacts. Complementary to this approach, which computes the velocity field on an 
equidistant grid, velocity vectors from PTV are processed with another type of neurohybrid 
combining the information on an analytical solution which is valid in the vicinity of the ciliate. In 
this case, the neural network technique acts as a kind of model based parameter estimator for the 
analytical solution and detects the spurious vectors of the PTV evaluation. 

Optical novelty filtering (ONF) using photorefractive crystals works as a temporal high pass 
filter blocking all information not changing with time instantaneously, i. e. background and thus 
reduces potential artefacts resulting from image acquisition. Furthermore, a novelty filter microscope 
provides images of amplitude as well as phase objects with increased contrast in comparison to 
conventional and phase contrast microscopes. Phase changes can be measured in real time with an 
accuracy of λ/20, with λ as the wavelength of light used for microscopy. Additionally, the use of 
novelty filtering microscopy shows – concerning the biocompatibility – the great advantage of long 
term observations. 

GPU reconstruction includes both the model-based reconstruction of the flow field and the 
interactive visualization of the flow topology. In addition to the implementation of the optical flow 
algorithm on the GPU to speed up the evaluation process, the development of a model-based 
approach for flow field reconstruction resulted in considerable advancements. A hybrid method 
including segmentation of flow cells in combination with an iterative correction step based on a 
direct Navier-Stokes solution indicates improved quality of the reconstructed fields. As this novel 
approach takes the fluid physics into account to constrain the velocity field, it is expected to 
automatically remove outliers and to resemble the real flow at much higher fidelity compared to 
previous approaches. 

The alternative use of methods for emphasizing the adaptability of the developed 
neuronumerical hybrid provides a straightforward approach for the study of microbiological flows in 
detail as well as the analysis of flow fields in general.  

2 ALTERNATIVE IMAGE MANAGEMENT APPROACHES AND DISCUSSION OF 
RESULTS 
 
This section presents the methods outlined in the introduction and in Fig. 1 in detail. The datasets 
represent the motion of microorganisms of type ciliate in watery environment. Samples were taken 
from a sequencing batch bioreactor. The wastewater in this bioreactor is from a municipal 
wastewater treatment plant. For generating images via classical PIV or PTV a Zeiss Axiovert 
Microscope and a high speed CCD camera (MIKROTRON GmbH) with a maximum speed of 500 
frames/sec with 12 microns pixel size are used. The flow induced by the motion of the 
microorganisms can be regarded as a Stokes flow. The characteristic Reynolds number is about 



Fig. 2 – Sketch of a feed forward neural network. The circles represent 
classical nodes (neurons), the square a functional node. The weights are 

represented by wij weighing the connection betweennode i and  j. 
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1.25·10-3. For convenience, further details on the PIV or PTV evaluation, which represent the basis 
for the further recognition of artefacts represented in the following section, are given in [11] 

2.1 Neurohybrid 

The so called “functional nodes” applied in the present case were first used in bioprocess modelling 
[12]. The present case is a generalization of the previous approach using an analytical solution from 
literature as the functional nodes prior knowledge [13]. Fig. 2 shows the working principle of such a 
neurohybrid based on a feed-
forward neural network with 
one functional node. The input 
layer feeds the independent 
variables to the network. Within 
a node the products of the 
output of the precedent nodes 
and the weigths of the 
connections are summed up, i. 
e. ∑

∈

=
Pp

pipi wnan )( . Here )( pna  

calculates the activation of the 
precedent node pn . The 
activation functions are sigmoid 
shaped functions. The weighted 
connections in the hidden layers propagate the calculation forward through the net to the output 
layer.  During the training for each input vector the according output pattern iyr  is confronted to the 
expected training pattern it

r
, in our case e. g. the velocity vectors obtained by a correlation based PIV 

algorithm. The error ( )ii ytG rr
−=ε  is calculated in a suitable norm, basically with the option to 

modify it with a quality function, which allows the introduction of additional penalty terms. The 
parameters of the map, i. e. the weights ijw , are modified with the backpropagation algorithm, a 
gradient method, subseqently. The training is stopped when the training error falls below a 
prescribed bound (convergence). 

Thus, artificial neural networks are a kind of approximators, and especially this property 
makes a lot of appliances feasible. But a trained network represents a black-box model. For this 
reason knowledge extraction – and integration – is hardly possible. In this case the use of functional 
nodes helps to overcome this restriction, since with this approach the nodes in the involved layers 
can be labelled with a physical meaning and thus a priori knowledge can be integrated into such 
networks. 

The functional node F in Fig. 2 specifies the prior knowledge.  The Taylor hypothesis [14] is 
chosen as additional fluid mechanical a priori knowledge, leading to a balance equation without 
taking external influences (forces) into account, especially in the case of laminar creeping flow. In 
particular, the spatial acceleration equals the temporal acceleration. Thus, for one velocity 
component, e. g. the x-component, the following equation holds 
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Here the choice of one component is no restriction because of the coupling of the velocity 
components by the continuity equation. In equation 1 ),( vu εε  stands for the velocity field 
corrections. The temporal derivative tu~  as well as the spatial xu~  und yu~  and the velocity field )~,~( vu  
obtained e. g. from the PIV evaluation is used as training input. Of course, in a preprocessing step 
the temporal and spatial derivatives must be calculated using a propriate difference scheme from the 
velocity field )~,~( vu . The output vector for each training pattern consists of a scalar ),( 00 yxTa  
standing for the satisfaction of the Taylor-hypothesis which should be zero if the assumption holds 
and the corresponding velocity vector )~,~( vu . So the correction velocity field ),( vu εε  depending on 
the position is kept in the artificial neural network part. The functional node gets vuyxt uuuvu εε ,,~,~,~,~,~  
as input. Consequently, the fulfilment of the Taylor-hypothesis is checked on the one hand, a 
comparison of the smoothened velocity field ( )vu vu εε ++ ~,~  with the experimentally obtained 

velocity )~,~( vu  field is computed using ( ) ( ) ( )2222 Tavu ++= εεε  for error calculation on the other 
hand. Since the training error is dominated by the areas where the Taylor-hypothesis is not valid, not 
only image analysis artefacts but also time-varying boundary conditions can be detected as it is 
shown in Fig. 3. Thus, the neurohybrid shows a twofold benefit: the removal of spurious vectors 
with the help of the correction velocity field as well as the detection of other, “non-
hydromechanical” phenomena like the contraction of a ciliate. 

Although these findings prove the synergistic use of image processing by PIV/PTV and the 
Taylor-hybrid as an excellent method for determining the microorganismic flow field generated by 
ciliates, further methodological improvements are to be expected by implementing novelty filtering 
and model based visualization. This is illustrated in the following sections. 

Fig. 3 – Flow situation as in Fig.s 3 and 4 with a larger scene. The dotted arrow highlights the contracting ciliate, the 
drawn through arrows the active ciliate.  



2.2 Optical Novelty Filtering (ONF) as a nonlinear optical filtering technique  

The photorefraction-based optical novelty filter [4] has been known for almost two decades. It is a 
temporal high pass filter [5] which detects only the dynamic portions in the field of view while 
suppressing the stationary background. Fig. 4 shows the sketch of the experimental implementation 
of a novelty filter microscope (NFM), which is later discussed in detail. 

Photorefractive barium titanate (BaTiO3) crystals are often employed to implement this filter. 
The most important highlight of this optical filter is that it is not only sensitive to amplitude changes 
but also to phase changes [6]. We demonstrated that the phase sensitivity of the device can be used 
to detect and measure the phase changes in real time introduced by moving phase objects with an 
accuracy of λ/20 [7,9]. In combination with a phase triggering technique [8], it is even possible to 
extend the phase measurement range to 2π radians.  In microbiological fields objects are often 
transparent and thus phase objects. Hence the novelty filter can be used to get images of these 
objects with an increased signal to noise ratio in comparison to conventional or phase contrast 
microscopy. Because of the low intensities of only microwatts needed for novelty filtering, thus 
being biocompatible, the method can be used for long time observations of biological samples. 

 
2.1.1 Photorefractive Novelty Filter Microscope (NFM) 

Fig. 4 shows the sketch of the experimental implementation of a NFM. A laser beam of wavelength 
532nm derived from a frequency-doubled Nd:YAG laser, is split into a signal and a reference beam. 
The signal beam enters a conventional microscope and illuminates the object. The microscope 
objective and a projecting lens system produce a magnified image of the probe at the CCD camera. 
The images captured by the CCD camera are transferred to a PC for further analysis. The reference 
beam is made to interfere with the signal beam in a Ce-doped photorefractive BaTiO3 crystal. The 
orientation of the c-axis of the crystal leads to a transfer of energy from the signal beam to the 
reference beam. This energy transfer results in a complete depletion of a static signal beam. Changes 
in the signal are not depleted thus being observed on the camera instantaneously. The power of the 
reference beam is 7µW and that of the signal beam is about 300nW. The relaxation time or the time 

Fig.4 - Sketch of a novelty filter microscope setup.  The setup can be devided into three main parts: illumination, 
infinity corrected microscope and novelty filter. PM: piezo mirror, λ/2: half-wave plate, λ/4: quarter wave plate, PBS: 

polarizing beam splitter, NDF: neutral density filter, MO: microscope objective, PH: pinhole, FD: field diaphragm, 
CL: condenser lens, TL: tube lens, c: optical axis, PRM: photorefractive BaTiO3 crystal, CCD: camera 



 

7  

HYBRID APPROACH BETWEEN EXPERIMENT AND EVALUATION
FOR ARTEFACT DETECTION

Fig. 5 – Novelty filtering. a) Left: application NFM. b) Middle: original image. c) Right: the same image scene 
after optical novelty filtering with the NFM. 

constant for the grating build-up in the crystal is about 20s. The choice of this large time constant 
helps to suppress trail formation and thus allows one-to-one imaging of moving objects in real-time 
[14]. 

Fig. 5 (to the left) shows a photograph of a novelty filter, implemented in a commercial 
infinity corrected microscope.  This modularized system has been filed for a patent at the German 
Patent and Trade Mark Office. Fig. 5 (in the middle and to the right) gives an impression of the 
effect the ONF has on image sequences. The illustration in the middle shows a snapshot of the fluid 
flow, the illustration to the right depicts the result of ONF applied to the image sequence. Obviously, 
all static background information like the biofilm on which the ciliate grows or the stationary ciliates 
zooid is suppressed by the ONF. The more novelty a pixel represents, the brighter it appears in the 
ONF filtered image. Thus in the presented scene it can e. g. be concluded, that the ciliates (light grey 
shade) move slowly, where the bright spots give the positions of moving particles. 

2.2 GPU reconstruction  

2.2.1 Model Based Reconstruction of Flow Fields from Experimental Particle Sequences 

The reconstruction method used in this paper is inspired by the non-parametric image registration 
technique currently used in medical imaging. It is a common task in medicine to find the 
correspondence between the images of the same anatomical structure taken under the different 
conditions (e.g. different relative camera-patient position, different methods of acquisition, etc.). 
More precisely, given two images - reference image R and template image T – the task is to find a 
transformation, which deforms T in such a way, that the difference between T and R is minimal. 
Since, the non-parametric minimization problem is ill-posed at the origin, it is usually solved using 
the regularization term, or smoother S, which can be chosen based on the laws of physics. For 
example, the so called fluid registration suggests to build S upon the Navier-Stokes equations. 

All the motion estimation techniques for reconstruction of velocity fields from the PIV-
sequences can be roughly classified as based on optical flow (OF) computation [10] and cross-
correlation analysis [11]. Most of these standard techniques calculate the vector field without taking 
the properties of the underlying flow into consideration. In this way, the resulting vector fields often 
contain physically irrelevant structures. 

In contrast, the reconstruction method used in this paper integrates a priori knowledge about 
the induced flow into the analysis. Thus, generated vector fields are consistent with the underlying 



flow model. However, the model suitable for efficient coupling with the evaluation process must be 
found. 

Method description. The image registration solves the problem similar to the extraction of 
vector fields from the experimental particle image sequences. Thus, the reconstruction method for 
PIV-sequences can be build upon the predictor-corrector scheme, widely used in image registration. 
However, some global modification of the generic scheme should be done: 

1. Compute (predict) the vector field by means of standard OF, 
2. Correct the output of the OF computation using the solution of Navier-Stokes equations, 
3. Repeat prediction and correction iteratively over the deformed template and original 

reference images 
4. Implement all the steps of the algorithm on programmable graphics card (GPU) in order to 

make the process of reconstruction and visualization interactive. 
The summary of the algorithm is presented in Fig. 6. 

The main idea of our algorithm is to deform iteratively T in such a way, that the difference 
between T and R will be minimized. During this process the image deformations are accumulated 
and the resulting deformation is considered as the reconstructed displacement field. In each iteration 
the displacement field (VFp) is predicted using the classical OF method. On the next step VFp is 
corrected into VFc using the solution to the incompressible Navier-Stokes equations. The correction 
step is followed by the deformation of T along the corrected displacement field VFc. At the end of 
the cycle the deformed image Ic is compared to R. If the difference between the images is smaller 
than the user specified threshold, the process stops and the currently computed VFc is returned. 

Vector field correction. In order to correct the vector field estimated by the OF, the numerical 
solution of unsteady incompressible Navier-Stokes equations with U the velocity vector, P  the 
pressure and the external force vector F is used: 

.0,)(
Re
1

=+−⋅−Δ=
∂
∂ UdivFPgradUgradUU

t
U    (2) 

On the very first iteration of the proposed algorithm the OF solution is used as a guess for the 
initial velocity field in Navier-Stokes simulation. Moreover, if experiment settings include an 
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Fig. 6 - Overview of predictor-corrector method for reconstruction of vector field from PIV-images 



 

9  

HYBRID APPROACH BETWEEN EXPERIMENT AND EVALUATION
FOR ARTEFACT DETECTION

obstacle, the additional boundary conditions at the border of this obstacle are extracted from the 
images and taken into account. The following solution of the Navier-Stokes equation corrects the 
predicted vector field and generates the result which is suited to be physically correct. However, 
after the first iteration it could happen that the computed vector field still significantly deviates from 
the actual one. Consecutive iterations serve to treat this problem. 

In order to move to the next iteration, the template image T is deformed “back” towards the 
reference image R. On the following iteration the OF displacement field VFc is computed between R 
and Ic. Via deformation the difference between R and Ic progressively decreases. In contrast to the 
first iteration, the velocity field on the further iterations is inserted as external force field into the 
Navier-Stokes simulation. The whole process is repeated until the average force amplitude become 
less than the user specified threshold or the maximum number of iterations is achieved. 

Image deformation. Once the displacement field (in pixels) is computed and corrected by the 
Navier-Stokes solver, we deform the template image T in texture coordinate space towards the 
reference image R. This operation is performed efficiently on the GPU: displacement values are 
simply read from the corresponding texture, converted into texture coordinate space (scaled to fit 
into the range [0;1]) and then used to fetch the values of template image. If some pixels are 
addressed beyond the valid image area, the corresponding image border pixels are repeated instead. 
From Fig. 7 one can see that vector field reconstructed by our algorithm is significantly different 
than the vector field computed by pure OF. There is only one parameter to be changed in OF 

solution: the weight of regularization term. Obviously, this is not enough: if a high weight of 
regularization term leads to smearing out of important flow features, a small weight causes 
extraction of non-existing features and violation of flow continuity. On the other hand, after each 
iteration of the proposed model-based algorithm, those features become more distinguishable and 
satisfy the underlying flow model. 

4 CONCLUSIONS AND OUTLOOK  
 

This paper presents a novel neuronumerical hybrid for the detection of reconstruction artefacts. It is 
based on the implementation of numerically expressed a priory knowledge on the flow field (Taylor-

   

Fig. 7 – Vector field reconstructed using: a) (to the left) pure OF with high weight of regularization term, b) (to the right) 
proposed model-based algorithm 



hypothesis) into an artificial neural network as a functional node. The proper functionality of the 
neurohybrid is demonstrated at an example from microfluidics i. e. the microorganismic generated 
flow patterns induced by sessile ciliates. The neuronumerical hybrid has been proven to detect 
reliably spurious velocity vectors. Additionally, it provides a suitable means for further exploration 
of such phenomena like the contraction of the zooid as shown in the example.  

The neurohybrid is basically applied on images generated by an inverse microscope, but it 
can also be combined with non-linear optical novelty filtering (ONF), which offers additionally 
advantages due to the enhancement in contrast and the removing of quiescent objects. To be more 
precise, due to the ONF working as a temporal high pass filter all time-independent information such 
as the background is blocked instantaneously. Furthermore, and for the case of the microorganismic 
induced flow of great advantage, the use of the ONF allows an extended observation time while 
strictly keeping the necessary biocompatibility. Concerning the evaluation of the image data, the 
model-based reconstruction method on the GPU presented in this paper allows for the interactive and 
physically correct reconstruction of vector fields from sequences of particle images. The main 
advantages of this reconstruction method are the coupling of a high resolution motion estimation 
technique with the underlying physical model and interactivity. The first results demonstrate 
improved quality of reconstructed vector fields. Particularly, the structures extracted by the standard 
image processing algorithm but being inconsistent with the underlying flow model are automatically 
removed. Moreover, efficient implementation of the method on the GPU allows for interactive 
selection and change of model-specific parameters.  
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