
Technical Report (12.06.2012)
Technische Universität München

RastaVox: Memory-Efficient Voxel-Model Rasterization

M. G. Chajdas1 and M. Reitinger1 and R. Westermann1

1Technische Universität München, Germany

Figure 1: Views into the Crytek Sponza voxelized at a resolution of 4096× 2048× 2048. The left view renders at 59 ms per
frame (17 fps) on a GTX 680; the right view renders at 41 ms (24 fps) on a 1280×720 viewport with 4× MSAA.

Abstract

Voxel models are of increasing interest in 3D computer games, as they give rise to many efficient operations
that can not be performed easily on adaptive surface models like triangle meshes. Examples include the efficient
generation of level of detail hierarchies and model modifications like carving and extruding. However, to faithfully
represent the surface and, thus, to render it in a similar quality than polygonal meshes, voxel representations
require high spatial resolution along the surface. This typically implies that voxel models take up huge amounts of
memory, making them unsuitable for computer games which have to run on fixed memory budgets.
In this report, we propose a novel approach for constructing, representing, and rendering voxel models efficiently
on recent GPUs, at memory budgets on par with the requirements in computer games. We achieve this by adapting
and extending classical iso-surface rendering techniques to modern GPUs, including the on-the-fly reconstruction
of surface-aligned voxel models from volume data. Unlike previous techniques our approach utilizes the GPU’s
rasterization units for rendering. This makes it easy to integrate into existing rendering pipelines and allows taking
advantage of hardware accelerated anti-aliasing. We demonstrate the construction of level of detail hierarchies
for high quality rendering and real-time editing operations directly on our compact voxel representation.

Categories and Subject Descriptors (according to
ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and
object representations

1. Introduction

Games and other 3D applications require increasingly de-
tailed content. Most of this content is designed as textured
polygonal meshes, or higher-order textured surfaces which



2 M. Chajdas & M. Reitinger & R. Westermann / RastaVox: Memory-Efficient Voxel-Model Rasterization

are triangulated for rendering. The increasing size of these
meshes introduces a number of problems in the content cre-
ation pipeline; for instance, post-editing these meshes of-
ten requires expensive re-tesselation, and creating shape-
preserving levels of detail is still a complex problem requir-
ing additional, manual work.

Recently, voxel based representations have been intro-
duced as a possible solution to overcome these problems
[CNLE09, LK11]. Unlike polygonal meshes, voxel based
representations resample both geometry and surface at-
tributes like color into an uniform grid. This resolves many
problems inherent to polygonal representations; for instance,
models of a specific level of detail can now be generated ef-
ficiently on the voxel based representation, and texture reso-
lution can be easily adjusted to match the geometric detail.

However, games must adhere to an additional set of con-
straints. For games, it is not sufficient to be able to render
content quickly: Memory efficiency is an important concern,
fast creation and modification has to be possible, and finally,
the rendering technique should also easily integrate into the
rendering pipeline.

Current techniques for voxel model rendering use the
GPU’s compute units to perform per-pixel ray-tracing. This
makes it difficult to integrate into an existing rasterization
based pipeline. For instance, anti-aliasing is a standard tech-
nique in rasterization to improve image quality; however, it
is extremely expensive for ray-tracing—where it cannot be
easily hardware accelerated. Using the rasterizer also allows
easy integration with techniques like shadow maps, as can
be see in Figure 1. Moreover, the ray-tracing methods only
use the GPU’s compute units, ignoring the fast blend and
geometry processing hardware.

Furthermore, generation and especially dynamic updates
of content are difficult to handle for voxel based render-
ing approaches. Either complex pre-processing is required
[LK11], making it impossible for instance to generate the
highest-resolution mesh and incrementally compute the level
of detail from it, or the approach requires large amounts of
memory as the geometry gets resampled into a sparse vol-
ume [CNLE09]. Even if the volume is already available,
the current techniques require pre-processing to generate a
level of detail hierarchy or an acceleration structure. Unfor-
tunately, building an acceleration structure prevents further
dynamic updates of the model.

Last, but quite important is the memory efficiency. In gen-
eral, voxel based representations require a high-resolution
grid in order to match the quality of a polygonal representa-
tion with textures. To render such grids efficiently, memory-
intensive hierarchical acceleration structures are typically
used.

In this paper we present a novel approach based on clas-
sic iso-surface rendering which is especially designed for the
use in games: Our approach uses a memory-efficient rep-

resentation, which only stores voxels along the mesh sur-
face and renders those using the hardware rasterizer. We also
show how this representation can be created quickly on the
GPU from a volumetric representation or from a voxeliza-
tion of a polygonal mesh, and how it can be modified in real-
time, for instance, in order to apply decals. Finally, we de-
scribe how a level of detail representation can be computed
directly on our compact representation on the GPU, requir-
ing only small amounts of scratch space. Our technique al-
lows for the rendering of large models at interactive frame
rates, and is even fast enough to update, convert, and render
a volume in real-time.

2. Related work

Voxel models have been first introduced 1993 by Kaufman
in the seminal paper [KCY93]. Compared to polygonal rep-
resentations, they provide an interesting set of advantages
like easier level of detail computation and combined storage
of surface and geometry information.

Recently, there has been a lot of research into large octrees
to render such voxel models [CNLE09, LK11]. [CNLE09]
subdivides the model into a sparse volume, storing only
small volume “bricks” along the surface. It uses a compute
based octree traversal to render the contained surface, and
also supports fully volumetric rendering as required for in-
stance for clouds. However, it has a significant memory over-
head for solid models as it stores parts of the volume around
the object surface. It also requires additional memory for the
octree data structure on the GPU. [LK11] provides an in-
teresting optimization by focusing on octress for surfaces:
Along with the surface data like color, they also store con-
tours which both improve the quality of the reconstructed
surface as well as the performance of the rendering. In this
case, the octree must be built top-down as successive lev-
els combine the contours. Similar to GigaVoxels, the sparse
voxel octrees also use the GPU’s compute units for render-
ing.

Our representation builds upon the very first published
work on iso-surface visualization: Cuberilles [HL79]. The
Cuberille method—or opaque cubes—works by computing
the set of grid cells that contain the iso-surface and rendering
those as small cubes. The original method creates a single
connected mesh during traversal to minimize the memory
required by duplicated vertices. In order to improve the ap-
parent surface quality, gouraud shading is used to interpolate
the per-vertex normals along the surfaces.

A very popular method for rendering iso-surfaces is
marching cubes. Marching cubes places vertices along the
edges of each voxel and uses a variable amount of vertices
for each of the 256 configurations [LC87]. This results in a
high-quality surface approximation but comes with its own
set of disadvantages. The biggest problem is memory usage.
It is not uncommon that the marching cube mesh actually



M. Chajdas & M. Reitinger & R. Westermann / RastaVox: Memory-Efficient Voxel-Model Rasterization 3

Level 0

Level 1

1000

0100

1100

L
ev

el
0

L
ev

el
10 1 3 4

Compaction

Prefix Sum

Radix Sort

Figure 2: Level of detail computation on our compressed
representation. On the upper left, two surface voxels are
highlighted in yellow, with their boundary faces in blue. The
numbers indicate the bit-mask of which boundary faces are
present. The faces of the merged surface voxel below are
computed by using a bitwise or. On the right, the complete
computation pipeline can be seen for the level of detail com-
putation.

exceeds the input volume in size, rendering them unsuit-
able as a compact representation of the volume. The efficient
creation of marching cubes in parallel is also an issue, as
the generated vertices are not independent but must be con-
nected to form a mesh. For highly parallel architectures like
GPUs, multiple passes over the data are required in order to
obtain good performance [Gei07].

3. Algorithm

We introduce the notion of “surface voxels”, which are vox-
els inside a volume that comprise the actual surface of the
object. In this section, we will describe how surface voxels
can be efficiently generated, how they can be used to com-
pute a level of detail simplification and how they can be ren-
dered efficiently using the hardware rasterizer.

Surface voxel generation

We assume that the input is provided as a voxel model, that
is, as an uniform grid containing color, density and other at-
tributes at each grid point. Starting from this grid, we first
identify the boundary between “solid” and “empty” space.
A boundary voxel is a voxel which itself is “solid” but has
at least one “empty” neighbor in the 6-neighborhood. This
results in one to six boundary faces. We store a bit-mask in-
dicating which face is present and the position into a surface
voxel buffer.

To make the storage more compact, we split input vol-
umes into chunks of 2563 or less voxels. This allows us to
use only 8 bits per component for the voxel position. To-
gether with the active face mask and padding, this results
in 4 bytes per surface voxel. At this moment, the surface is
already present, but the surface attributes like normals and
colors are still missing.

The additional attributes are either stored per-face or per-
voxel. In case of per-face data like normals, we create an
additional buffer, store the per-face data into this buffer, and
attach a pointer to the surface voxel. Constant per-voxel data
is stored directly into the surface voxel buffer.

During the surface voxel generation, we have to con-
stantly determine the next output slot as there is no one-to-
one correspondence between input voxels and output sur-
face voxels. We use global memory atomics for both the
per-voxel and per-face buffers to determine the output slot.
Even though surfaces are relatively sparse inside a volume—
usually, less than 5% of the voxels—global memory atomics
can become a bottleneck if the hardware does not provide a
fast-path (see Table 2 for details.)

Level of detail

For level-of-detail, we use a multi-pass algorithm on the
GPU which first sorts the data and then compacts each voxel
in parallel. In the first step, we produce “runs” of surface
voxels which all correspond to a single voxel at the next
lower level. This can be done by performing a radix sort
[Mer12] operation which ignores the last bit of each com-
ponent of the position. Having the runs generated, we now
have to find out where each run starts. This can be accom-
plished with a parallel prefix-scan [Mer12], which computes
the start offset of each voxel run.

Finally, we compact each run into a single output voxel.
We start one thread per run, which combines all its voxels:
The boundary face bits of the children are ored together.
Per-voxel attributes are usually averaged at this stage; per-
face attributes are combined for each face separately (see
also Figure 2.) Combining the face bits using or is equal
to performing a min operation on a density volume, that is,
small features increase in size instead of disappearing as can
be see in Figure 3.

The level of detail process requires an intermediate output
buffer with a size equal to the input buffer, as the worst-case
will contain one output voxel per input voxel. Compared to
the input volume size, working on the surface voxel buffers
results in an multiple order-of-magnitude reduction in mem-
ory usage.

Rendering

We use the geometry shader to generate cubes for each
voxel. In order to be fast, we must ensure that the geome-
try shader produces as few triangles as possible. Otherwise,
the amount of transient on-chip memory reduces the possi-
ble parallelism and decreases performance. The key obser-
vation is that if the surface is seen from the “empty” space,
at most three faces of each voxel can be visible. This opti-
mization assumes that the viewer can never enter the object
or see “into” it—very similar to the requirements for meshes



4 M. Chajdas & M. Reitinger & R. Westermann / RastaVox: Memory-Efficient Voxel-Model Rasterization

Error: 0.5 px

Error: 1 px

Error: 0 px

Figure 3: Level of detail for a minified model. The 20483

Armadillo data set is seen from a great distance. At pixel
error 0, the full resolution model is displayed, while at error
1, the highest level of detail approximation is selected. Due
to the merging of surface voxels, the volume slightly expands
with higher level of detail levels as can be seen for instance
on the top of the head.

that are rendered with back-face culling. If the viewer can
enter the model, we have two possibilities: Interior faces can
be marked as visible during the creation, resulting in a one
voxel thick “shell” without reducing performance. Alterna-
tively, the interior can be rendered by generating up to five
faces per voxel at reduced performance. Throughout our test-
ing, we always used the first method; the results can be seen
in Figure 4.

Inside the vertex shader, we perform backface culling to
determine which of the active faces are visible. This infor-
mation, together with the position of the voxel, is then for-
warded to the geometry shader. In the geometry shader, we
generate up to three faces consisting of two triangles each.
As we could have per-face data, we cannot share vertices be-
tween faces; the maximum number of vertices generated by

Resolution Base model LoD Total ESVO

512 6.1 2.1 8.2 35
1024 24.9 8.4 33.3 95
1536 56.1 19 75.1 –
2048 99.9 33.9 133.8 243
4096 400 136.3 536.3 566

Table 1: Memory size of the soldier model at varying resolu-
tions in MiB. For comparison, we have included the match-
ing octree sizes used by [LK11]. [LK11] provide higher-
quality contours, but require similar subdivisions on this
mesh to match the quality of the color data.

the geometry shader is thus 12. The geometry shader also
extracts and decompresses the normals, and optionally gen-
erates additional per-face attributes like UV coordinates.

4. Results

For rendering, we subdivide the input volume or voxel model
into equally sized chunks. Unless noticed otherwise, we used
2563 sized chunks. At runtime, we perform occlusion and
view frustum culling to determine which chunks are visible.
The occlusion culling is done using occlusion queries which
render a solid cube for the whole chunk using the rasterizer
and check for visibility in the next frame [Sek04]. If a chunk
is determined to be visible, we estimate the worst-case pro-
jected area of a single voxel and select the level-of-detail
depending on the allowed pixel error similar to [DSW09].
Notice that only the surface voxels are rendered and the pro-
vided resolutions are the resolution of the input voxelization
including empty voxels.

Figure 4: A magnified view onto a complex bush mesh. The
thin geometry and high geometric complexity is also present
in the polygonal source model. Fortunately, our approach
gets similar benefits from hardware MSAA as normal poly-
gon meshes.

Even large models can be quickly converted using our
method. In Table 2, we can see that conversion performance
mostly depends on the resulting surface complexity. In every
case, faster atomic instructions—as present on the NVIDIA



M. Chajdas & M. Reitinger & R. Westermann / RastaVox: Memory-Efficient Voxel-Model Rasterization 5

GPU Dataset Base model LoD Total

GTX 480 Wood 25.2 37.8 63
Hairball 205.3 216.5 421.8
Armadillo 45.1 40.2 85.3

GTX 680 Wood 5.0 31.6 36.6
Hairball 90.4 181.6 272
Armadillo 31.3 39.9 71.2

Table 2: Conversion performance for various models. The
wood volume (2563) contains density and color; while the
armadillo (20483) and hairball (10243) volumes also store
normals. All times are in ms.

Dataset Max error No AA 4× MSAA

Buddha 40963 0 69.8 70
1 18.7 19.3
2 6.0 7.8
4 5.6 5.5

Armadillo 20483 0 25.2 25.5
1 20.0 19.9
2 6.3 7.6
4 3.3 3.3

Table 3: Rendering performance for the Buddha 40963, Ar-
madillo 20483 data sets on an NVIDIA GTX 680 at 1280×
720. All times are in ms.

GTX 680—help during the extraction phase. The level of
detail step consists of multiple passes over the data and is
mostly bandwidth limited.

In Figure 5, we can see the effect of increasing the max-
imum pixel error for a large voxel model, in this case, the
Buddha statue at 40963 resolution. A pixel error of 1—
while resulting in no visible difference—improves perfor-
mance significantly from 70 ms down to 18 ms. At a pixel
error of two, the first small inaccuracies along the silhou-
ette become visible; however, the interior is still perfectly
smooth. At a pixel error of four pixels, both the silhouette
and the interior start to exhibit discretization artifacts while
the performance improvement over a 2 pixel error becomes
comparatively small.

Limitations

As our method uses discrete faces with per-face normals,
artifacts become visible as soon as the projected voxel size
becomes larger than a pixel on screen. Two main artifacts
are visible: First of all, the silhouette exhibits block artifacts
and second, the surface attributes are constant across a single
face. The lack of interpolation can be partially resolved by
using per-face textures or by using a screen-space blur, but
the silhouettes cannot be cleaned up easily.

Resolution No AA 4× MSAA 8× MSAA

512 5.0 5.0 5.1
1024 17.8 18.0 18.2
1536 38.6 38.8 39.2
2048 50.4 50.7 50.8
4096 42.0 43.1 43.4

Table 4: Rendering performance for the Soldier model at
different voxel model resolutions on an NVIDIA GTX 680
at 1280 × 720. At 40963 resolution, the level of detail ef-
ficiency improves as the chunks become smaller and have
tighter bounds. All times are in ms.

Those artifacts can be mitigated by computing the sur-
face voxels at the correct level of detail. We expect that
many games which have control over the minimum view
distance—like strategy games—can easily replace parts of
the world with voxelized representations while ensuring vi-
sual quality.

5. Conclusion and future work

In this paper we have proposed an efficient rendering tech-
nique for voxel based models. Unlike other current ap-
proaches, our method uses the hardware rasterization units
and can thus be easily integrated into existing rendering
pipelines. Our compact representation also allows the effi-
cient generation of level of detail models. In a number of
experiments we have demonstrated that our approach is suit-
able for rendering game content.

In the future, we would like to provide a higher-quality
surface approximation which would allow close-up views.
To achieve this, adaptive voxelization techniques which can
dynamically generate a boundary voxel representation with-
out a full voxel grid will be considered. In addition, the tech-
niques described in [LK11] should be partially applicable to
our method and allow for higher-quality silhouettes.

Acknowledgements

We would like to thank Jan Sommer for the help on the
terrain and wooden box models and An Lu for help with
the voxelization of the Sponza, Sibenik and “Soldier” scene.
The soldier has been kindly provided by Alexandru Adrian
Radoiu.

References

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: Gigavoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In Proceedings of the 2009 Symposium on Inter-
active 3D Graphics and Games (2009), I3D ’09, ACM, pp. 15–
22. doi:10.1145/1507149.1507152.



6 M. Chajdas & M. Reitinger & R. Westermann / RastaVox: Memory-Efficient Voxel-Model Rasterization

Full resolution Max error: 1px Max error: 2px Max error: 4px

Figure 5: Buddha 40963 data set rendered with different level of detail errors. The rendering performance varies between 70
ms per frame for the left-most image to 5.5 ms per frame for the rightmost at 4× MSAA. Detailed timings can be found in Table
3.

[DSW09] DICK C., SCHNEIDER J., WESTERMANN R.: Efficient
geometry compression for gpu-based decoding in realtime terrain
rendering. Comput. Graph. Forum 28, 1 (2009), 67–83.

[Gei07] GEISS R.: Generating complex procedural terrains using
the GPU. In GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley,
2007, pp. 7–37.

[HL79] HERMAN G. T., LIU H. K.: Three-dimensional display
of human organs from computed tomograms. Computer Graph-
ics and Image Processing 9, 1 (1979), 1–21. doi:10.1016/
0146-664X(79)90079-0.

[KCY93] KAUFMAN A., COHEN D., YAGEL R.: Volume graph-
ics. Computer 26, 7 (July 1993), 51–64. doi:10.1109/MC.
1993.274942.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3D surface construction algorithm. In Computer
Graphics (SIGGRAPH ’87 Proceedings) (July 1987), vol. 21,
ACM, pp. 163–169. doi:10.1145/37401.37422.

[LK11] LAINE S., KARRAS T.: Efficient sparse voxel octrees.
IEEE Transactions on Visualization and Computer Graphics 17,
8 (2011), 1048–1059. doi:10.1109/TVCG.2010.240.

[Mer12] MERRY B.: CLOGS. MIT License, 2012. URL: http:
//sourceforge.net/apps/trac/clogs/.

[Sek04] SEKULIC D.: Efficient occlusion culling. In GPU Gems,
Fernando R., (Ed.). 2004, pp. 487–503.

[SS10] SCHWARZ M., SEIDEL H.-P.: Fast parallel surface and
solid voxelization on GPUs. ACM Trans. Graph. 29, 6 (Dec.
2010), 179:1–179:10. doi:10.1145/1882261.1866201.



M. Chajdas & M. Reitinger & R. Westermann / RastaVox: Memory-Efficient Voxel-Model Rasterization 7

512 1024 1536 2048 4096

Figure 6: The soldier model at various resolutions. The rendering performance varies from 5 ms for the leftmost image to 54.8
ms for the rightmost image on an NVIDIA GTX 680 at a 1280×720 viewport with 4× MSAA. Detailed timings can be found in
Table 4; model sizes can be found in Table 1.


