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General Model

@ Set of alternatives A= {a, b,c,...} of size m.
o Consider lotteries 6 € A(1) over the alternatives as outcomes.

o Set of agents N = {1,..., n} with utility functions u; : A(1) — R.
e Distribution rule f mapping each profile (u;);en to a lottery 6.

c=1(0,0,1)

(1/3,/3,1/3)

~(3/4,7/4,0)
a=(1,0,0) ) “b=1(0,1,0) m
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Applications

Participatory Budgeting (Aziz and Shah, 2021; Rey and Maly, 2023)

o Residents decide how to distribute a budget (provided by the city) on
a set of public projects.

@ In this talk, projects do not have fixed costs but rather profit from
any amount of money they receive; sometimes called portioning.

Donor Coordination (Brandl et al., 2022; Brandt et al., 2023)

@ Donors decide how to distribute a budget (provided ‘
by themselves) on a set of public projects. ‘w

@ Participation incentives become even more .
important. 5xmille

mm
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Utility Functions - Substitutes versus Complements

Denote by v; , > 0 agent i's valuation for project x. If v; , € {0,1} for all
agents and projects, define agent i's set of approved projects as

Aii={x€A:vi, =1}
Perfect substitutes: &, &), @
(Bogomolnaia et al., 2005)

@ “I like reading books & and
playing football €. Supporting
any of the two is fine.”

@ Dichotomous utilities
ui(6) = Xxea, 0(x).

@ More general: Linear utilities

u,-((5) = ZXEA Vix - 5(X)

Perfect complements: 2, (8], &
(Brandt et al., 2023)

@ "l approve charities @ and (E).
Both should receive some
money.”

@ Binary Leontief utilities
ui(0) = mingea, 0(x).

@ More general: Leontief utilities
U,'(é) = minxeA:v,.7X>0 (S(X)/V,‘yx.

In the following, restriction to approvals but results carry over to the more

general utility functions.
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All Power to the Agents

Standard approach:
8§ © &8 e

\ \ \ ‘ p  distribution  ¢(p returned

p‘ g‘b @ @ rule f *distribution §

(P ® o

Dynamical approach:
Each agent i receives 1/n of the total budget or “decision power” and

distributes it via §; € A(1/n). Then, § = > ;cp 0i.
Observing the (overall) distribution ¢, agents are allowed to update d;.

O ol s ettty

o (o © ot
® ®
69, 61, ... 89, 63, ... 69, 63, ... 69, 6%, ...
Related ideas can be found in various areas, e.g., fair division
Tum

(Zhang, 2011).
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Perfect Substitutes: u;(0) = Xxea, 0(X)

Consider the following dynamics with the sequence of distributions

(09)¢=012,.
] & & ui(9°%)
Agent 1 1/8 1/8 6/8
Agent 2 . 2/8 . 3/8
Agent 3 1/8 . 1/8 5/8
Agent 4 1/8 : 1/8 5/8
50 3/8 3/8 2/8

t = 0: Each agent i distributes uniformly over A;.
t > 1: Each agent i updates her individual distribution §; via
n-6H(x) = 71 (x)/u;(6t7L) for every x € A (“fractional gain”).
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Perfect Substitutes: u;(0) = Xxea, 0(X)

Consider the following dynamics with the sequence of distributions

(09)¢=012,.
] & & ui(9%)
Agent 1 1/8 1/8 4/5
Agent 2 2/8 3/8
Agent 3 | 3/20 : 2/20 5/8
Agent 4 3/20 : 2/20 5/8
ot 17/40 15/40 8,/40

t = 0: Each agent i distributes uniformly over A;.
t > 1: Each agent i updates her individual distribution §; via
n-6H(x) = 71 (x)/u;(6t7L) for every x € A (“fractional gain”).
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Perfect Substitutes: u;(0) = Xxea, 0(X)

Consider the following dynamics with the sequence of distributions

(69)e=012,.
& & & ui(6%)
Agent 1 | 17/128  15/128 84/100
Agent 2 2/8 49/128
Agent 3 | 17/100 8/100 79/128
Agent 4 | 17/100 8/100 | 79/128
52 ~ 0.4728 47/128  16/100

t = 0: Each agent i distributes uniformly over A;.
t > 1: Each agent i updates her individual distribution §; via
n-6H(x) = 71 (x)/u;(6t7L) for every x € A (“fractional gain”).

Matthias Greger Dynamics for Aggregating Cardinal Preferences

2nd Vienna-Graz Workshop

6 /13



Perfect Substitutes: u;(0) = Xxea, 0(X)

Consider the following dynamics with the sequence of distributions

(09)¢=012,.
& 2 & ui(9)
Agent 1| 2/12 1/12 1
Agent 2 1/4 1/3
Agent 3 1/4 2/3
Agent 4 1/4 : 2/3
) 2/3 1/3 0

t = 0: Each agent i distributes uniformly over A;.
t > 1: Each agent i updates her individual distribution §; via
n-6H(x) = 71 (x)/u;(6t7L) for every x € A (“fractional gain”).

— Convergence to ¢.
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Perfect Substitutes: u;(0) = Xxea, 0(X)

Dynamics:

= 0: Each agent i distributes uniformly on A;.
t > 1. Each agent i updates her individual distribution J; via
n-8f(x) = 67 H(x)/u;(9t71) for every x € A (“fractional gain”).

Definition
The Nash welfare of a distribution ¢ is defined as Nash(d) = [];cp ui(9).

Theorem (Cover, 1984; Brand| et al., 2022)

For any profile, (Nash(6)):en converges to the optimum Nash product. If
Nash welfare is maximized by a unique distribution, the dynamics
converges to it.

Open question: In case of multiple Nash maximizers, does the dynamics
converge to a specific distribution? TI.ITI
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions
(09 ¢=0,12,.:

.6 |ﬂ| @« u,-(éo)
Agent 1 . . . 0
Agent 2 0
Agent 3 0
Agent 4 . . . 0
50 0 0 0

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5 = arg max;, u;,(6° — 0 + dj,) ("best response”) and

5t =gt — ot + o1t

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.

mm
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions
(09 ¢=0,12,.:

.6 |ﬂ| @« u,-(él)
Agent1 | 1/8 1/8 . 1/8
Agent 2 : . . 1/8
Agent 3 . . . 0
Agent 4 . . . 0
ot 1/8 1/8 0

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5 = arg max;, u;,(6° — 0 + dj,) ("best response”) and

5t =gt — ot + o1t

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions
(09 ¢=0,12,.:

.6 |ﬂ| @« u,-(52)
Agent1 | 1/8 1/8 . 1/8
Agent 2 : 1/4 . 3/8
Agent 3 . . . 0
Agent 4 . . . 0
52 1/8 3/8 0

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5 = arg max;, u;,(6° — 0 + dj,) ("best response”) and

5t =gt — ot + o1t

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions

(09 ¢=0,12,.:
.6 |ﬂ| @« u,-(53)
Agent1 | 1/8 1/8 3/16
Agent 2 1/4 6/16
Agent 3 | 1/16 3/16 | 3/16
Agent 4 . . . 3/16
53 | 3/16  6/16  3/16

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.

At each time step t, agent i; (re-)distributes 0;, via
= argmaxgs, u;,(0° — 6} + d;,) (“best response”) and

t+1
5,}

5t =gt — 6t + 51t

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions

(09 ¢=0,12,.:
.6 |ﬂ| @« u,-(54)
Agent1 | 1/8 1/8 5/16
Agent 2 1/4 6/16
Agent 3 | 1/16 3/16 | 5/16
Agent 4 | 1/8 1/8 | 5/16
54 5/16 6/16 5/16

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.

At each time step t, agent i; (re-)distributes 0;, via
= argmaxgs, u;,(0° — 6} + d;,) (“best response”) and

t+1
5,}

5t =gt — 6t + 51t

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions

(09)¢=012,.
.6 |ﬁ| a u,-(55)
Agent1 | 5/32 3/32 11/32
Agent 2 1/4 11/32
Agent 3 | 1/16 3/16 | 10/32
Agent 4 | 1/8 1/8 | 10/32
5 11/32 11/32 10/32

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5t = arg max;, u;,(0° — 0f, + ;) ("best response”) and

gt = §t — gt + ottt

Example: Let S =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions

(09)¢=012,.
.6 |ﬁ| a u,-(56)
Agent1 | 5/32 3/32 11/32
Agent 2 1/4 11/32
Agent 3 | 1/16 3/16 | 10/32
Agent 4 | 1/8 1/8 | 10/32
50 11/32 11/32 10/32

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5t = arg max;, u;,(0° — 0f, + ;) ("best response”) and

gt = §t — gt + ottt

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.

Matthias Greger Dynamics for Aggregating Cardinal Preferences

2nd Vienna-Graz Workshop

mm

8 /13



Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions

(09)¢=012,.
.6 |ﬁ| a u,-(57)
Agent 1| 5/32 3/32 21/64
Agent 2 1/4 22/64
Agent 3 | 3/64 13/64 | 21/64
Agent 4 | 1/8 1/8 | 21/64
57 21/64 22/64 21/64

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5t = arg max;, u;,(0° — 0f, + ;) ("best response”) and

gt = §t — gt + ottt

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.
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Perfect Complements: u;(d) = minyea. d(x)

Consider the following dynamics with the sequence of distributions

(09)¢=012,.
ﬂ |ﬂ| a U,'((S)
Agent1 | 2/12  1/12 1/3
Agent 2 1/4 1/3
Agent 3 | 1/24 5/24 1/3
Agent 4 | 1/8 1/8 1/3
5 13 1/3  1/3

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5t = arg max;, u;,(0° — 0f, + ;) ("best response”) and

St =6t — o + 5,-";“.

Example: Let § =(1,2,3,4,1,2,3,4,...) be a round-robin sequence.
— Convergence to 9.
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Perfect Complements: u;(d) = minyea. d(x)

Dynamics:

Consider an infinite, arbitrary sequence S = (i¢)ten of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5t = arg max;, u;,(0° — 0f, + d;.) ("best response”) and

St =gt — 6t + 51t

Theorem (Brandt et al., 2023)

Nash welfare is maximized by a unique distribution.
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Perfect Complements: u;(d) = minyea. d(x)

Dynamics:

Consider an infinite, arbitrary sequence S = (it)ten of agents from N.
At each time step t, agent iy (re-)distributes 9;, via

5t = arg max;, U;,(0° — df + ;) ("best response”) and

5t =gt — ot +oft.

Theorem (Brandt et al., 2023)

For any profile and any sequence S where each agents appears infinitely
often, the dynamics converges to the Nash welfare maximizer.

For Leontief utilities beyond the binary case, we need to make an
additional technical assumption on S.

Open question: Is the additional assumption required?
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Proof Ideas for Convergence of Dynamics

@ Find fixed points of (6*)¢>o0.

@ Find potential function F with F(§t™1) > F(&?) that is bounded on
A(1).
= (F(0%))¢>0 converges.

© Characterize limit distribution(s).
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From Dynamics to Equilibrium

Dynamics:

Consider an infinite, arbitrary sequence S = (i¢)tcny of agents from N.
At each time step t, agent i; (re-)distributes 0;, via

5t = arg max;, U;,(0* — &f + ;) ("best response”) and

Sl — 5t _ 51_1.; + 5itt+1'

A distribution 6 € A(1) is in equilibrium iff it admits a decomposition
(0:)ien such that u;(6) > ui(§ — &; + 0}) for all i € N and &} € A(1/n).

Theorem (Brandt et al., 2023)

For Leontief utilities, the unique equilibrium distribution coincides with the
Nash welfare maximizer.

v

mm
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Beyond Leontief utilities

Theorem (Brandt et al., 2023)

For any profile and any sequence S where each agents appears infinitely
often, the dynamics converges to the equilibrium distribution.

The theorem also holds for utility functions other than binary Leontief
utilities:
o Separably, additive utility functions uj(x) = > ca. 8i(0(x)) where
gi : A(1) — R is a strictly concave function.
o Linear utility functions uj(x) = Y, ca Vixd(x) (no equilibrium
uniqueness).

mm
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Discussion

Advantages of dynamical approach:
@ Agents’ preferences remain private information.
@ Agents are able to change their preferences over time.

e Justification for mechanisms arising from such dynamics.

Disadvantages of dynamical approach:
@ Requires complete preferences over A(1).

o Limited applicability in certain areas (e.g., reduces to random
dictatorship in voting with strict preferences).

@ In general, convergence is not guaranteed.

mm
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