Praktikum on 3D Computer Vision

F. Tombari B. Busam, N. Brasch, M. Saleh, H. Jung, E. Ornek, P. Wang, K. Li, A. Savkin, J. Huang, F. Tristram, H. Schieber, Y. Rao

Introduction

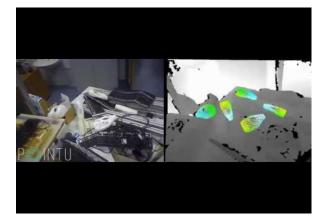
3D Computer Vision Scene understanding

- 6D object pose estimation
- SLAM, Structure from Motion
- 3D reconstruction
- Camera pose / re-localization
- Nerf, 3D rendering
- Semantic segmentation / understanding
- Depth prediction, stereo

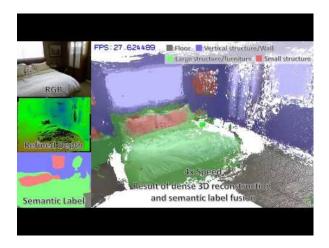
Human understanding

- \circ 3D body / hand / face pose estimation
- 3D Head / body modeling

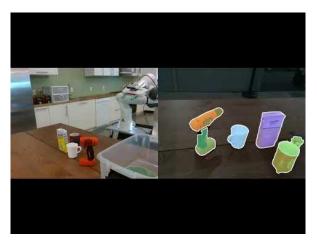
- Application in Robotics
 - Grasping and Manipulation
 - Navigation
 - Obstacle avoidance



- Augmented Reality
 - Render virtual/augmented content on real objects of known shape or pose



Ο.



3D Object Detection and tracking

AR

Depth Prediction, Semantics and SLAM

Robotics

Goals of the Praktikum

- Learn about the state of the art in 3D computer vision
- Familiarize with practical aspects and use cases of typical 3D perception tasks (3D feature extraction and learning, surface matching and 3D reconstruction, 3D object localization and pose estimation, SLAM, ..)
- **Develop an end-to-end project in a team** aiming to solve a relevant and challenging problem in 3DCV
- Learn to explain and disseminate your work to a customer and in tech talks

Teams

- Students are grouped in teams of 3-4 and evaluated jointly
- Registered students can indicate project preference and preferred team partner after project announcements
- Students will be assigned to a team and project that best fits the indicated preference & background
- 7-8 teams
- Each project has been assigned
 - One tutor who will be the **customer** who hired the team to work on the project. You need to prepare 4 regular project updates to present.
 - One tutor as an expert **advisor** that will assist the team during project development. You should contact her/him after the project assignments.

Tentative schedule

Lecture period: 16.10.2023 – 09.02.2024

20.10		Introductory talk & Project presentat	Time: Fridays 14.00 - 15.30 İ QNS ce: Seminar Room 03.13.010
27.10		Project assignments	
3.11		Project KickOffs	
	CVPR Break		
17.11		Lecture I & Project Updates	
24.11		Lecture II	
1.12		Lecture III & Project Updates	
8.12		Lecture IV	
15.12		Mid-term Presentations	
	Christmas Break		
12.1		Project Updates	
26.1		Project Updates	
9.2		Final Workshop	

Prerequisites

- Required: 1+ computer vision-related course
 - Tracking and Detection in CV (IN2357)
 - Computer Vision I: Variational Methods,
 - Computer Vision II: Multiple View Geometry (IN2228)
 - Robotic 3D Vision, Convex Optimization for ML and CV, Probabilistic Graphical Models in CV

0 ...

- Required: 1+ deep-learning-related course
 - Introduction to Deep Learning (I2DL) (IN2346)
 - Machine Learning (IN2064)
 - 0 ...
- Suggested:
 - \circ $\,$ 1+ projects in the domain of CV/ML $\,$

Registration

TUM Matching System

- Send motivation letter, CV & transcript (not mandatory, but highly recommended) to: p3dcv@mailnavab.informatik.tu-muenchen.de (03.07 - 19.07)
- Register in Matching-System: <u>https://matching.in.tum.de</u> (until 19.07.)

Questions?

Web. https://www.cs.cit.tum.de/camp/teaching/practical-courses/praktikum-on-3d-computer-vision-ws-2023-24/ E-Mail us: tombari@in.tum.de, b.busam@tum.de, nikolas.brasch@tum.de