Balanced Donor Coordination

Felix Brandt 1Matthias Greger 1Erel Segal-Halevi 2Warut Suksompong 3

¹Technical University of Munich

²Ariel University

³National University of Singapore

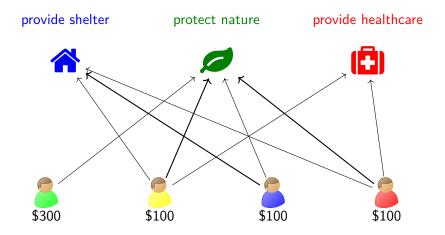
The 24th ACM Conference on Economics and Computation

Donation Programs

- Cinque per mille
 - Italian citizens are allowed to contribute 0.5% of their income tax to one of over 71k organizations.
 - 2022: €510m
- Employee charity matching programs
 - Microsoft (2022): \$250m to 32k organizations
 - Apple (2011-2022): \$880m to 44k organizations

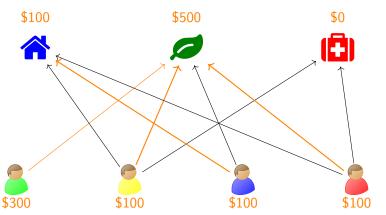
- \rightarrow A donor can select only one organization and acts on her own.
- \rightarrow There is a huge potential to increase the donors' satisfaction by
 - taking into account finer preferences over the organizations.
 - coordinating donations.

The Need for Coordination



ТΠ

The Need for Coordination



 \rightarrow Charity (i) does not receive any money although it is approved by agents 2 and 4.

 \rightarrow Presumably, these two agents are willing to (partially) transfer their contributions to [].

The Model

• Set N of agents with contributions $C = \{C_i\}_{i \in N}$.

- Set A of charities the agents can contribute to: A → ,
 A → ,
- Distribution $\delta : A \to \mathbb{R}_{\geq 0}$ with $\sum_{x \in A} \delta(x) = \sum_{i \in N} C_i$.

The Model

• Set N of agents with contributions $C = \{C_i\}_{i \in N}$.

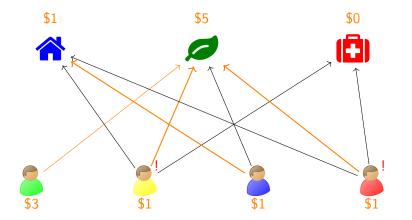


- Set A of charities the agents can contribute to: eal , 💋 , 💼
- Distribution $\delta : A \to \mathbb{R}_{\geq 0}$ with $\sum_{x \in A} \delta(x) = \sum_{i \in N} C_i$.
- Each agent *i* has valuation v_{i,x} ≥ 0 for charity x and a Leontief utility function u_i(δ) = min_{x∈Ai} δ(x)/v_{i,x} where A_i = {x ∈ A : v_{i,x} > 0}.
 - In the case of $v_{i,x} \in \{0,1\}$ for all $i \in N$, $x \in A$, we speak of *binary* Leontief utilities.
- A distribution rule f returns a distribution δ for any profile consisting of (v_{i,x})_{i∈N,x∈A} and (C_i)_{i∈N}.

Linear utility model

- Bogomolnaia, Moulin, Stong (2005), and Brandl, Brandt, Peters, Stricker (2021) (binary preferences, exogenous fixed endowment)
- Brandl, Brandt, Greger, Peters, Stricker, Suksompong (2022) (endowment initially owned by the agents)
- Private provision of public goods (e.g., *Bergstrom, Blume, Varian* (1986))
 - agents distribute their wealth between a private and a public good
- Participatory budgeting (e.g., *Cabannes (2004)*)
 - fixed costs for projects that are either fully funded or not at all
 - exogenous endowment

The Equilibrium Distribution Rule



EC'23 5/8

ТШ

The Equilibrium Distribution Rule

	C _i		Ø	(Ê)	$u_i(\delta)$
Agent 1	3	•	3	•	5
Agent 2	1	•	1	•	0
Agent 3	1	1	•	•	0.5
Agent 4	1	•	1	•	0
δ	6	1	5	0	

 \rightarrow Agents 2 and 4 have an incentive to move (part of) their contribution to [G].

ΠП

The Equilibrium Distribution Rule

	C _i		Ø	(Ĉ)	$u_i(\delta)$
Agent 1	3	•	3	•	3
Agent 2	1	0.5	•	0.5	1.5
Agent 3	1	1	•	•	0.75
Agent 4	1	•	•	1	1.5
δ	6	1.5	3	1.5	

 \rightarrow No agent has an incentive to deviate.

 \rightarrow We call such a distribution an equilibrium distribution.

Theorem

Each profile admits a unique equilibrium distribution.

Definition

The *equilibrium distribution rule* (*EDR*) returns the equilibrium distribution.

	Ci		Ø	(Ē)	$u_i(\delta)$
Agent 1	3	•	3	•	3
Agent 2	1	0.5	•	0.5	1.5
Agent 3	1	1	•	•	0.75
Agent 4	1	•	•	1	1.5
δ^{EDR}	6	1.5	3	1.5	

• $\delta^{\textit{EDR}}$ maximizes Nash welfare and thus is Pareto-efficient.

	Ci	*	ø	($u_i(\delta)$
Agent 1	3		3	•	3
Agent 2	1	0.5	•	0.5	1.5
Agent 3	1	1	•	•	0.75
Agent 4	1		•	1	1.5
δ^{EDR}	6	1.5	3	1.5	

Matthias Greger

EC'23 7/

- $\delta^{\textit{EDR}}$ maximizes Nash welfare and thus is Pareto-efficient.
- No group of agents has an incentive to misreport their valuations (group-strategyproofness).

	C _i		Ø	(Ē)	$u_i(\delta)$		C _i	^	Ø	(2)	$u_i(\delta)$	
Agent 1	3	•	3		3	Agent 1	3		3	•	3	
Agent 2	1	0.5	•	0.5	1.5	Agent 2	1	•	•	1	1	
Agent 3	1	1		•	0.75	Agent 3	1	1	•	•	0.5	
Agent 4	1	•	•	1	1.5	Agent 4	1	•	•	1	1	тn
δ^{EDR}	6	1.5	3	1.5		δ^{EDR}	6	1	3	2		101

- $\delta^{\textit{EDR}}$ maximizes Nash welfare and thus is Pareto-efficient.
- No group of agents has an incentive to misreport their valuations (group-strategyproofness).
- Agents are strictly better off by increasing their contributions (*participation*).

	C _i		Ø	(2)	$u_i(\delta)$		Ci	^	ø	(Ĉ)	$u_i(\delta)$	
Agent 1	3	•	3	•	3	Agent 1	3		3	•	10/3	
Agent 2	1	1/2		1/2	3/2	Agent 2	1	•	1/3	2/3	5/3	
Agent 3	1	1	•		3/4	Agent 3	2	2	•	•	1	
Agent 4	1	•	•	1	3/2	Agent 4	1	•	•	1	5/3	
δ^{EDR}	6	3/2	3	3/2		δ^{EDR}	7	2	10/3	5/3		

- $\delta^{\textit{EDR}}$ maximizes Nash welfare and thus is Pareto-efficient.
- No group of agents has an incentive to misreport their valuations (group-strategyproofness).
- Agents are strictly better off by increasing their contributions (*participation*).
- Increasing the valuation for a charity x can only increase $\delta(x)$ (preference-monotonicity).

	Ci		Ø	(Ē)	$u_i(\delta)$		Ci		ø	(Ē)	$u_i(\delta)$	
Agent 1	3	•	3	•	3	Agent 1	3		3	•	3	
Agent 2	1	0.5	•	0.5	1.5	Agent 2	1	1	•	•	1	
Agent 3	1	1		•	0.75	Agent 3	1	1	•	•	1	
Agent 4	1	•	•	1	1.5	Agent 4	1	•	•	1	1	
δ^{EDR}	6	1.5	3	1.5		δ^{EDR}	6	2	3	1		101

- $\delta^{\textit{EDR}}$ maximizes Nash welfare and thus is Pareto-efficient.
- No group of agents has an incentive to misreport their valuations (group-strategyproofness).
- Agents are strictly better off by increasing their contributions (*participation*).
- Increasing the valuation for a charity x can only increase $\delta(x)$ (preference-monotonicity).
- If an agent increases their contribution, no charity can receive less than before (*contribution-monotonicity*).

	Ci		Ø	(Ĉ)	$u_i(\delta)$		Ci		ø	(Ē)	$u_i(\delta)$	
Agent 1	3	•	3	•	3	Agent 1	3		3	•	10/3	
Agent 2	1	$^{1/2}$	•	1/2	3/2	Agent 2	1	•	1/3	2/3	5/3	
Agent 3	1	1		•	3/4	Agent 3	2	2	•	•	1	
Agent 4	1	•	•	1	3/2	Agent 4	1	•	•	1	5/3	
δ^{EDR}	6	3/2	3	3/2		δ^{EDR}	7	2	10/3	5/3		

- δ^{EDR} maximizes Nash welfare and thus is Pareto-efficient.
- No group of agents has an incentive to misreport their valuations (group-strategyproofness).
- Agents are strictly better off by increasing their contributions (*participation*).
- Increasing the valuation for a charity x can only increase $\delta(x)$ (preference-monotonicity).
- If an agent increases their contribution, no charity can receive less than before (*contribution-monotonicity*).
- *EDR* can be computed via convex programming.

- Existence of a best response dynamics converging to EDR.
- Binary Leontief utilities:
 - *EDR* can be computed via linear programming.
 - Connections to maximizing egalitarian welfare.
- Our results do not carry over to other utility models, e.g., concave utilities as Cobb-Douglas.
- It is worth investigating such models regarding equilibrium distributions and other axioms.
- Are there attractive axiomatic characterizations of EDR?
- Increase impact of existing donation programs by implementing EDR.

- T. Bergstrom, L. Blume, and H. Varian. On the private provision of public goods. *Journal of Public Economics*, 29(1):25–49, 1986.
- A. Bogomolnaia, H. Moulin, and R. Stong. Collective choice under dichotomous preferences. *Journal of Economic Theory*, 122(2):165–184, 2005.
- F. Brandl, F. Brandt, D. Peters, and C. Stricker. Distribution rules under dichotomous preferences: Two out of three ain't bad. In 22nd, pages 158–179, 2021.
- F. Brandl, F. Brandt, M. Greger, D. Peters, C. Stricker, and
 W. Suksompong. Funding public projects: A case for the Nash product rule. *Journal of Mathematical Economics*, 99, 2022.
- Y. Cabannes. Participatory budgeting: a significant contribution to participatory democracy. *Environment and Urbanization*, 16(1):27–46, 2004.