Funding Public Projects: A Case for the Nash Product Rule

Florian Brandl ¹ Felix Brandt ² **Matthias Greger** ² Dominik Peters ³ Christian Stricker ² Warut Suksompong ⁴

¹University of Bonn

²Technical University of Munich

³University of Toronto

⁴National University of Singapore

The 17th Conference on Web and Internet Economics December 15, 2021

Donor Coordination

- Annual Charity Matching Programs of companies
 - $\bullet\,$ In 2021, Microsoft employees raised \$208 million for 27,000 nonprofits and schools.^1
 - Since 2011, Apple's Employee Giving Program has donated nearly \$725 million to 39,000 organizations.²
- Employees donate independently of mutual interests.
 - Employee 1 would like to donate to Greenpeace (4) or WWF (4).
 Employee 2 prefers to donate to 4 or Unicef (4).
 An efficient distribution rule would allocate both contributions to 4.
 - Employees can benefit from coordinating the donations.

Which distribution rule should we use?

²https://www.apple.com/newsroom/2021/12/apple-marks-a-year-of-giving-in-the-communities-it-calls-home/

 $^{{}^{1}} https://www.microsoft.com/en-us/corporate-responsibility/philanthropies/employee-engagement$

Which distribution rule should be chosen?

- <u>Goal</u>:
 - Guarantee (Pareto-)efficiency of the distribution.
 - Incentivize agents to donate to maximize the gains from coordination.
 → requires a strong participation axiom as contributions are initially owned by the agents.
- The **Nash product rule** is the only distribution rule we are aware of that simultaneously satisfies efficiency and such a strong participation axiom.

Set N of agents with contributions C = {C_i}_{i∈N} not exceeding the individual budgets {B_i}_{i∈N}.

• Set A of projects the agents can contribute to:

Set N of agents with contributions C = {C_i}_{i∈N} not exceeding the individual budgets {B_i}_{i∈N}.

• Set A of projects the agents can contribute to:

Model

Set N of agents with contributions C = {C_i}_{i∈N} not exceeding the individual budgets {B_i}_{i∈N}.

• Set A of projects the agents can contribute to:

Model

Set N of agents with contributions C = {C_i}_{i∈N} not exceeding the individual budgets {B_i}_{i∈N}.

- Set A of projects the agents can contribute to: G @ .
- Individual utility functions $u_i : A \to \mathbb{R}_{\geq 0}$ (here: $\to \{0, 1\}$). \to value for one unit that is allocated to project x.

• Distribution
$$\delta : A \to \mathbb{R}_{\geq 0}$$
 with $\sum_{x \in A} \delta(x) = \sum_{i \in N} C_i = |C|$.
 $\to u_i(\delta) = \sum_{x \in A} \delta(x) u_i(x)$.

• Distribution rule f determining the returned δ .

Agents	Ci	G		٧	$u_i(\delta)$
Christian	2	•	•	•	•
Dominik	2	•	•	•	
Felix	1	•	•	•	•
Florian	1	•	•	•	
Warut	1	•		•	

Which distribution should be chosen?

Definition: Nash Product Rule

For an arbitrary profile C,

$$\mathsf{NASH}(C) = rgmax_{\delta \in \Delta(|C|)} \prod_{i \in N} u_i(\delta)^{C_i}.$$

Agents	Ci	G	6	٧	$u_i(\delta)$	
Christian	2	2	•	•	3	√ efficiency
Dominik	2	1	1	•	6	$\sqrt{2}$
Felix	1	•	1	•	3	\rightarrow no $\delta' \in \Delta(C)$ s.t.
Florian	1		1		3	$u_i(\delta') \ge u_i(\delta)$ for all $i \in N$ and
Warut	1	•	•	1	1	$u_i(\delta') > u_i(\delta)$ for some $i \in N$.
δ_{NASH}	7	3	3	1	16	

пΠ

The Nash Product Rule

Agents	Ci	G		٧	$u_i(\delta)$
Christian	2	2	•	•	3
Dominik	2	1	1	•	6
Felix	1	•	1	•	3
Florian	1		1		3
Warut	1	•	•	1	1
δ_{NASH}	7	3	3	1	16

- Observation: This distribution can be decomposed into individual distributions such that each agent only contributes to his approved projects.
- We call such distributions decomposable.
- Decomposability becomes very important when the distribution rule only gives recommendations to the agents.
- A NASH distribution δ can always be decomposed via $\delta_i(x) = C_i \frac{u_i(x)}{u_i(\delta)} \delta(x).$

Definition: Nash Product Rule

For an arbitrary profile C,

$$\mathsf{NASH}(\mathsf{C}) = rgmax_{\delta \in \Delta(|\mathsf{C}|)} \prod_{i \in \mathsf{N}} u_i(\delta)^{\mathsf{C}_i}.$$

Agents	C_i	G	6	٨	$u_i(\delta)$
Christian	2	2	•	•	3
Dominik	2	1	1	•	6
Felix	1	•	1	•	3
Florian	1	•	1	•	3
Warut	1	•	•	1	1
δ_{NASH}	7	3	3	1	16

- \checkmark efficiency
- \checkmark decomposability

 \rightarrow Already sufficient to ensure participation?

Agents	Ci	G	4	Ø	$u_i(\delta)$	Agents	Ci	G	6	٨	$u_i(\delta')$
Christian	2	2	•	•	3	Christian	2	2	•	•	2
Dominik	2	1	1	•	6	Dominik	2	•	2	•	5
Felix	1	•	1	•	3	Felix	0				3 +1
Florian	1	•	1	•	3	Florian	1	•	1		3
Warut	1	•	•	1	1	Warut	1	.	•	1	1
δ	7	3	3	1	16	δ'	6	2	3	1	14

- By not participating, i.e., saving his contribution, Felix can increase his utility gains $(u_i(\delta) C_i)$ from coordination.
- Goal: Contributing the entire budget should be a dominant strategy for each agent.
 - \rightarrow captured by the axiom of **contribution incentive-compatibility**.

A mechanism f is **contribution incentive-compatible** if for each $i \in N$ and all profiles C, $u_i(f(C_{-i}, C_i)) - C_i$ is weakly increasing in C_i .

Agents	Ci	G	6	٨	$u_i(\delta)$	Agents	Ci	G	(۷	$u_i(\delta)$
Christian	2	2	•	•	3	Christian	2	2	•	•	10/3
Dominik	2	1	1	•	6	Dominik	2	4/3	2/3		5
Felix	1	•	1	•	3	Felix	0				5/3 +1
Florian	1	•	1	•	3	Florian	1	•	1		5/3
Warut	1	.	•	1	1	Warut	1	•		1	1
δ_{NASH}	7	3	3	1	16	δ_{NASH}	6	10/3	5/3	1	38/3

Theorem

The Nash Product Rule satisfies efficiency, decomposability and contribution incentive-compatibility.

We are not aware of any other distribution rule that satisfies efficiency AND contribution incentive-compatibility!

Summary and Further Remarks

Matthias Greger (TUM)

Funding Public Projects

WINE 2021

13/13

Matthias Greger (TUM)

Funding Public Projects

WINE 2021

13/13

- A. Bogomolnaia, H. Moulin, and R. Stong. Collective choice under dichotomous preferences. *Journal of Economic Theory*, 122(2):165–184, 2005.
- F. Brandl, F. Brandt, D. Peters, and C. Stricker. Distribution rules under dichotomous preferences: Two out of three ain't bad. In *Proceedings of the 22nd ACM Conference on Economics and Computation (ACM-EC)*, 2021. Forthcoming.
- A. Hylland. Strategyproofness of voting procedures with lotteries as outcomes and infinite sets of strategies. Mimeo, 1980.